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Beyond apparent simplicity, visuomotor dexterity actually requires the coordination of
multiple interactions across a complex system that links the brain, the body and the
environment. Recent research suggests that a better understanding of how perceptive,
cognitive and motor activities cohere to form executive control could be gained from
multifractal formalisms applied to movement behavior. Rather than a central executive
“talking” to encapsuled components, the multifractal intuition suggests that eye-hand
coordination arises from multiplicative cascade dynamics across temporal scales of
activity within the whole system, which is reflected in movement time series. Here
we examined hand movements of sport students performing a visuomotor task in
virtual reality (VR). The task involved hitting spatially arranged targets that lit up on a
virtual board under critical time pressure. Three conditions were compared where the
visual search field changed: whole board (Standard), half-board lower view field (LVF)
and upper view field (UVF). Densely sampled (90 Hz) time series of hand motions
captured by VR controllers were analyzed by a focus-based multifractal detrended
fluctuation analysis (DFA). Multiplicative rather than additive interactions across temporal
scales were evidenced by testing comparatively phase-randomized surrogates of
experimental series, which confirmed nonlinear processes. As main results, it was
demonstrated that: (i) the degree of multifractality in hand motion behavior was minimal
in LVF, a familiar visual search field where subjects correlatively reached their best
visuomotor response times (RTs); (ii) multifractality increased in the less familiar UVF,
but interestingly only for the non-dominant hand; and (iii) multifractality increased
further in Standard, for both hands indifferently; in Standard, the maximal expansion
of the visual search field imposed the highest demand as evidenced by the worst
visuomotor RTs. Our observations advocate for visuomotor dexterity best described by
multiplicative cascades dynamics and a system-wide distributed control rather than a
central executive. More importantly, multifractal metrics obtained from hand movements
behavior, beyond the confines of the brain, offer a window on the fine organization of
control architecture, with high sensitivity to hand-related control behavior under specific
constraints. Appealing applications may be found in movement learning/rehabilitation,
e.g., in hemineglect people, stroke patients, maturing children or athletes.
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INTRODUCTION

Nonlinear Movement Coordination
Most activities of daily human life depend on adequate physical
interactions between the individual and its environment. This
way, the capacity to reach a target obviously represents a critical
function of the movement system repertoire. Beyond apparent
simplicity, the timely movement of a hand from one target to
another has intricate roots in perceptual, motor and cognitive
instances. Successful visuomotor behavior requires coordinated
activities of these instances that cohere to form an adequate
executive. Although most of sensorimotor and cognitive systems
have been extensively described through their independent
components, explanations remain more elusive when it comes to
consider their proper functioning as a whole, which, moreover,
makes the essential phenomenon of adaptation difficult to grasp
(Torre et al., 2019). To overcome this difficulty, a great deal of
attention has been paid in recent years to the main characteristic
of interdependencies within and between component activity in
complex systems, governed by nonlinear processes, and spanning
multiple and nested temporal and spatial scales. Paying specific
attention to the interaction between system components rather
than to the component activities themselves is thought to better
describe the emergence of new cognitive structures (Dixon et al.,
2012; Anastas et al., 2014; Wijnants, 2014), wherein the ad hoc
capacity of the whole system to apprehend new rules dictated
by a changing environment depends on interactions between
scales. The multifractal formalism of human behavior has been a
reliable and popular approach to focus on nonlinear interactions
that shape adaptive system flexibility (Ihlen and Vereijken, 2013;
Carver et al., 2017; Bell et al., 2019; Torre et al., 2019).

Researchers have notably explored (multi)fractal cognitive
coordination of sensorimotor systems beyond the confines of
the brain by exploring motor time series (Wijnants, 2014). This
approach assumes that temporal and spatial details of movement
dynamics are a rich source of information about the hierarchical
organization of the whole movement system linking the brain,
the body and the environment. On this account, the aggregation
of sequential response times (RTs) may reflect the dynamic
organization of multiplicative interactions that span a number
of nested hierarchical and temporal scales, which can be reliably
quantified by analyzing the multifractal structure in the temporal
dynamics of the system output.

The Multifractal Formalism
Multifractality provides a fine analysis to refer to the sort of
structural nesting in a system output time series. The multifractal
formalism is an extension of the concept of fractality defined
by Mandelbrot as “a shape made of parts similar to the
whole” (B. Mandelbrot in Feder, 2013). When zooming on
a fractal, one can observe that the structure at finer scales
contains nested versions of the very same structure observed
at coarser scales. What the multifractal approach offers in
comparison to monofractal analyses is that nesting patterns can
vary both within and across scales. Thus, multifractality has
been described as a finer analysis of the statistical structure

in time series (Delignieres and Marmelat, 2012; Delignières and
Marmelat, 2013) which adds significant value to the exploration
of the adaptive flexibility of the system organization when
adopting new operating rules (Anastas et al., 2014). In the output
signal, multifractality occurs in the distribution of variance or
any metrics of fluctuation amplitude over multiple observational
scales (Kantelhardt et al., 2002; Ihlen and Vereijken, 2013; Kelty-
Stephen et al., 2013). The scale-dependent fluctuation, which
is the root of multifractality, can be estimated by a number
of methods, each with different properties that make some of
them more suitable for particular types of signal (Eke et al.,
2012; Mukli et al., 2015). In cognitive and movement science,
signals fluctuations as a function of observational scales have
been estimated through computations of the standard deviation
in the signal summation and conversion (SSC) analysis (Eke et al.,
2000), through wavelet transform best described by the wavelet
leader (WL) approach (Jaffard, 2004; Jaffard et al., 2007), and
through a residual root mean square error after detrending time
series with a set of observational windows, performed with the
detrended fluctuation analysis (DFA) (Peng et al., 1994).

The multifractal formalism is nicely described in inspiring
articles (e.g., Kantelhardt et al., 2002; Ihlen and Vereijken, 2010,
2013; Kelty-Stephen et al., 2013; Mukli et al., 2015). In essence,
current hypotheses stem that multiplicative interactions in the
organism involve fractal temporal correlations in output time
series, and, more saliently, the presence of a range of fractal
correlations within the same time series, which is referred to as
“multifractality.” Where the monofractal exponent represents the
scaling behavior in a system, the width of the spectrum of co-
existing exponents provides the degree of system multifractality
(Kantelhardt et al., 2002; Eke et al., 2012; Ihlen and Vereijken,
2013). Critical steps have been taken in anchoring a multifractal
approach in the study of nonlinear processes that govern the
complex movement system (Ihlen and Vereijken, 2013; Kelty-
Stephen et al., 2013, 2016; Anastas et al., 2014; Bell et al., 2019;
Mangalam and Kelty-Stephen, 2020), thus providing to date
a reliable window to explore proper system behavior and its
adaptative capacity to an ever-changing environment.

Multifractality and ad hoc Adaptation
After an era of accumulating evidence that behaviors in young
and healthy movement systems exhibit fractal characteristics
degraded with disease and aging, finer analyses of motor time
series have increasingly exploited the roots of multifractal
formalisms. These analyses have widened the scope of system
functioning exploration, noticeably toward ad hoc adaptation
reflected in nonlinear dynamics (Anastas et al., 2014; Likens
et al., 2017; Torre et al., 2019). How multifractal metrics
are able to probe system adaptation is a key – and not
trivial – question that has been nicely addressed in a fairly
comprehensive manner in a recent work (Torre et al., 2019).
In an experiment comparing the gradual deprivation of
sensory inputs in healthy participants to a deafferented man
as a pathological-limit case, the authors clarified the role
of fractal properties in sensorimotor dynamics. Multifractality
demonstrated high sensitivity to effective (ad hoc) adaptation
imposed by experimental constraints (sensory deprivation).
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Moreover, it was possible to distinguish this adaptation from
adaptability, better reflected in the monofractal behavior of the
movement system. Each concept can be explored independently
thanks to an extensive approach of movement coordination
(Arsac, 2021).

Hand Movement Behavior
By providing consistent results with the above intuitions,
some recent research can help illustrate how multifractal
analysis is applied, and what kind of hand behavior has
been associated with multifractality. Nonaka and Bril (2014)
studied the manufacture of stone and glass beads, analyzing
the movement of the craftsman’s hand on a hammer. More
skilled craftsmen demonstrated greater multifractality. Likens
et al. (2017) observed participants writing an essay by typing
it on a computer keyboard. Pairs of raters evaluated the essays
based on holistic quality and analytic subscales (introduction,
organization, grammar, cohesion, structure. . .). Greater quality
essays were associated with broader multifractal spectra obtained
from keystroke interval time series. Tracking hand movements
during a standard task of card-sorting, Anastas et al. (2014)
associated multifractality in hand trajectories to the underlying
adaptive flexibility in executive function. Preschooler participants
were asked to sort cards according to an unknown rule,
which they had to guess based on feedback about correct card
placement. The authors observed a multifractal behavior in
densely sampled hand movements, with clear nonlinear origins
demonstrated by phase-randomized surrogate data testing, both
in the beginning of the sorting task and in the second half,
after the rule changed and the participants had to induce it
once again. More recently, by combining a multifractal approach
of hand movements with the standard Fitts task and speed-
accuracy trade-off as an experimental attempt, Bell et al. (2019)
showed that nonlinear amplification of movement variability
through interaction across scales supports greater accuracy
in manual aiming.

The Focus on Short-Range Dynamics
It is not trivial to observe that in above-described experiments,
fine grained fluctuations in hand trajectory have been captured
using densely sampled hand movements, not intervals duration
between successive (rhythmic) events. The characteristics of
the multifractal behavior were thus explored in very short
temporal scales. The underlying hypothesis is that the cascading
organization of movement coordination reflects a multifractal
tensegrity in which nonlinear interactions across scales are
reliably reflected in the short-scale multifractal analysis. As a
possible application, short-scale multifractal analysis makes sense
for exploring adaptation reflected in fast sequences of hand
movements under different task settings. Exploiting the Fitts
task as an experimental attempt, a task in which performance
under critical time pressure is an essential foundation, it has
been shown that global constraints can produce changes in
the fine-scale dynamics of the hand trajectory (Wijnants et al.,
2012), interpretatively captured by a short-scale multifractal
analysis (Bell et al., 2019). The main intuition is that a fractally
scaled measurement inherently exhibits a scale-invariant decay

of variability, so that short-scale behaviors demonstrate close
correlation with the longer-range or more global constraints of
a task (Palatinus et al., 2013; Anastas et al., 2014; Mangalam et al.,
2020a,b,c; Kelty-Stephen et al., 2021). Thus, the multiple fractal
results obtained from the analysis of densely sampled movements
provide insight into the hierarchy of cross-scale interactions of
the movement system.

A Visuomotor Task Involving Fast
Movements of the Hands
Assuming sufficient reliability in above-described short-range
multifractal behaviors to infer nonlinear coordination in
sensorimotor cognitive control, a focus through the lens of
multifractality on the visuomotor system operating in essential
interactions like grasping objects or touching targets makes sense.
Fast processing in eye-hand coordination is essential for our
capacity to quickly reach an object and represents therefore a
critical function of the movement system repertoire. Typically, as
described above, a wide system that links the brain, the body and
the environment must operate efficiently through the nonlinear
processes that govern the hierarchical movement coordination.

In an attempt to experimentally explore the organization of
the visuomotor system, we use a task that has been designed
to assess, or to improve through practice, visuomotor dexterity.
This task, called Dynavision (Klavora et al., 1994), involves
goal-directed rapid movements of the hands in response to
visual stimuli occurring in more or less extended visual search
fields. Specifically, targets/buttons that are spatially organized
on a vertical board must be hit as quick as possible when
they light up in a random order. A replication of the task was
recently implemented in virtual reality (VR) (Pratviel et al.,
2021), with the significant advantage that the VR setup includes
tracked VR controllers held in the participant’s hands, which
allows hand movements to be captured with sufficiently fine-
grained measurements.

Manipulating the Visual Search Field to
Set a Global Task-Constraint
The visuomotor task in VR (VMVR) offers a great flexibility
to study visuomotor dexterous behavior under varying visual
input constraints (Pratviel et al., 2021). For the participant, a
successful execution relies on adequate coordination between
visual search, the voluntary eye movements that actively scan the
environment to capture task-relevant information, and cognitive
control in movement system. Searching relevant information in a
specific field of view represents per se a global constraint to which
the entire movement system must adapt. As a first reasonable
intuition, an extended visual search field should exacerbate the
need of fine perceptual-motor coordination through cognitive
adaptation; by contrast, the task constraint is relaxed when the
search field is reduced. An appealing observation in previous
works has been that lower view field (LVF) movement times are
consistently lower than upper view field (UVF) ones (Stone et al.,
2019). This LFV advantage might have its roots in evolutionary
pressure selecting for feeding and foraging behavior (Milner and
Goodale, 2006), whose retinal (Curcio and Allen, 1990) and
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neural correlates explored by fMRI (Rossit et al., 2013; Maltempo
et al., 2021) have been identified.

Hypotheses
In the present study, we used the VMVR task as an experimental
attempt to describe changes in eye-hand cognitive coordination
that is supposed to arise from multiplicative cascade dynamics
across temporal scales that link the brain, the body and the
environment. We plant the flag of short-scale multifractality as a
suitable approach to extract characteristics of system-wide ad hoc
adaptations. Fine-grained dynamics in hand movements were
extracted from densely sampled VR controller displacements
under manipulated visual contexts.

We hypothesized that specific but subtle adaptations in the
complex cognitive structure that emerges in LVF and UVF
experimental situations are reflected in the multifractal behavior
of each hand. A more marked adaptation, reflected in a wide
multifractal spectrum of hand dynamics is expected when the
visuomotor task takes place in a large visual search field.

MATERIALS AND METHODS

Apparatus
The experiment took place in a virtual environment (Figure 1),
developed by the CATIE (Centre Aquitain des Technologies
de l’Information et Electroniques, Bordeaux, France) with
the Unity software (Unity Technologies, San Francisco, CA,
United States), and delivered via an HTC Vive Pro headset
with two manual controllers (HTC America, Inc., Seattle, WA,
United States). The position of each controller in the VR
environment was displayed as virtual gloves, thus constituting a
visual feedback.

The VMVR – derived from the Dynavision (D2; Dynavision
International LLC, West Chester, OH) – consists in hitting as
quickly as possible targets/buttons spatially arranged around
concentric circles on a vertical board (120 cm× 120 cm). Buttons

FIGURE 1 | View of the display in virtual reality (VR). The red light represents
the active target to be hit. Gloves represents the controllers the user holds in
his hands.

are successively lit up after being reached by the hand-held VR
controllers. More details can be found in Pratviel et al. (2021).

Participants
A total of 64 healthy sport sciences students gave their
informed consent to participate to this program, that was part
of their academic curriculum and for which they received
credits. The institutional review board (Faculte des STAPS
Institutional Review Board Univ. Bordeaux) approved the
procedure that respected all ethical recommendations and
followed the declaration of Helsinki. All the participants had
normal or corrected-to-normal vision. None of them had
any prior experience with the present task. Participants were
instructed to not consume caffeine or alcohol at least 24 h
before the experiment.

Two participants’ data were corrupted, and three others were
identified as outliers in the multifractal analysis. Therefore,
data are processed for 59 participants [32 females, 27 males,
19 ± 1.8 years (range 18–25), 171.1 ± 9.5 cm, 63.3 ± 9.5 kg, five
of them are left-handed].

Procedure
The experiments were conducted with three gradually
challenging modes, imposed by the characteristics of the
visual search field. “LVF” and “UVF” mean that only upper-half
and lower-half buttons, respectively could light up. The LVF
advantage has been stressed in introduction. The mode called
“Standard” mean that only lower-half and upper-half buttons,
respectively, could light up.

Prior to their arrival, participants completed a questionnaire
with socio-demographic information. Their hand preference was
assessed with a Modified Edinburgh Handedness Questionnaire
(Oldfield, 1971; Cohen, 2008).

Participants discovered the apparatus for the first time. In
agreement with previous recommendations for familiarization
(Wells et al., 2014), prior to executing the VMVR task in different
modes, each participant ran two one-minute tests in Standard
mode. During these pre-tests, participants were instructed to find
a comfortable distance away from the virtual board so that they
could reach and see all the targets. The height of the virtual
board display was adjusted so that the participant’s eyes faced
the small LCD screen, just above the center of the display (see
Figure 1). Participants were instructed to preferentially switch-
off the buttons on the left with the left controller, and conversely,
but it was not mandatory. Then, they passed each condition (LVF,
UVF, and Standard) two-times (test-retest) in a random order,
each test lasting 60 s.

Acquisition of Hand Movements
In each condition, hand movements were acquired from the
HTC Vive controllers’ displacements using the SteamVR plugin.
Instantaneous controllers’ positions were sampled at 90 Hz with
a spatial resolution of 1 mm. The hand movement time series
for each hand (upon which the multifractal analysis has been
performed, see below), were calculated by the euclidean distance
between each pair of consecutive points (thus combining the x,
y, and z axis). Based on the results from the Modified Edinburgh
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Handedness Questionnaire, data from left and right hands were
properly labeled as coming from dominant and non-dominant
hands. Data analysis was performed using Matlab (Matlab 2019b,
Matworks, Natick, MA, United States).

Signal Pre-processing
Before further analyses of hand movement time series, every
signal sample that indicated a displacement below the spatial
resolution (3 mm for 3D hand-displacements) was deleted. Then,
we kept the last 2048 samples for each condition, in each subject.
Representative signals are shown in each condition LVF, UVF,
Standard and for each hand (dominant and non-dominant) in
Figure 2.

Multifractality in Hand Displacement
Time Series
The multifractal characteristics of 3D hand-displacement time
series were estimated by using a focus-based multifractal analysis
based on a DFA (Mukli et al., 2015). This method is the
multifractal adaptation of the DFA developed by Peng et al.
(1994), and estimates fractal properties over a range of moment
orders q. The main principle is that negative q values magnify
small fluctuations in the series, while positive q values magnify
large fluctuations, making it possible to obtain a range of scaling
exponents that finely describe fractal characteristics.

Multifractal Detrended Fluctuation Analysis
Given an initial signal x of size L, the DFA algorithm follows the
following steps:

(1) We computed the cumulated sum from which the mean is
subtracted:

y (i) =
i∑

k = 1

[xk − 〈x〉], i = 1, ..., L (1)

(2) Then y (i) is divided into Ns = floor(L/s) nonoverlapping
boxes of length s. The scales s were constructed
equidistantly on a logarithmic scale. For each box ν, a local
trend yν was calculated by a least-square approximation.

(3) The variance F2 (ν, s) of the detrended time-series was then
calculated for each box ν and scale s:

F2 (ν, s) =
1
s

∫ s

i = 1

{
y [(ν− 1) s + i]− yν (i)

}2 (2)

(4) The next step consisted in calculating the qth order
fluctuation function by averaging the variance F2 (ν, s) over
all the Ns boxes.

Fq (s) =
{

1
Ns

∫ Ns

ν = 1

[
F2 (ν, s)

] q
2

}1/q

for q =/ 0 (3)

Fq (s) = exp
{

1
2Ns

∫ Ns

ν = 1
ln
[
F2 (ν, s)

]}
for q = 0 (4)

The case q = 2 supposedly corresponds to the monofractal
Hurst exponent calculation, although the use of the focus-based

FIGURE 2 | Hand movement signals (interpoint distance in meters vs. time) from one subject, in the three conditions [lower view field (LVF), upper view Field (UVF)
and Standard], for the dominant and non-dominant hands.
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FIGURE 3 | Multifractal analysis of hand movement time series (in this example, in UVF with the dominant hand). (A) Unified scaling function from a focus-based
multifractal DFA analysis. (B) Generalized Hurst exponent, obtained from linear regression over statistical moments q. In some extent, H(2) represents the
monofractal exponent (see Section “Multifractality in Hand Displacement Time Series”). The degree of multifractality 1H15 is calculated as the difference between
H(–15) and H(15).

approach might provide a shifted H(2) value (see Figure 4 in
Mukli et al., 2015, even on synthetical signals). Equation 3 shows
that the statistical moment q acts as a filter emphasizing small and
large fluctuations for q < 0 and q > 0, respectively.

(5) At last, the fluctuation functions Fq (s) were logarithmically
plotted against the scales s for each value of q. If the original
signal x shows fractal scaling properties, the fluctuation
function follows a power law for increasing scales s:

Fq (s) ∝ sH(q) (5)

The generalized Hurst exponent H(q) yields the multifractal
signature of hand movement time series.

Focus-Based Multifractal Formalism
In order to calculate H(q) with a more robust and unbiased
method, we use a reference point (focus) during the regression
of fluctuation functions (Mukli et al., 2015). Briefly, this method
is based on the fact that, for a signal with finite length, all qth
order fluctuation functions converge towards an identic point
when the signal length L is used as the scale s. Mainly, it
prevents the multifractal analysis of empirical time series from
being corrupted.

The theoretical focus point S(q,L) has an effect on the
statistical errors measured for the regression of the scaling
functions. Indeed, forcing the multifractal formalism helps
getting a fan-like geometry for signals of finite size, but
weakens the correlation coefficient in the estimation of individual
Hurst exponents. Even though the correlation coefficient R2 is
sometimes used as a relevant indicator to choose the range of
statistical moments q to be included in the multifractal analysis,
this is less of a concern when using the focus-based analysis;
here, the objective is not to run a monofractal analysis on a set

of exponents q, but rather to use the properties of multifractal
signals to get a more reliable estimation of H(q) for empirical time
series of finite length.

Application to Hand Movement Time Series
Using focus-based MF-DFA with a range of q from −15 to +15
and observational scales going from 16 to 256 samples, we plotted
the qth order fluctuation functions (Figure 3A). The generalized
Hurst exponent was obtained for the whole range of q-values
(Figure 3B). We chose to use N/8 as our maximum window in
the multifractal analysis to avoid the influence of eventual drifts.

The choice of the range of q values was guided both by
previous experiments with physiological time series, e.g., (Nagy
et al., 2017; Racz et al., 2018a,b), and by the sigmoidal pattern
in the representation of the Hurst exponents across statistical
moments q, with asymptotic trends for far negative and far
positive values of q. This phenomena is nicely described by Grech
and Pamuła (2012); the authors propose that those asymptotic
limits are already reached for a range of q going from−15 to+15.

The degree of multifractality was calculated as the difference
between the two most distant Hurst exponents, here H(−15)–
H(15), and is subsequently called 1H15. With q acting as a
magnifying lens on small and large fluctuations, 1H15 allows
us to assess the extent to which the scale-free components
depend on q.

As each participant performed two runs in each condition, we
further use the mean of the 1H15 obtained for test and retest in
our analysis. The common endpoint of the multifractal analysis is
the singularity spectrum, relating the Hölder exponents α and the
fractal dimension f(α). With this representation, the multifractal
signature lies in the width of the singularity spectrum, 1α. The
generalized Hurst exponent H(q) and the Hölder exponent α are

Frontiers in Physiology | www.frontiersin.org 6 July 2021 | Volume 12 | Article 713076

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-713076 July 14, 2021 Time: 18:40 # 7

Pratviel et al. Multifractal Roots of Visuomotor Adaptation

linked together according to the following equation :

α = H
(
q
)
+ qH′(q) (6)

Then, the fractal dimension f(α) is obtained with:

f (α) = q
(
α− H(q)

)
+ 1 (7)

(see e.g., Equations 9–16 in Kantelhardt et al., 2002). Therefore,
1H15 and 1α give a similar estimation of multifractality.

Surrogate Data Testing
Before concluding on the 1H15 calculated from our time
series, we need to ensure that the multifractal scaling observed
originates effectively from long-range correlations. Actually,
several pitfalls have been identified. Mainly, multifractality
could derive from heavy tailed probability distribution of
signal values (Ivanov et al., 1999; Kantelhardt et al., 2002),
linear autocorrelations, or the finite size of the time series.
In order to distinguish true multifractality from “multifractal
background noise,” a surrogate data testing was conducted
following guidelines (Eke et al., 2012).

To test the presence of true multiplicative processes between
time scales rather than linear autocorrelations, the original time
series were phase randomized using Iterated Amplitude Adjusted
Fourier Transform – IAAFT (Schreiber and Schmitz, 1996).
This method preserves the probability density function and the
power spectral density, but the phase shuffling destroys long-
range correlations.

Here, we generate surrogates (n = 40) for each time series,
and compare the 1H15 from the original signal with the
ones obtained from the surrogates. As the phase randomization
process preserves only linear phenomenon in the series, we
consider the signal to be truly multifractal if the 1H15 value of
the original signal is significantly higher than 1H15 of surrogates.

Additional Testing
As mentioned before, and proposed by Mukli et al. (2015), 1H15
has also been assessed using two alternative methods based on the
focus approach: SSC and WL.

As a source of comparison, we also computed multifractality
using the Chhabra and Jensen method (Chhabra and
Jensen, 1989), and discussed some related issues (range of
q-values, goodness of fit). Detailed results are provided in
Supplementary Material 1.

Statistical Analysis
Statistical analyses were performed using Matlab and the R
software R Core Team (2020).

Normal distribution for visuomotor RT and multifractality
(1H15) was assessed using a Shapiro–Wilk test. As a first step,
a two-way ANOVA on 1H15 with condition (LVF, UVF, and
Standard) and hand (dominant, non-dominant) as independent
variables was used to detect possible interactions. As interaction
was confirmed, it was not possible to analysis each hand
separately. Hence, a one-way repeated measures (six-repetitions)
ANOVA analysis with a post hoc Tuckey test was used to compare
1H15 obtained in each condition and for each hand. Data

sphericity was assessed with a Mauchly’s test. The effect size was
computed using the ω2.

In the case where the normality of the data was not established,
a Kruskal–Wallis ANOVA with a post hoc Bonferroni was
performed. The effect size was then computed using the η2.

RESULTS

Visuomotor Response Time
Shapiro–Wilk tests for visuomotor RTs showed the absence
of normal distribution in conditions UVF and Standard
(p < 0.05 for both). A Kruskall-Wallis ANOVA test was used
and demonstrated differences across conditions (Chi2 = 109.8,
p = 1 × 10−24, η2 = 0.62). Post hoc Bonferroni tests indicated
visuomotor RT increasing with task difficulty: RT LVF < RT
UVF < RT Standard (all p < 2 × 10−5). Results for the mean
RT of test and retest across the three conditions are displayed in
Figure 4.

Testing for True Multifractality
1H15 were calculated for each surrogate series obtained from
phase randomization (IAAFT). Overall, 81% (571/708) of the
original series had 1H15 significantly larger than their surrogates
(78% for the dominant hand series, and 84% for the non-
dominant ones). Regarding conditions, in LVF, UVF, and
Standard, 81, 88 and 73% of series had 1H15 significantly
larger than their surrogates, respectively. Subsequent analyses
were conducted assuming true multifractal behavior in hand
movements, reliably captured by 1H15.

FIGURE 4 | Response times (RT) calculated as the mean of both test and
retest RTs for the conditions LVF, UVF, and Standard. Red line, mean of the
samples; dark gray, standard deviation; light gray, 95% confidence inteval.
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Multifractal Properties – 1H15
Multifractal behaviors have been obtained from 1H15 values (see
section “Multifractality in Hand Displacement Time Series”, and
a typical example in Figure 3).

To provide full details about the multifractal analysis,
average singularity spectra (representing f(α) vs. α, see section
“Multifractality in Hand Displacement Time Series”) are
provided in Figure 5.

Regarding 1H15 analyses, Shapiro–Wilk tests indicated
normal distribution of the data in each condition (LVF, UVF,
and Standard) for both hands (dominant and non-dominant) (all
p > 0.21).

As mentioned before, we used the mean of 1H15 from test and
retest in our multifractal analysis. First, a paired t-test showed no
differences in 1H15 between test and retest in each condition, for
each hand (all p > 0.23). Then, one-way ANOVAs with repeated
measures on both the test [F(5,353) = 21.67, p = 7 × 10−19] and
retest [F(5,353) = 28.11, p = 6× 10−24] data led to similar results.
Therefore, we confirmed our choice to use the mean of test and
retest 1H15 values for our analysis. The results of the multifractal
analysis are shown in Figure 6.

A two-way ANOVA performed with condition and hand
as independent variables showed an interaction effect
[F(2,353) = 10.37, p = 4.22 × 10−5]. The ANOVA with
repeated measurements highlighted differences between 1H15
measured on each condition for both hands [F(5,353) = 39.84,
p = 6× 10−31, ω2 = 0.34]. Mauchly’s Test of Sphericity indicated
that the assumption of sphericity was not violated (W = 0.745,

FIGURE 5 | Average singularity spectra obtained from FMF–DFA in the three
conditions (distinguished by colors) for both hands (distinguished by markers).
The width of the spectra gives a similar information as 1H15 to infer the
multifractal behavior. In some extent, the position of the singularity spectra
along the x-axis gives a clue about the monofractal behavior (strictly speaking,
H(2), see Section “Multifractality in Hand Displacement Time Series”). It is
worth noting that the focus-based method, used to enforce the multifractal
formalism and avoid corrupted spectra, might influence alpha values, and
specifically H(2) as an indicator of monofractality. Although mean H(2)
(1 < H(2) < 1.2) seems to indicate somewhat persistent behavior, this is a
consequence of applying a focus-based approach on our data (see Section
“Multifractality in Hand Displacement Time Series”).

p = 0.285). Post hoc Tuckey tests indicated higher 1H15 values
for the Standard condition compared the LVF and UVF ones in
both hands (all p < 1× 10−4). Moreover, we found no differences
between LVF and UVF for the dominant hand (p = 1.00), whereas
there is one for the non-dominant hand (p = 3.14 × 10−8). All
the results from post hoc Tuckey are presented in Table 1.

DISCUSSION

The present study provides additional support to the intuition
that multiplicative cascade dynamics may govern nonlinear

FIGURE 6 | Degree of multifractality 1H15 in the three conditions (LVF, UVF,
and Standard) for the dominant and non-dominant hands (from left to right).

TABLE 1 | Results from post hoc Tuckey for the degree of multifractality 1H15.

Condition 1 Condition 2 Difference of
means

p-value

LVF dominant UVF dominant 0.00 1.00

LVF dominant Standard dominant −0.06 2.08 × 10−8

LVF dominant LVF non-dominant 0.02 0.62

LVF dominant UVF non-dominant −0.05 6.28 × 10−5

LVF dominant Standard non-dominant −0.11 2.07 × 10−8

UVF dominant Standard dominant −0.08 2.07 × 10−8

UVF dominant LVF non-dominant 0.02 0.77

UVF dominant UVF non-dominant −0.06 1.96 × 10−5

UVF dominant Standard non-dominant −0.11 2.07 × 10−8

Standard dominant LVF non-dominant 0.10 2.07 × 10−8

Standard dominant UVF non-dominant 0.03 0.23

Standard dominant Standard non-dominant −0.03 0.20

LVF non-dominant UVF non-dominant −0.08 3.14 × 10−8

LVF non-dominant Standard non-dominant −0.13 2.07 × 10−8

UVF non-dominant Standard non-dominant −0.05 9.64 × 10−5

Frontiers in Physiology | www.frontiersin.org 8 July 2021 | Volume 12 | Article 713076

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-713076 July 14, 2021 Time: 18:40 # 9

Pratviel et al. Multifractal Roots of Visuomotor Adaptation

interactions across scales in the hierarchical organization of
movement coordination, through three main original findings :
(i) densely sampled hand movements during a visuomotor task
exhibit multifractal dynamics; (ii) the degree of multifractality
varied with task constraint imposed by manipulating the visual
search field; (iii) multifractal-based metrics are sensitive enough
to highlight subtle differences in behavior of the dominant vs. the
non-dominant hand.

These results add significant support to the notion of
body-wide coordinated fluctuations as a process developing
through interactions across multiple scales (Mangalam and
Kelty-Stephen, 2020). They plead for the virtue of analyzing
non-linear interactions estimated by multifractal geometry as
a sign of effective ad hoc adaptation (Torre et al., 2019).
An adaptive behavior might exploit a larger spectrum of
fractal dynamics, which enhances both motor and perceptual
mechanisms (Mangalam et al., 2020c). Taken together, these
observations could form the focus of future follow-up strategies
for improving visuomotor dexterity through motor learning,
or restoring it through rehabilitation, wherein VR might bring
significant value.

Multifractality in Hand Movements
Unveils Interactions Across Scales in the
Cognitive System, Supporting Effective
Adaptation
Most eye-hand coordinated activities in humans take place
in the LVF (Previc, 1990), which has structured a so called
LVF advantage over years (Danckert and Goodale, 2001, 2003;
Khan and Lawrence, 2005; Krigolson and Heath, 2006; Rossit
et al., 2013; Stone et al., 2019). This allowed us to postulate
that our VR situation imposing visual search in the lower
part of the virtual board (LVF) represents the least constrained
visuomotor activity in our conditions. By demonstrating >80%
nonlinear dynamics with our surrogate data test, the present
study reinforces the intuition that hand movements are not
additively decomposable. As a direct consequence, insights from
the multifractal formalism that is grounded in multiplicative
cascading (not additive) interactions can be thought to provide
a well-suited tool to decipher a hierarchical coordination across
scales in the operating cognitive system, based on perceptual-
motor fluctuations (Van Orden et al., 2005; Diniz et al., 2011;
Ihlen and Vereijken, 2013; Wijnants, 2014). On this account, the
change in multifractal hand behavior reported here (Figure 6)
when the visuomotor task was performed with a larger visual
search field (LVF and UVF vs. Standard) is in agreement
with our first hypothesis that the degree of multifractality in
hand movements reflects the adaptative capacity of a widely
coordinated sensorimotor system.

Although effective adaptation has been studied in parallel
with adaptability, by exploring comparatively multifractal and
monofractal behaviors (Torre et al., 2019), one can hardly infer
monofractal behavior in the present study, that focused on
multiplicative cascade patterns (Figure 2) analyzed through the
multifractal formalism (Kelty-Stephen and Wallot, 2017) using
a focus-based method (Mukli et al., 2015). Alternative methods

seems to be better suited to infer monofractal behaviors in time
series (Roume et al., 2019).

The larger multifractal spectrum width (1H15) that we
observed here in Standard, when compared to LVF and
UVF, is in agreement with an increased multifractality in a
sensorimotor task when degrading sensory information (Torre
et al., 2019). In the same vein, the increased 1H15 here
is in line with nonlinear amplification (multifractal spectrum
width) of hand movement variability that supports greater
accuracy in manual aiming during the Fitts task (Bell et al.,
2019). By extension, one can conclude that the healthy
adaptation of cognitive-motor performance to several sources
of external variation is essentially reflected in a rising degree
of movement multifractality, a view fully consistent with an
increased repertoire of interactivity that supports an adequate
response to changes in environment. As underlined in Torre
et al. (2019), the association between enhanced multifractality
and effective ad hoc adaptation observation may not hold in
all contexts. Patients or elderly subjects could demonstrate a
loss of adaptivity that prevents the enrichment of nonlinear
interactions in cognitive control when facing constraints, which
is reflected in unchanged or even degraded multifractality. One
can also find evidence that the (excessive) complexification
of cognitive tasks may lead to reduced multifractal spectrum
width (Ihlen and Vereijken, 2013), an extreme case that was
obviously not reached in our conditions (Figure 6). Interestingly,
in the intermediate scenarios, the insights provided by the
multifractal formalism on adaptation do not appear as all-
or-nothing, as demonstrated by Torre et al. (2019) who
highlight progressive changes in multifractality as a function of
gradual sensory deprivation, as well as a significant relationship
between the two. The capacity of the multifractal approach to
reveal subtle, progressive adaptation when adapting to gradual
constraints is of critical importance to explore flexibility in
visuomotor control, or even any other cognitive architectures
associated to control in the movement system (Arsac, 2021).
On this account, the present study adds significant value,
by revealing that the dominant and non-dominant hand
exhibit singular changes in degree of multifractality when
adapting to the (intermediate) constraint imposed by visual
search in the UVF.

Multifractality in Dominant vs.
Non-dominant Hand in UVF
Despite a Visual search field of the same size, the visuomotor
task in UVF differs from LVF due to the LVF advantage
inherited from evolutionary processes supporting foraging and
feeding behavior (Milner and Goodale, 2006). In agreement, the
visuomotor performance quantified here by RTs showed that
this experimental situation UVF lies between a “performant”
LVF situation and a “difficult” Standard situation (Figure 4).
An appealing result here is that a difference in the degree
of multifractality, and therefore a difference in visuomotor
adaptation, between the dominant and non-dominant hands is
observed only in this particular situation UVF. First of all, a
gradual change in multifractality in the non-dominant hand,
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where 1H15 reached an intermediate level between the least
(LVF) and the more constrained (Standard) tasks confirms that
the multifractal formalism offers a reliable glimpse on adaptive
capacities linked to interdependencies governed by nonlinear
interactions. Second, it is not surprising at first sight that the non-
dominant hand would have to adapt more than the dominant
hand, which is again reflected in 1H15. At this stage, the question
that arises is why 1H15 reflects a hand-specific adaptation
in UVF, a hand-specificity observed neither in LVF nor in
Standard (Figure 6).

Before discussing possible interpretations, one should keep
in mind the main objective of the present study: to consider
the fact that the multifractal formalism helps decipher specific
adaptation between hand use and visual search situations is
per se an interesting result. Yet, this is where motion-based
multifractal approaches have their limitations, as without direct
measures of brain connectivity, one can hardly infer the very
neural mechanisms underlying adaptation, with the multifractal
approach actually focusing on the emergent control architecture.
Although changes in network connectivity have been linked to
changes in multifractal sensorimotor behavior when adapting
to sensory manipulations (Vergotte et al., 2018), the authors
explored connectivity in the sensorimotor cortex thanks to near
infrared spectroscopy to elaborate their reasoning, an option not
available in the present study.

Adopting a coherent line of reasoning, the non-dominant
hand would need more adaptation in each “complexified”
situation, namely UVF where the analysis of 1H15 confirmed
this hypothesis, but also Standard where, in contrast, both hands
exhibited similar multifractality (Figure 6). An interpretative
hypothesis might be found in the facilitating mechanisms of
motor performance described by several authors, relative to
both the hand and the space in which it acts. First, distinct
neural control mechanisms have been identified between the
dominant and non-dominant arms (Sainburg and Kalakanis,
2000). Neuroimaging showed greater recruitment of visual and
motor regions when using the non-dominant hand, but greater
recruitment of motor planning regions for the dominant one
(Kirby et al., 2019). One could thus imagine slightly different
cognitive architectures linking the brain, the body and the
environment when it comes to control the movement of the
dominant or the non-dominant hand: with a richer repertoire
of interactions elicited by motor planning in the dominant
hand, and visual feedback of trajectory corrections in the non-
dominant hand. Thus, the reason why hand-specific architectures
demonstrate similar degree of multifractality in LVF may rely
on mechanisms at the origin of the natural LVF advantage
relying on higher density of ganglion cells in the peripheral
retina processing the LVF (Curcio and Allen, 1990) and
more efficient pre-cortical processing of LVF information. This
advantage combined with greater reliance on visual information
in non-dominant hand architecture may flatten the difference
in needed adaptation between dominant and non-dominant
hand specifically in LVF, which could explain similar 1H15
observed here in this particular situation. The LVF advantage
disappears in the UVF situation, which reveals the greater
adaptation in the non-dominant hand reflected in a higher degree
of multifractality (Figure 6). As to the Standard condition, which

imposes visual search in both fields LVF and UVF, the LVF
advantage operates in successful hits of the non-dominant hand,
which might explain similar 1H15 observed in this situation
in the present study (Figure 6). Obviously, the hand specific
networked interactions that are hypothesized here need further
investigations including direct brain connectivity measurements.
At this stage yet, our results confirm previous suggestions that
the multifractal formalism offers an interesting glimpse of fine
coordination in the movement system behavior.

Information Lying in Densely Sampled vs.
Event Time Series
It has been brought to our attention that analyzing the
fractal behavior in inter-hit duration series could make a
significant contribution to a thorough fractal-based approach
of coordination in movement system. As our experiment was
not initially designed to get event-series, each task – lasting
only 60 s – provided few successive hits (maximum was
132, 126 and 99 for LVF, UVF, and Standard, respectively).
Individual event-series were obtained by stitching test and
retest runs – although this is not a recommended procedure
to reliably extract a monofractal behavior (Marmelat and
Meidinger, 2019) – to provide event-series amounting to a
maximum of 260, 248, and 190 samples, respectively. When
applied to these series both a DFA-based analysis and the
ARFIMA(0,d,0) model (using Whittle approximation of the
maximal likelihood estimator) demonstrated scaling exponents
around 0.5 (Supplementary Material 2), which is characteristic
of white noise and in line with the random nature of the
stimulus. To conclude, despite obvious limitations in building
event-series as said above, it seems interesting to notice that
in our conditions, relevant information did not lie in the
event-series (due to the nature of the task), but in the fine-
grained features of movement dynamics, as initially hypothesized
in this study. This latter point highlights the strength of
the densely sampled approach of movement coordination we
used here, inspired by recent research providing converging
evidence that adaptation to global task constraints can produce
changes in finer-scaled movement dynamics (e.g., Bell et al.,
2019). Thus, the present work brings additional evidence that
an adequate multifractality analysis of movement behavior
may shed light on the movement’s system hierarchy of cross-
scale interactions.

CONCLUSION AND PERSPECTIVE

The present study supports the intuition of interaction-
dominance in the system wide cognitive control of visuomotor
dexterity. In agreement with previous studies, fast dynamics
in hand movement behavior exhibit multifractal properties
that offer an anchor to explore adaptations in an emergent
cognitive control. Beyond the observation that multiplicative
cascade dynamics might represent a fundamental organization
of cognitive movement control, multifractal roots showed
tight links with adaptation, a critical property that is broadly
associated to health.
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Here, as an experimental attempt, we used a VMVR that
is easy to reproduce, even outside the laboratory, to reach a
wide audience. As VR set-ups offer great flexibility to design
perceptual-cognitive tasks and, more saliently, have built-in
sensors able to capture densely sampled hand trajectories, the
combination of multifractal approaches with VR material is
promising. It has not escaped our attention that head movements
can be captured by the VR set-up as well but we deplored a
too low spatial resolution in our conditions to further exploit a
coordinated head-hand multifractal behavior. Although this is an
interesting perspective, the approach would require additional
tools to get sufficient accuracy in head movement variability.
In the same vein, finer analyses of the cognitive structure
supporting visuomotor dexterity could be gained by introducing
variability in gaze fluctuations thanks to eye tracking; this
could prefigure next pertinent steps in merging cognition and
movement sciences. We anticipate that future work, possibly
combining hand, eye and head dynamics, will fruitfully provide
means for understanding system wide control, so as to further
consolidate the present findings.
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