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Abstract

Background: A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence
is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a
strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the
fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in
the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission.

Results: Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal
isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A 15N-labeling
experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to
175 nmol 15NH4

+ g-1 protein h-1. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous
oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial
cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate
assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores
(up to 6–8 μmol NO3

- g-1 protein) for dissimilatory nitrate reduction.

Conclusions: Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry
out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the
ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the
major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.
Background
In marine ecosystems, nitrate (NO3

-) serves as both a ni-
trogen source for assimilation and an electron acceptor
for dissimilatory processes when oxygen (O2) is deficient.
The latter scenario is ubiquitously encountered in anoxic
sediment layers, but also prevails in the water bodies of
oxygen minimum zones (OMZs) of the world’s oceans [1].
In denitrification, nitrate is sequentially reduced to di-
nitrogen NO−

3→NO−
2→NO→N2O→N2

� �
, in dissimila-

tory nitrate reduction to ammonium (DNRA), nitrate is
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sequentially reduced to ammonium NO−
3→NO−

2→NHþ
4

� �
;

and in anaerobic ammonium oxidation (anammox), am-
monium is oxidized by nitrite to form dinitrogen
NHþ

4 þNO2−→N2
� �

. These different metabolic pathways
of dissimilatory NO−

3 or NO−
2 reduction were originally

thought to only occur in prokaryotes [2-4]. Meanwhile, de-
nitrification and DNRA have been discovered in a limited
set of eukaryotic microorganisms, including marine foram-
inifers [5,6] and diatoms [7,8]. Incomplete denitrification to
nitrous oxide (N2O) has also been proven for plant-
pathogenic and soil fungi, such as Fusarium oxysporum
[9,10], but so far not for marine isolates. Additionally, a
large number of fungal species, mainly belonging to
Ascomycota, are capable of “ammonia fermentation”, a
form of NO−

3 reduction to ammonium NHþ
4

� �
coupled to

the fermentation of organic compounds [11].
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Fungi are primarily aerobic heterotrophs, but some
species, especially fermentative yeasts, can survive and
grow under completely anoxic conditions. Nevertheless,
both the abundance and the ecological role of fungi in
O2-deficient marine environments are probably underes-
timated [12]. Recent sequencing approaches revealed a
large diversity of marine microbial eukaryotes in environ-
ments where O2 occurs in low concentrations or is com-
pletely absent [13]. Additionally, it was found that fungal
18S rDNA sequences dominate the eukaryotic microbial
communities in anoxic marine habitats (reviewed by [14]).
Fungi retrieved from coastal marine sediments are domi-
nated by Ascomycota that may be of terrestrial origin [15].
Amongst others, they are represented by Aspergillus spe-
cies, including A. terreus [16]. Fungal community structures
differ between oxic, seasonally anoxic, and permanently an-
oxic sites, suggesting adaptation of fungal communities to
prevailing O2 conditions [12].
The Arabian Sea harbors two different O2-deficient

conditions, which includes a seasonal OMZ along the
continental shelf and an open-ocean, perennial OMZ
[17]. The distribution of anaerobic nitrogen cycling in
the Arabian Sea is patchy and covers areas with predom-
inant denitrification [18] or anammox activity [19]. The
Arabian Sea is also a globally important site of N2O
emission [17,20,21]. The oversaturation of the water col-
umn with this potent greenhouse gas is ascribed to de-
nitrification activity [17].
Here, the ecophysiology of an A. terreus isolate (An-4)

obtained from the seasonal OMZ in the Arabian Sea was
studied. An-4 was enriched from coastal sediment sam-
pled during a period of bottom-water anoxia using anoxic,
NO−

3 -amended conditions. It was therefore hypothesized
that An-4 is capable of dissimilatory NO3

- reduction. The
role of O2 and NO−

3 availability in triggering dissimilatory
NO3

- reduction was studied in axenic incubations. In a
dedicated 15N-labeling experiment, all environmentally
relevant products of dissimilatory NO−

3 reduction were de-
termined. Intracellular NO−

3 storage, a common trait of
NO3

--respiring eukaryotes, was studied combining freeze-
thaw cycles and ultrasonication for lysing NO−

3 -storing
cells. Production of cellular energy and biomass enabled
by dissimilatory NO−

3 reduction was assessed with ATP
and protein measurements, respectively. Using these ex-
perimental strategies, we present the first evidence for dis-
similatory NO−

3 reduction by an ascomycete fungus that is
known from a broad range of habitats, but here was iso-
lated from a marine environment.
Time (h)

Figure 1 Time course of nitrate and ammonium concentrations
during axenic cultivation of A. terreus isolate An-4 (Experiment
1). (A) Aerobic, (B) anaerobic cultivation. The liquid media were
amended with nominally 50 μmol L-1 of NO3

- and NH4
+ each at the

beginning of cultivation. Means ± standard deviation (n = 3).
Results
Aerobic and anaerobic nitrate and ammonium turnover
The fate of NO−

3 added to the liquid media of axenic An-4
cultures (verified by microscopy and PCR screening, see
Methods) was followed during aerobic and anaerobic culti-
vation (Experiment 1), in a 15N-labeling experiment involv-
ing an oxic-anoxic shift (Experiment 2), and in a cultivation
experiment that addressed the intracellular storage of NO−

3

(Experiment 3). Nitrate was generally consumed, irrespect-
ive of O2 availability (Figures 1A + B (Exp. 1), 2A (Exp. 2),
and 3A + B (Exp. 3)). Under oxic conditions, NO−

3 concen-
trations in the liquid media exhibited sudden drops when
high biomass production and/or NHþ

4 depletion was noted
in the culture flasks (Figures 1A and 3A). Under anoxic
conditions, however, NO−

3 concentrations in the liquid
media decreased steadily over the whole incubation period
during which neither sudden increases in biomass produc-
tion, nor NHþ

4 depletion were noted (Figures 1B, 2A,
and 3B).
The fate of NHþ

4 was investigated in Experiments 1
and 2 and additionally in an experiment that addressed
the production of biomass and cellular energy during
aerobic and anaerobic cultivation (Experiment 4). Am-
monium was either net consumed or net produced,
which depended on the availability of both O2 and NO−

3
(Figures 1A + B, 2B + C, and 4A (Exp. 4)). In the absence of
NO3− ; NH4þ was invariably consumed, irrespective of O2
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Figure 2 Time course of inorganic nitrogen species during
anaerobic incubation of A. terreus isolate An-4 (Experiment 2).
The isolate was pre-cultivated under oxic conditions with 15NO3

- as
the only source of NO3

- and then exposed to anoxic conditions. Ab-
solute amounts of (A) 15N-labeled NO3

- , (B) total NO2
- , total NH4

+, and
total N2O, and (C) 15N-labeled NH4

+ and N2 in the incubation vials
are shown. Means ± standard deviation (n = 3).
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Figure 3 Time course of intracellular nitrate contents (ICNO3)
and extracellular nitrate concentrations (ECNO3) (Experiment 3).
A. terreus isolate An-4 was cultivated under (A) oxic and (B) anoxic
conditions. ICNO3 contents are expressed per g protein of the fungal
biomass. Means ± standard deviation (n = 3).
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availability (Figure 4A). In the presence of NO−
3 , NHþ

4
was either consumed or produced under oxic and an-
oxic conditions, respectively (Figures 1A + B, 2B + C,
and 4A). Taken together, these results suggest a role of
NO−

3 in nitrogen assimilation under oxic conditions
when NHþ

4 is depleted, and a role of NO3
- in dissimila-

tion under anoxic conditions when NHþ
4 is available.

Additionally, the net production of NH4
+ under anoxic

conditions suggests dissimilatory NO−
3 reduction to

NHþ
4 by An-4.
Products of anaerobic nitrate turnover
The precursors, intermediates, and end products of dis-
similatory NO3

- reduction (i.e., NO3
- , NO2

- , NH4
+, N2O,

and N2) by An-4 were investigated in a 15N-labeling ex-
periment (Exp. 2). Axenic mycelia were incubated with
15NO3

- and then subjected to a sudden oxic-anoxic shift.
The anaerobic consumption of NO3

- by An-4 was ac-
companied by the production and cellular release of
NH4

+, NO2
- , and N2O, but not N2 (Figure 2A-C). Ammo-

nium was quantitatively by far the most important prod-
uct, whereas N2O and NO2

- were less important
(Figure 2B + C, Table 1, Additional file 1: Figure S1).
Biomass-specific 15NH4

+ production rates equaled 15NO3
-

consumption rates during the first 3 days of incubation
(Table 1). During the remaining incubation time, N con-
sumption and production rates were generally lower
than during the first 3 days (Table 1). After no further
decrease of the NO3

- concentration was observed (i.e.,
after 408 h), NH4

+, N2O, and NO2
- formed 83.0, 15.5, and

1.5%, respectively, of all N produced and released into
the liquid media. These results substantiate the capabil-
ity of An-4 to dissimilatorily reduce NO3

- to NH4
+ (as

main product), NO2
- and N2O (as side products) under

anoxic conditions.
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Figure 4 Time course of extracellular ammonium
concentrations and adenosine triphosphate (ATP) contents of
A. terreus isolate An-4 (Experiment 4). (A) Ammonium
concentrations in the liquid media and (B) biomass-specific ATP
contents of A. terreus isolate An-4 were determined during aerobic
and anaerobic cultivation in the presence or absence of NO3

- . ATP
contents are expressed per g of protein of the fungal biomass.
Means ± standard deviation (n = 3).

Table 1 Turnover rates of inorganic nitrogen species by
A. terreus isolate An-4 during anaerobic incubation with
15NO3

- enrichment (Experiment 2)

Nitrogen species Day 0-3 Day 3-17

NO3
-
total −166.5 (33.9) −76.4 (13.3)

NO2
-
total +3.4 (0.4) +1.5 (0.3)

NH4
+
total +565.4 (74.8) +6.1 (12.4)

N2Ototal +5.0 (0.7) +12.5 (0.9)
15NH4

+ +175.4 (33.7) +11.1 (6.5)
15N-N2 +0.7 (0.8) −0.4 (0.2)

Rates were calculated for linear increases or decreases in the amount of the
different nitrogen species during the early and late phase of anaerobic
incubation. Mean rates (standard error) are given as nmol N g-1 protein h-1.
Positive and negative values indicate production and consumption,
respectively.
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Intracellular nitrate storage
The capability of An-4 to store nitrate intracellularly, a
common trait of large-celled microorganisms that re-
spire nitrate, was investigated during both aerobic and
anaerobic cultivation (Exp. 3). Intracellular NO3

- concen-
trations (ICNO3) were high when extracellular NO3

- con-
centrations (ECNO3) were high and vice versa,
irrespective of O2 availability (Figure 3A + B). Under
oxic conditions, however, ICNO3 and ECNO3 concentra-
tions dropped sharply within the first day of incubation
(Figure 3A), whereas under anoxic conditions, steady de-
creases in ICNO3 and ECNO3 concentrations were
noted during 11 days of incubation (Figure 3B).
In the 15N-labeling experiment (Exp. 2), the total

amount of N produced in each incubation vial (185.4 ±
29.3 nmol) exceeded the total amount of NO3

- consumed
(114.4 ± 27.3 nmol), implying that also 71.0 nmol ICNO3

was consumed during the anoxic incubation. The initial
amount of ICNO3 transferred into the incubation vials
together with the An-4 mycelia of 77.5 ± 28.9 nmol
equaled the calculated amount of ICNO3 needed to
close the N budget.

Production of biomass and cellular energy
The production of biomass and cellular energy by An-4
was studied during aerobic and anaerobic cultivation in
the presence or absence of NO3

- (Experiment 4); biomass
production was also recorded in Experiment 1. For this
purpose, the time courses of protein and ATP contents
of An-4 mycelia and of NO3

- and NH4
+ concentrations in

the liquid media were followed. Biomass production by
An-4 was significantly higher when O2 and/or NO3

- were
available in the liquid media (Table 2). The biomass-
specific ATP contents of An-4 reached higher values
when NO3

- was available in the liquid media and were
invariably low in its absence (Figure 4B). Under oxic
conditions, ATP contents increased to maximum values
within 1 day of incubation and steadily decreased during
the following 8 days (Figure 4B). Under anoxic condi-
tions, ATP contents reached maximum values only after
3 days and thereafter fluctuated around intermediate
values (Figure 4B). These results substantiate the cap-
ability of An-4 to grow anaerobically and produce cellu-
lar energy by dissimilatory NO3

- reduction to NH4
+.

Discussion
Physiology of isolate An-4
All observations made during incubations of Aspergillus
terreus (isolate An-4) in the presence and absence of O2

and NO3
- indicate that this fungus is capable of dissimila-

tory NO3
- reduction to NH4

+ [11]. An-4 produced NH4
+

only under anoxic conditions and through NO3
- reduc-

tion as proven in the 15N-labeling experiment. The
process led to significant cellular ATP production and
biomass growth and also occurred when NH4

+ was added
to suppress NO3

- assimilation, stressing the dissimilatory
nature of the observed anaerobic NO3

- reduction activity.
For a large number of other fungal species, this type of



Table 2 Correlation between oxygen and nitrate availability and biomass production by A. terreus isolate An-4
(Experiments 1 and 4)

Experiment Treatment Nitrate in media (μM) Final biomass in flask (g)

Experiment 1 Aerobic + Nitrate 43.2 (1.7) 11.4 (1.5)

Anaerobic + Nitrate 52.3 (0.5) 1.5 (0.1)

Experiment 4 Aerobic – Nitrate 3.4 (0.1) 2.2 (0.4)

Aerobic + Nitrate 30.6 (2.7) 11.2 (1.0)

Anaerobic – Nitrate 6.6 (0.1) 0.7 (0.1)

Anaerobic + Nitrate 95.4 (8.7) 2.3 (1.8)

Nitrate concentrations are given as the mean (standard deviation) of 6–10 samples taken during the cultivation period. Final biomass is given as the mean
(standard deviation) wet weight of three fungal cultures harvested at the end of the cultivation period. The final biomass does not include the (minor) weight of
six samples that were taken for protein and ATP analysis in Experiment 4.
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anaerobic NO3
- metabolism has been termed “ammonia

fermentation” in case that the reduction of NO3
- to NH4

+

was coupled to the oxidation of organic carbon com-
pounds to acetate and substrate-level phosphorylation
[10,11]. Ammonia fermentation has been found in a
wide spectrum of filamentous ascomycetous fungi
[11,22], but so far not in fungi isolated from marine en-
vironments. Since the fermentation of organic substrates
is not proven for An-4, the anaerobic NO3

- metabolism
of this isolate might as well be of respiratory nature and
then corresponds to DNRA. This pathway has so far
been excluded to occur in fungi because a pentaheme
cytochrome c NO2

- reductase typical of DNRA [23] has
not been found in fungi with an anaerobic NO3

- metabol-
ism [24].
Aside from the general accord with fungal ammonia

fermentation or DNRA, the anaerobic NO3
- metabolism

of An-4 showed several interesting features. Most not-
ably, dissimilatory NO3

- reduction was accompanied by
significant N2O production (ca. 15% of NO3

- reduced)
and to a lesser extent by NO2

- production (ca. 1.5% of
NO3

- reduced). While it was not surprising that traces of
NO2

- , an intermediate of dissimilatory NO3
- reduction to

NH4
+, were released into the liquid media [8,11], the pro-

duction and cellular release of N2O was unexpected
[10]. Nitrous oxide is the end product of incomplete de-
nitrification in many plant-pathogenic and soil fungi
[9,25,26], whereas the marine isolate An-4 obviously
produces N2O via dissimilatory NO3

- reduction to NH4
+.

Nitrous oxide is not generally known as an intermediate
of dissimilatory NO3

- reduction to NH4
+, but may well be

a by-product of this reduction pathway as shown for bac-
teria [27-29].
An-4 is clearly able to store NO3

- intracellularly and use
it for dissimilatory NO3

- reduction to NH4
+. Intracellular

NO3
- storage is known for a number of prokaryotic and

eukaryotic microorganisms capable of dissimilatory NO3
-

reduction, but so far has not been reported for fungi, even
when capable of denitrification or ammonia fermentation
[10,24]. Large sulfide-oxidizing bacteria [30,31], foramin-
ifers and gromiids [5,6,32,33], and diatoms [7,8,34,35]
store NO3
- in their cells in millimolar concentrations. In

our experiments with An-4, the maximum biomass-
specific intracellular NO3

- contents were 6–8 μmol g-1

protein. Assuming a cellular protein content of 50% of the
dry weight and a cellular water content of 90% of the wet
weight, maximum intracellular nitrate concentrations
reached ca. 400 μmol L-1. This intracellular NO3

- pool
proved to be quantitatively important for dissimilatory
NO3

- reduction by An-4, since it contributed up to 38% to
the total NO3

- consumption in the 15N-labeling experi-
ment. The initially high rates of NH4

+ production may sug-
gest that An-4 is first using up the readily available
intracellular NO3

- stores before it switches to using extra-
cellular NO3

- as well, but this scenario needs to be proven
in a dedicated 15N-labeling experiment. The general physi-
ology of intracellular NO3

- storage by An-4 is currently un-
known. For instance, it is not clear at which growth stage
and under which ambient conditions An-4 is taking up
NO3

- from the environment because the phase of increas-
ing intracellular NO3

- contents was not captured by our
oxic and anoxic incubations. From the observed correl-
ation between ICNO3 and ECNO3 it can be con-
cluded that an unknown enrichment factor cannot be
exceeded, meaning that ICNO3 concentrations will in-
crease with ECNO3 concentrations, probably up to an
as yet unknown maximum ICNO3 concentration.
Benthic microorganisms that store NO3

- often show
vertical migration behavior in the sediment that may
enable them to take up NO3

- closer to the sediment
surface and in the presence of O2 [30,36,37]. It is
conceivable that the hyphae of An-4 grow in direc-
tion of NO3

--containing layers closer to the sediment
surface to facilitate NO3

- uptake. Finally, it remains to
be investigated whether An-4 accumulates NO3

- in
acidic vacuoles as recently shown for large sulfur bac-
teria [38] or in the cytosol of the hyphae.

Ecological implications of anaerobic nitrate turnover by
isolate An-4
Aspergillus terreus is a common and globally occurring
soil fungus that is also known from substrates as diverse
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as air, salterns, capybara droppings, lung of pocket mice,
corn, cotton plants, milled rice, muesli, and wall paint
[39]. The species has been reported from marine and as-
sociated habitats, such as mangroves and soft corals, and
isolates from these habitats have been widely investi-
gated for the production of bioactive compounds
[40-42]. A. terreus has also been isolated from the hyper-
saline water of the Dead Sea [43,44]. The species is an
important human pathogen causing bronchopulmonary
aspergillosis and disseminated infections [45]. Dissimila-
tory NO3

- reduction by human-associated microorgan-
isms has been demonstrated [46,47], but it is not known
whether fungi are involved. A. terreus is also of consider-
able biotechnological interest because it produces a wide
diversity of secondary metabolites that find pharmaceut-
ical applications, biotechnologically relevant compounds
such as itaconic acid and itatartaric acid, as well as my-
cotoxins that are important for food safety ([39] and ref-
erences therein).
The wide habitat spectrum of A. terreus might be sig-

nificantly expanded by the ability for dissimilatory NO3
-

reduction in the absence of O2. This fungus has the po-
tential to survive hypoxic or anoxic conditions that pre-
vail in aquatic sediments mostly just a few millimeters
below the surface [48] or even directly at the surface
when O2 concentrations are low in the water column
[12,49]. In contrast, NO3

- originating from the water col-
umn and/or the nitrification layer at the sediment sur-
face diffuses deeper into the sediment than O2 does [50].
In shallow sediments, NO3

--rich water is introduced into
even deeper layers by mixing forces such as bioturb-
ation, bioirrigation, and ripple movement [51,52]. The
sediment habitat in which A. terreus can thrive is further
expanded by its NO3

- storage capability. The maximum
intracellular NO3

- content of 8 μmol g-1 protein theoret-
ically sustains dissimilatory NO3

- reduction without
extracellular NO3

- supply for 2–4.5 days (calculated from
rates measured in the 15N-labeling experiment). Survival
and growth beyond this time frame will depend on the
ability of A. terreus to repeatedly access NO3

- in its nat-
ural sediment habitat, which is currently unknown.
The dissimilatory NO3

- reduction activity of An-4 leads
to the production and release of NH4

+, N2O, and NO2
- .

Thus, unlike the denitrification and anammox activities
of other microorganisms, the anaerobic NO3

- metabolism
of An-4 cannot directly lead to fixed nitrogen removal.
Since the major product of NO3

- reduction is NH4
+, An-4

merely converts one form of fixed nitrogen into another
one. It is noteworthy, however, that the production of
NH4

+ and NO2
- by An-4 might indirectly contribute to

fixed nitrogen removal by fueling anammox, the domin-
ant nitrogen loss process in many OMZs [53]. Remark-
ably, An-4 produces and releases ca. 15% of the total
NO3

- reduced as N2O, a potent greenhouse gas [54,55].
Interestingly, the OMZs of the Arabian Sea have repeat-
edly been reported to be major sites of N2O production,
especially in continental shelf areas and coastal upwell-
ing zones [17,20,21,56].

Conclusion
Before meaningful conclusions on the potential impact
of fungi on the marine nitrogen cycle can be drawn, it
has to be established how abundant and widespread
fungi with an anaerobic NO3

- metabolism are in marine
environments. Previous studies reported a high diversity
of fungi in O2-deficient marine environments [12,16], a
large proportion of which may have similar physiologies
as An-4. Therefore, further concerted efforts should aim
at revealing the so far largely ignored influence of fungi
on the marine nitrogen cycle and their role in the pro-
duction of greenhouse gases.

Methods
Geographic origin and identity of isolate An-4
The sampling site was located in the coastal, seasonal
OMZ off Goa (India), northwest of the river mouths of
the Zuari and the Mandovi (15°31′80″N, 73°42′60″E).
Sampling was carried out at 14 m water depth in Octo-
ber 2005 and anoxic conditions were recorded in the
bottom waters during sampling. Four ascomycete fungi
were successfully isolated by the particle-plating tech-
nique after enrichment in anoxic, nitrate-amended sea-
water. One of the ascomycete isolates (An-4) was
axenized with antibiotics and is tested here for its cap-
ability to reduce nitrate in the absence of oxygen.
Isolate An-4 was identified as Aspergillus terreus

(Order Eurotiales, Class Eurotiomycetes) using morpho-
logical and DNA sequence data. Macro- and micro-
scopic characters were studied according to [39]. Partial
calmodulin (Cmd) and β-tubulin (BenA) gene sequences
retrieved from the isolate with previously described
methods [57,58] were used to derive the phylogenetic
position of An-4 (Additional file 1: Figure S2). The ob-
tained sequences were deposited in the NCBI GenBank
sequence database under accession numbers [KJ146014]
(Cmd) and [KJ146013] (BenA). The isolate was depos-
ited in the culture collection of the CBS-KNAW Fungal
Biodiversity Centre as [CBS 136781] and at the Micro-
bial Type Culture Collection and Gene Bank (MTCC,
Chandigarh, India) as [MTCC 11865].

Cultivation for anaerobic nitrate turnover experiments
An-4 was pre-grown on agar plates prepared from YMG
broth (i.e., Yeast extract [8 g L-1] + Malt extract [10 g L-
1] + Glucose [10 g L-1]) supplemented with penicillin
and streptomycin. Every few plate transfers, the antibi-
otics were omitted to avoid emergence and carry-over of
resistant bacteria. Spores of the axenic isolate grown on
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agar plates were used to inoculate 500-mL Erlenmeyer
flasks that contained 250 mL of YMG broth. For aerobic
cultivation, the flasks were closed with aseptic cotton
plugs. The flasks were placed on a rotary shaker
(120 rpm) and incubated at 26°C. Under these condi-
tions, the mycelia of An-4 formed spherical aggregates
of 2–5 mm in diameter. The transfers from plate to flask
were repeated every 3–4 weeks.

Anaerobic nitrate turnover
The capability of An-4 to reduce nitrate anaerobically
was investigated in two experiments: (1) An-4 was culti-
vated in Erlenmeyer flasks under oxic vs. anoxic condi-
tions in the presence of both NO3

- and NH4
+, and (2) An-

4 was pre-cultivated in Erlenmeyer flasks under oxic
conditions in the presence of 15NO3

- and then exposed
to anoxic conditions in gas-tight incubation vials.
In Experiment 1, the fate of NO3

- and NH4
+ added to

the liquid media was followed during aerobic and anaer-
obic cultivation of An-4. Six replicate liquid cultures
were prepared as described above, but with the YMG
broth adjusted to nominal concentrations of 50 μmol L-1

NO3
- and 50 μmol L-1 NH4

+ using aseptic NaNO3 and
NH4Cl stock solutions, respectively. Three cultures were
incubated aerobically, whereas the other three cultures
were incubated anaerobically by flushing the Erlenmeyer
flasks with dinitrogen for 30 min and then closing them
with butyl rubber stoppers. Subsamples of the liquid
media (1.5 mL) were taken after defined time intervals
using aseptic techniques. Anaerobic cultures were sam-
pled in an argon-flushed glove box to avoid intrusion of
O2 into the Erlenmeyer flasks. Samples were immedi-
ately frozen at −20°C for later analysis of NO3

- and NH4
+

concentrations.
In Experiment 2, the precursors, intermediates, and

end products of dissimilatory nitrate reduction by An-4
were investigated in a 15N-labeling experiment, involving
an oxic-anoxic shift imposed on axenic mycelia. For the
aerobic pre-cultivation, a liquid culture was prepared as
described above, but with the YMG broth adjusted to
120 μmol L-1 15NO3

- (98 atom% 15N; Sigma-Aldrich). For
anaerobic incubation, fungal aggregates were transferred
to gas-tight glass vials (5.9-mL exetainers; Labco,
Wycombe, UK) filled with anoxic NaCl solution (2%)
amended with nitrate as electron acceptor and glucose
as electron donor. Using aseptic techniques, equally-
sized subsamples of fungal aggregates were transferred
from the aerobic pre-cultures into 30 replicate exetai-
ners. The wet weight of the aggregates was determined.
Then the exetainers were filled with anoxic NaCl solu-
tion adjusted to 120 μmol L-1 15NO3

- and 25 μmol L-1

glucose. Care was taken not to entrap any gas bubbles
when the exetainers were closed with the septum cap.
The exetainers were fixed in a rack that was
continuously rotated to keep the aggregates in suspen-
sion and were incubated at 26°C in the dark for 24 days.
The anaerobic incubation was terminated in batches

of three exetainers after defined time intervals. Subsam-
ples of the liquid media were withdrawn through the
septum (and simultaneously replaced with helium) for
analyzing the concentrations of extracellular NO3

- , NO2
- ,

NH4
+
total,

15NH4
+, and N2O, while the concentrations of

15N-N2O and 15N-N2 were determined directly in the in-
cubation exetainers. For NO3

- , NO2
- , and NH4

+
total analysis,

1.5 mL of the liquid media was immediately frozen at
−20°C. For N2O analysis, 1 mL of the liquid media was
immediately transferred into an N2-purged 3-mL exetai-
ner and fixed with 100 μL ZnCl2 (50%). For 15NH4

+ ana-
lysis, 0.5 mL of the liquid media was transferred into a
3-mL exetainer and frozen at −20°C. The liquid media
remaining in the incubation exetainers were fixed with
100 μL ZnCl2 (50%) for later 15N-N2O and 15N-N2 ana-
lysis. For technical reasons, 15N-N2O could not be quan-
tified for this specific experiment, but only for a slightly
modified twin experiment the results of which are pre-
sented in the Supporting Information.
Additional exetainers with fungal aggregates were pre-

pared and treated in the same way as the other exetai-
ners for verifying that An-4 remained axenic throughout
the anaerobic incubation. At the end of the experiment,
these exetainers were opened using aseptic techniques
and subsamples of both fungal aggregates (at least two)
and liquid medium (100 μL) were plated on YMG agar.
After incubation at 26°C for 15 days, the fungal colonies
were carefully checked by microscopy for the presence
of bacteria and xenic fungi. All microscopic checks were
negative. Additionally, DNA was extracted from fungal
aggregates and liquid medium with the UltraClean™ Soil
DNA Isolation Kit (Mo Bio, Carlsbad, CA) and used as
template for PCR targeting the 16S rRNA gene with the
universal bacterial primers GM3F/GM4R [59]. All mo-
lecular checks were negative, since agarose gel electro-
phoresis did not reveal any specific amplification
product except for in the positive control, a laboratory
strain of Agrobacterium sp.

Intracellular nitrate storage
The capability of An-4 to store nitrate intracellularly was
investigated during both aerobic and anaerobic cultiva-
tion (Experiment 3). Liquid cultures were prepared as
described above, but with the YMG broth adjusted to
50 μmol L-1 NO3

- . After defined time intervals, YMG
broth and fungal aggregates were subsampled for ana-
lysis of NO3

- freely dissolved in the broth (i.e., extracellu-
lar nitrate = ECNO3) and NO3

- contained within the
fungal hyphae (i.e., intracellular nitrate = ICNO3). Sub-
samples for ECNO3 analysis (1.5 mL) were cleared from
suspended hyphae by mild centrifugation at 1000× g for
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10 min and the supernatants (S0) were stored at −20°C
for later analysis. Fungal aggregates for ICNO3 analysis
were collected in a 2-mL centrifugation tube and the ad-
hering YMG broth was siphoned off using a hypodermic
needle. The aggregates were washed with 1 mL nitrate-
free NaCl solution (2%) and blotted dry on nitrate-free
filter paper. The aggregates were then equally distributed
among two 15-mL centrifugation tubes, one for ICNO3

analysis and one for protein analysis.
Aggregates intended for ICNO3 analysis were weighed

and thoroughly mixed with 2.5 mL nitrate-free NaCl so-
lution (2%) and centrifuged at 1000× g for 5 min. Half a
milliliter of the supernatant (S1) was stored at −20°C for
later analysis. To make the fungal hyphae burst and re-
lease the ICNO3 into the NaCl solution, the tube was al-
ternately cooled down to −196°C in liquid nitrogen and
heated up to +90°C in a water bath for 5 min each. Cell
disruption was additionally promoted by a 1-min treat-
ment with an ultrasonic probe (UW70, Bandelin,
Germany). The homogenized hyphae were pelleted by
centrifugation at 3000× g for 10 min and the super-
natant (S2) was stored at −20°C for later analysis.
Aggregates intended for protein analysis were sus-

pended in 4 mL 0.5 M NaOH, sonicated for 1 min, and
incubated at +90°C for 15 min for hot alkaline extraction
of cellular proteins. The hyphae were pelleted by centri-
fugation at 3000× g for 5 min and the supernatant was
stored at −20°C for later protein analysis according to
[60]. Protein extraction was repeated with the pelleted
hyphae and the results of the analysis of the two super-
natants were combined. A conversion factor (wet weight
→ protein content) was derived and used for calculating
the biomass-specific ICNO3 contents as the difference
between NO3

- concentrations in S1 and S2 divided by the
protein contents of the hyphae.

Production of biomass and cellular energy
The production of biomass and cellular energy by An-4
was studied during aerobic and anaerobic cultivation in
the presence or absence of NO3

- (Experiment 4). For this
purpose, the time courses of protein and ATP contents
of An-4 mycelia and of NO3

- and NH4
+ concentrations in

the liquid media were followed. Twelve replicate liquid
cultures were prepared as described for Experiment 1,
but in six cultures NO3

- addition was omitted. Six cul-
tures (3 cultures each with and without NO3

-) were incu-
bated aerobically, whereas the other six cultures (3
cultures each with and without NO3

-) were incubated an-
aerobically. Subsamples of the liquid media (1.5 mL) and
An-4 mycelia (4–6 aggregates) were taken after defined
time intervals using aseptic techniques. Samples were
immediately frozen at −20°C for later analysis of NO3

-

and NH4
+ concentrations and protein and ATP contents.

The NO3
--amended cultures received additional NO3

- (to
a nominal concentration of 50 μmol L-1) after 1, 3, 7,
and 9 days of incubation to avoid premature nitrate
depletion.

Nitrogen analyses
Nitrate and NO2

- were analyzed with the VCl3 and NaI re-
duction assay, respectively [61,62]. In these methods, NO3

-

and/or NO2
- are reduced to nitric oxide that is quantified

with the chemiluminescence detector of an NOx analyzer
(CLD 60, Eco Physics, Munich, Germany). Ammonium
was analyzed with the salicylate method [63]. Nitrous oxide
was analyzed on a gas chromatograph (GC 7890, Agilent
Technologies) equipped with a CP-PoraPLOT Q column
and a 63Ni electron capture detector. Isotopically labeled
ammonium (15NH4

+) was analyzed with the hypobromite
oxidation assay [64,65] followed by 15N-N2 analysis on a
gas chromatography-isotopic ratio mass spectrometer (GC-
IRMS; VG Optima, Manchester, UK). Prior to hypobromite
addition, care was taken to remove any N2 possibly pro-
duced during the anaerobic incubation by flushing with he-
lium for 5 min. Headspace samples for 15N-N2O and 15N-
N2 analysis were taken directly from the incubation exetai-
ners and measured on the GC-IRMS.

ATP analysis
Biomass-specific contents of adenosine triphosphate (ATP)
of An-4 were determined using a modified protocol for
ATP quantification in aquatic sediments [66]. Briefly, 1–3
pre-weighed An-4 aggregates were sonicated in 5 mL of
ice-cold extractant (48 mmol L-1 EDTA-Na2 in 1 mol L-1

H3PO4) for 1 min and then stored on ice for 30 min. The
cell suspension was centrifuged at 3000× g for 10 min and
1 mL of the supernatant was diluted 1:10 with autoclaved
deionized water and adjusted to pH 7.8 with NaOH. An
ATP assay mix (FLAAM, Sigma-Aldrich) and a lumin-
ometer (TD 20e Luminometer, Turner Designs) were used
to quantify the extracted ATP with the firefly biolumines-
cence reaction. The ATP assay mix was diluted 1:25 with a
dilution buffer (FLAAB, Sigma-Aldrich). Calibration stan-
dards (0–100 μmol L-1) were prepared from ATP disodium
salt hydrate (A2383, Sigma-Aldrich) dissolved in 1:10-di-
luted extractant adjusted to pH 7.8. Biomass-specific ATP
contents of An-4 were calculated from the ATP concentra-
tions of the extracts and the protein contents of the An-4
aggregates.

Additional file

Additional file 1: Figure S1. Time course of inorganic nitrogen species
during anaerobic incubation of A. terreus isolate An-4. Figure S2.
Phylogenetic position of isolate An-4 in A. terreus [39].
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