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Abstract
Objective: The present study tested the combination of an established and a
validated food-choice research method (the ‘fake food buffet’) with a new food-
matching technology to automate the data collection and analysis.
Design: The methodology combines fake-food image recognition using deep
learning and food matching and standardization based on natural language
processing. The former is specific because it uses a single deep learning network
to perform both the segmentation and the classification at the pixel level of the
image. To assess its performance, measures based on the standard pixel accuracy
and Intersection over Union were applied. Food matching firstly describes each of
the recognized food items in the image and then matches the food items with their
compositional data, considering both their food names and their descriptors.
Results: The final accuracy of the deep learning model trained on fake-food images
acquired by 124 study participants and providing fifty-five food classes was 92·18%,
while the food matching was performed with a classification accuracy of 93%.
Conclusions: The present findings are a step towards automating dietary
assessment and food-choice research. The methodology outperforms other
approaches in pixel accuracy, and since it is the first automatic solution for
recognizing the images of fake foods, the results could be used as a baseline for
possible future studies. As the approach enables a semi-automatic description of
recognized food items (e.g. with respect to FoodEx2), these can be linked to any
food composition database that applies the same classification and description
system.
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Measuring dietary behaviour using traditional, non-auto-
mated, self-reporting technologies is associated with
considerable costs, which means researchers have been
particularly interested in developing new, automated
approaches. There is a clear need in dietary assessment and
health-care systems for easy-to-use devices and software
solutions that can identify foods, quantify intake, record
health behaviour and compliance, and measure eating
contexts. The aim of the present study was to test the
combination of an established and validated food-choice
research method, the ‘fake food buffet’ (FFB), with a new
food-matching technology to automate the data collection
and analysis.

The FFB was developed as an experimental method to
study complex food choice, meal composition and portion-
size choice under controlled laboratory conditions. The FFB
is a selection of very authentic replica-food items, from

which consumers are invited to choose. The FFB method
was validated by a comparison of meals served from real
and fake foods(1). The food portions served from the fake
foods correlated closely with the portions served from the
real foods(1). Furthermore, significant correlations between
the participants’ energy needs and the amounts served
were found in several studies(1–4). It has also been shown
that people who selected foods for an entire day from
an FFB were able to closely match their dietary
requirements(5).

In a typical FFB study, the experimenters choose fake
foods and set up a buffet. The participants receive
instructions, which can contain the experimental inter-
vention, and are then invited to select foods, choose
portions of foods to assemble meals(2,3) or even set a diet
for a day(5). The experimenter then analyses the
choice. Similar protocols and the same fake foods were
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used for experiments in different countries (i.e. Germany,
Switzerland, the UK and Australia). Currently, the FFB
study procedure still has several ‘analogue’ components.
After the participants select the meals, a photograph is
taken, the foods are separated manually, each food is
weighed, and the researcher calculates the nutritional
values for the selected fake foods. This process would
benefit from automation. All the consumer choices are
recorded and additional fake-food images are available for
the aims of the research.

The first step of the automation process is to recognize
the fake-food and fake-drink items present in these images.
Due to the nature not only of the fake-food and fake-drink
items, but also of food and drink items in general, this is a
particularly challenging computer vision problem. Differ-
entiating between different food or drink items (henceforth
‘food items’) can sometimes be challenging even for the
human eye. The issue is that different food items can
appear to be very similar and the same food item can
appear to be substantially different on different images
because of a variety of factors, such as image quality, illumi-
nation, the amount of noise present in the image, the way in
which the food item was prepared and served, etc.

The next step is to match the fake-food items recognized
in the image to food composition data, which are detailed
sets of information on the nutritionally important compo-
nents of foods, providing values for the energy and nutrients,
including protein, carbohydrates, fat, vitamins and minerals,
and for other important food components, such as fibre,
etc. The data are presented in food composition databases
(FCDB). The process of semi-automatic food matching
is a crucial part of an automated dietary assessment.

In the current paper, we present results of a study
performed with the objective to develop an automated
dietary assessment that consists of two main activities:
(i) automatically recognizing fake-food and fake-drink
items from photos; and (ii) automatically assigning
(matching) recognized items to their compositional data.
Using this approach, the dietary assessment can be per-
formed much more quickly and, in many cases, also more
accurately than if performed manually.

The paper proceeds as follows. In the next section we
present relevant work on the FFB, food image recognition
and food matching. Thereafter we introduce the methodo-
logy applied in the present study to an automated dietary
assessment. Next we show how this methodology was
applied to fake foods and present the results of the
evaluation. Finally, we discuss the results and present
some ideas for future work.

Relevant work

The fake food buffet
Replica-food models such as the Nasco food models(6)

have traditionally been used in dietary assessment as

portion-size estimation aids and for educational purposes.
However, only recently have food-replica models been
validated and used for experimental studies in food-choice
and consumer behaviour research(1). The FFB method has,
for example, been used to investigate environmental
influences such as plate size(3), vegetable variety(7,8) in
food choice, or the effect of the nutritional information and
labels on food choice for a single meal(2,9) or for an entire
day(5). Fake foods were also used to investigate health
perceptions(4,10) and social influences and attitudes to
food choices(11,12).

Meanwhile, the FFB is an established research tool
within several research facilities worldwide; research
institutions in Germany, Switzerland, the UK and Australia
are using a similar set of replica foods to address a variety
of research questions. However, to date the procedure of
carrying out an FFB experiment still involves several
manual steps, including identifying and quantifying the
foods selected by the study participants, and different
research laboratories use different FCDB to calculate the
theoretical nutrient contents of the fake foods. The dif-
ferences in the nutrient profile of the same food between
different nutrient databases in different countries might
reflect actual differences in the composition of these foods
in the different countries. Linking the fake foods to stan-
dardized nutrient contents (e.g. an EU database) might
remove certain country-specific information (e.g. related
to food processing). However, the standardization of the
nutrient content calculation would still greatly facilitate
international collaboration and the comparison of food
portions.

Food image recognition
Until recently, the approach favoured by most researchers
in the field of food image recognition was based on
manually defined feature descriptors(13–15). However,
because of the complexity of the features in food images,
this approach did not perform well.

Recently, deep learning, a fully automatic machine
learning approach, achieved state-of-the-art results in a
wide variety of computer vision problems and proved to
be most effective for the task of image recognition. It has
also been validated in the field of food image recognition
multiple times(16–23). However, to the best of our knowl-
edge, there are no previous solutions that would auto-
matically recognize drinks from images, and the number
of food classes in the data sets that have been used so far
is very limited – often up to 100 different food types or
less. This is why we have introduced an approach that
addresses both of these issues(24). It is a unique approach
due to how the food and drink image data set is built as
well as the custom deep learning network used. Using this
approach, we have achieved an accuracy of 86·72% on a
new data set containing 520 different food and drink items.
However, our approach, as well as most solutions listed
above, have a shortcoming: they are incapable of
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recognizing more than one food item per image. We
address this issue in the current paper as we are per-
forming pixel-level classification, which is not limited to
any specific number of recognized food items.

The research works described above classify food items
into food classes, which can then be linked to FCDB to
add compositional information. However, there is another
approach to this problem: perform food ingredient
recognition and try to directly recognize the food ingre-
dients from the image. This has been presented in a few
recent solutions by Chen et al.(25,26) and Salvador et al.(27),
which detail the process of recognizing ingredients from
food images and then linking them with recipes containing
those ingredients.

Food matching
Matching food items with compositional data can be per-
formed in two ways, by considering either the food
descriptors or the food names. Databases on food com-
position, consumption, allergens, etc. describe food items
with descriptors (terms and facets) defined by a classifi-
cation and indexing system. Several such systems exist
(e.g. FoodEx2(28), LanguaL(29)); however, many databases
are lacking food descriptors because defining them is a
time-consuming task. Therefore, matching food items from
different data sources by considering food names is a
relevant challenge. The problem of matching food with
compositional data through food names is that the same
food can have different food names within different data
sources (i.e. different FCDB)(30). This is because people
who express themselves in different ways or have unique
writing styles defined the food names. For example, the
food item name that results from the food image recog-
nition method depends on the person who developed the
method, while the food item name presented in the FCDB
depends on the person or company who performed the
nutrient analysis and then provided and stored the result.
To address this problem, in 2016 we developed a pro-
mising method for matching food items to their composi-
tional data using food names and text-similarity measures
applied at a word level, which was aimed at matching
food items to their compositional data(31). Meanwhile, we
have extended this method to classify and describe food
items considering both food names and food descriptors
that are semi-automatically assigned to the food items(32).

Methods

The fake food buffet
In the current study we used the image data from an FFB
experiment in which 124 participants were invited to serve
themselves lunch from a buffet with replica foods. Details
about the procedures of the experimental study are
described elsewhere(2). In total, 121 photographs were
used (two images were missing, one image was

incomplete) and out of the fifty-seven food classes, fifty-
five were matched (‘margarine’ was not present in any
images and ‘fish sticks’ were present in only one image,
which is not enough to train a deep learning model).

Fake-food image recognition
Food image recognition requires several steps to be per-
formed: image pre-processing, deep learning model
training, testing and validation. We are also performing
data augmentation in the pre-processing step, by which
we are referring to the process of expanding the original
image data set by generating additional variants of original
images, which is beneficial for deep learning methods as
they require as large a data set as possible for increased
real-world accuracy(33).

Image pre-processing
To train a deep learning model on the fake-food images
we first needed to manually pre-process the images. The
main aim of the pre-processing step is to generate
‘ground-truth’ labels for the food items present in each
image, which are later needed for the supervised learning
of the deep learning model. Ground truth refers to infor-
mation that we know is correct; in the case of food images,
this means that the labels for each of the food items are
reliable. Usually, the simplest approach to generating such
labels is labelling each image with one food class (food
name) and training a deep learning model in such a way
that it returns one text label per image. However, since all
the images from the FFB not only contain multiple food
items, but have over eleven foods on average, such an
approach would be very inaccurate and is therefore not
appropriate for this application.

That is why for generating ground-truth data we needed
to label not just each image, but each food item present in
each image.

As foods often overlap on plates and drinks can obstruct
the view of other items, we labelled each food item on a
pixel level, which means that the result of this step was a
new label image with the same width and height as the
input image, only with a single channel as opposed to
three channels used in RGB images. This label image
contains a class prediction for each individual pixel, so a
‘tomato’ item has all its pixels labelled as ‘tomato’ and its
surrounding pixels are labelled as another class.

Since generating such ground-truth labels without signi-
ficant errors is non-trivial and is one of the main obstacles
when trying to design a pixel-level classification solution,
we manually segmented each food and drink item in each
of the 121 fake-food images. This has resulted in 121 label
images with a total of 1393 different food and drink
items, each belonging to one of the fifty-five food and
drink classes.

After the labelling part, the fake-food data set was
randomly split into training (70% of images), validation
(10%) and testing (20%) subsets to use for the deep
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learning model training such that any image was used in
only one of the subsets. The food objects are the same
across all three subsets, although the selection of food
objects differs from image to image. Finally, four different
data-augmentation steps were performed on the images in
the training subset, as well as their corresponding label
images. These steps included: rotating each image by
90°, 180° and 270°; flipping the image horizontally; adding
random colour noise; and zooming in on the image so
that 25% of the image’s borders were removed(24). It is
important to note that while the other data-augmentation
steps were performed in the same way on both the fake-
food images and the label images, random noise was
introduced only to the food images, as the ground-truth
labels should not change, even in the presence of noise.
The result of the data-augmentation process is therefore
seven variations per fake-food image in the training
subset. In total, the final fake-food data set with the
augmented training subset contains 631 images with 7222
food or drink items (some items were cut off in the
zoomed-in image variants). All the fake-food and label
images have a resolution of 500 pixels× 375 pixels;
the reason for the lower resolution is the considerable
memory requirements of the deep learning approach
used, which is described in the following section.

Deep learning model training
We trained the fake food and drink recognition model using
deep convolutional neural networks, which are a type of
neural network that works in a similar way to human vision:
individual neurons react to overlapping regions in the visual
field. Specifically, we used fully convolutional networks
(FCN) that were introduced in a study by Long et al.(34) and
represent the state-of-the-art for semantic segmentation.
This process segments the input image into separate parts
and then classifies each part into an output class; the
network does that by performing pixel-level classification.
The FCN therefore outputs a pixel map instead of a class
text label, and this pixel map contains predictions from the
model for each individual pixel of the input image, as
opposed to having only one prediction for the entire image.
This is important because, as mentioned in the previous
section, it is the most accurate way to describe all the food
items present in one image. Long et al.(34) introduced three
FCN variants: FCN-32s, FCN-16s and FCN-8s. The FCN-32s
outputs a pixel map based on the predictions from the final
layer of the fully convolutional network, which is the
standard approach for semantic segmentation networks.
The FCN-16s, on the other hand, combines the predictions
from the final layer with those from an earlier layer, which
contains a more detailed representation of the input image,
thus allowing the network to make predictions at a finer
grain. Finally, the FCN-8s considers an additional layer
when making predictions compared with the FCN-16s, and
it is therefore able to segment the input images at the finest
grain. This is why, of all the FCN variants available, the

FCN-8s is the best performing, making it suitable for food
and drink image recognition.

Since it is possible to use deep learning models that are
pre-trained on other data sets as a starting point for the
model training process, we wanted to use an FCN-8s
model that was pre-trained on the PASCAL Visual Object
Classes (PASCAL VOC) data set(35) to decrease the training
time and increase the number of images for training, thus
improving the robustness of the final model. However,
since this data set contains images from only twenty-one
different classes, we needed to modify the FCN-8s net-
work architecture to use it for the recognition of our fifty-
six classes (fifty-five fake-food classes and the background
class). This was done by adding an extra layer at the end
of the deep learning network, which increases the number
of output classes from twenty-one to fifty-six. Doing
this was necessary to take advantage of the pre-trained
network, as otherwise the output layer would have to be
retrained from the start.

For the deep learning model training we used the
popular deep learning framework Caffe, which was
developed by the Berkeley Vision and Learning Center(36),
and the NVIDIA Deep Learning GPU Training System
(NVIDIA DIGITS), which is a graphical user interface built
upon Caffe and provides feedback options during the
model training process(37).

To train the models, we used Adam(38) as the solver.
Solvers are methods that perform updates to deep neural
network parameters in each training epoch with the goal
to minimize the loss function, which is the primary quality
measure while training the models. The solver is therefore
an important part of the deep learning model training
process that tunes the model in such a way that it reacts to
features in the input images and learns to classify them
successfully. Adam is a solver that automatically adapts the
learning rate to the parameters. The learning rate defines
the rate with which the parameters are changed during the
training process; the higher the learning rate, the faster the
model converges to the optimal loss value, which speeds
up the training. However, the learning rate should not be
set too high because the model might then converge to a
worse loss value, or not converge at all. It is therefore
important to choose an appropriate rate, and we achieved
the best results by setting the initial learning rate to 0·0001
and letting Adam automatically adapt this rate during the
training.

Since the FCN perform the classification of each indi-
vidual pixel, their memory requirements are much greater
than those of traditional convolutional neural networks
where large batches of images can be processed at the
same time. Because of this we had to set the software to
process only one image at a time, as one image alone
completely filled the video random access memory of the
graphics processing unit. Additionally, we trained the
model for 100 epochs and then selected the final model at
the epoch where the loss on the validation subset stopped
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decreasing, as that signals the moment when the model
starts overfitting on the training data. For the model
training, we used a single NVIDIA GeForce GTX TITAN X
graphics processing unit.

Measures
To measure the performance of the trained deep learning
model we used the same evaluation measures as Long
et al.(34), since their study showed that these measures are
appropriate to test the FCN models. The measures are
based on the standard pixel accuracy and Intersection
over Union (IU) measures, including the following.
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where ncl is the number of different classes in the ground-
truth labels, nij is the number of pixels of class i predicted
to belong to class j and ti =

P
j nij is the total number of

pixels of class i in the ground-truth labels. We used a
Python implementation of these measures(39).

Food matching
To match the food items recognized in the image to an
FCDB, we decided to use an approach that involved
matching foods by their descriptors and names to achieve
the best possible result. However, because most FCDB are
lacking food descriptors, we first applied the StandFood
method(32) to assign FoodEx2 descriptors to the food items
in a semi-automated way.

The StandFood method consists of three parts. The first
identifies what type of food (raw, derivative, simple or
aggregated composite food) is being analysed. This is the
classification part that involves a machine learning
approach(40). The second part describes the food using
natural language processing(41) combined with probability
theory, which results in the list term or FoodEx2 code for
the food. For each food item that needs to be described
according to FoodEx2, its English name is used. The name
is pre-processed by converting it to lowercase letters.
Part-of-speech (POS) tagging is used to extract its nouns,
adjectives and verbs. The extracted sets are further trans-
formed using lemmatization. Using the extracted nouns,
the FoodEx2 data are searched for the names that consist

of at least one of the extracted nouns. The resulting list
(a subset) is then pre-processed by converting each food
item’s name to lowercase letters, applying POS tagging
to extract the nouns, adjectives and verbs, and using
lemmatization for the extracted sets. Then, the food
item that needs to be described according to FoodEx2 is
matched with each food item in the resulting list and a
weight is assigned to each matching pair. Finally, the pair
with the highest weight is the most relevant one, so it is
returned together with its food category from FoodEx2.
The third part combines the result from the first and the
second part by defining post-processing rules to improve
the result for the classification part.

The first evaluation of the system was made using
532 foods from the Slovenian FCDB and had an accuracy
of 89% for the classification part and 79% for the
description part. However, 21% of instances were not
correctly described, even though some of these instances
were correctly classified. This happens due to the fact that
the food items do not exist in FoodEx2, the food items are
specific to some cultures, or the POS tagging model that is
used for the extraction of the morphological information
does not provide nouns, so the search cannot continue.

For the purposes of the current study we extended the
StandFood method in the second part. The extension
works with cases of food names where nouns cannot be
extracted, so instead of using the POS tagging-probability-
weighted method(42) to find the most relevant match,
it switches to the Levenshtein distance(43), which can be
used as a similarity measure between two textual
descriptions.

The methodology
Figure 1 shows a flowchart of the methodology applied
in the present study. First, the food image recognition
process uses a fake-food image to find the classes (names)
of all the food items in the image. These food names are
then processed by the StandFood method to define the
FoodEx2 descriptors of the recognized food items. Once
both the food names and the descriptors are identified, the
recognized fake foods can be matched with compositional
data from the FCDB. The final result is therefore a fake-
food image standardized with unique descriptors, which
enables the conversion of food intake into nutrient intake
and helps the automated dietary assessment.

Experimental results

Results from food image recognition
The training of the FCN-8s deep learning model took
approximately 37 h of computation on the previously
mentioned graphics processing unit. Classifying a single
image, however, takes significantly less time and com-
puting power, which makes the use of deep learning
models possible even in mobile applications. After the
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training was completed using the training and validation
subsets, the model was run once on the testing subset.
This generated label images for the fake-food images,
which were then compared with the ground-truth label
images using the measures mentioned above. Table 1
contains these results, whereas Fig. 2 contains three
example images (one from each subset) with the corre-
sponding ground-truth and model prediction labels.

As expected, the performance of the FCN-8s model was
better on the training subset than on the other two subsets.
However, the difference is not substantial, which means
the model learned features that generalize well. It is
important to note that this performance was measured on
all classes; this includes the background, which represents
the majority of the pixels. Since the testing subset contains
images new to the deep learning model, we consider the
results on this subset to be the most representative of real-
world performance. Out of these results, we chose pixel
accuracy as the final quality measure, since this measure is

analogous to the classification accuracy in the traditional
convolutional neural networks that classify an entire image
into one class. The difference is that instead of computing
accuracy on an image level, it is computed on a pixel
level. As can be seen from Table 1, the final accuracy for
our FCN-8s deep learning model was therefore 92·18%.
Additionally, the ratios between the quality measures
seem consistent with those of Long et al.(34).

Due to the higher accuracy, the predictions for the
training subset offer more detail than those for the other
two subsets and are very close to the ground truth, with
the only exception being very small food items, such as
onion rings, as can be seen in the training predictions
image in Fig. 2. However, despite the lower amount of
detail, the majority of the predictions for the other two
subsets are still accurate. There are some misclassifications
in the data set, such as parts of the pear and small parts of
the background in the validation predictions image in
Fig. 2, but these errors are rare. A more common

Food image segmentation & recognition

Deep learning
model

StandFood
description

part

Food Ex2 identifier
(list term)

Food category
(Food Ex2)

StandFood
post-processing

part

Food category
(Food Ex2)

Standardization
of foods (Food Ex2)

Food category
(Food Ex2)

StandFood
classification part

Food classes

Fig. 1 Methodology flowchart. The food image recognition process uses a fake-food image to find classes (names) for all food items
in the image. These are then processed by the StandFood method to define the FoodEx2 descriptors of the recognized food items.
Once both the food names and descriptors are identified, the recognized fake foods can be matched with compositional data from
the food composition database. The final result is a fake-food image standardized with unique descriptors, which enables food
intake conversion into nutrient intake and helps the automated dietary assessment
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occurrence that lowers accuracy is when the predictions
do not cover the food and drink items exactly.

Results from food matching and standardization
To support the process of automated dietary assessment,
each fake-food item needs to be automatically matched to
nutrient data from an FCDB.

The result for each fake-food item obtained using the
deep learning model is one of the fifty-five foods (food
classes) for which the model is trained and is used in the
FFB method. In this task we used StandFood to standar-
dize each food class that results from the deep learning
model. For this reason, we used the English names of the
fifty-five food classes. First, for each food class, the clas-
sification part of StandFood is used to obtain its food

category (raw, derivative, simple or aggregated composite
food). The food class is also used with the description part
to obtain its list term (i.e. the FoodEx2 identifier). After
these two parts, their results are combined to improve the
classification of the food class, in case the model used in
the classification part incorrectly classifies it.

Table 2 presents the results from the StandFood
classification part of four randomly selected but correctly
classified food classes, one per food category. The
StandFood classification part has an accuracy of 75%. This
is further improved using the StandFood post-processing
part, but before we used it, the result from the description
part needed to be obtained.

Concerning the second part, Table 2 provides the results
from the StandFood description part of four randomly
selected food classes, one for each food category. As can
be seen, for the first two food classes we have perfect
matches, while for the next two we have multiple choices.
The multiple choices happened because of the food class
description. For the last two examples provided in Table 2,
the food class description is too general, so the StandFood
description part suggests the most relevant matches to
users. For example, for the food class ‘pasta’, the most
relevant matches provided by StandFood are ‘fresh pasta’
or ‘dried pasta’. To distinguish between them in the

Table 1 Results from the FCN-8s deep learning model

Pixel
accuracy

(%)

Mean
accuracy

(%)
Mean
IU (%)

Frequency-weighted
IU (%)

Training 93·43 81·51 72·74 89·09
Validation 90·41 65·12 55·26 84·86
Testing 92·18 70·58 61·85 87·57
All 93·33 80·78 71·99 88·95

IU, Intersection over Union.
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Ground truth Predictions
apple
apple juice
apple tart
banana
banana slice
beans
beetroot
biscuit
broccoli
burger
butter
cappuccino
carrot
cheesecake
chicken
coffee
cola
cream
cucumber
dark bread
fish
french dressing
fries
fruit flan
grapes
herring
italian dressing
ketchup
kiwi
kiwi slice
mayonnaise
meat loaf
mohrenkopf
muffin
natural schnitzel
onion
orange
orange juice
pasta
pear
platzli
potatoes
praline
rice
sacher cake
salad leaf
salmon
sausage
schnitzel
steak
sugar
tea
tomato
water
white bread

Fig. 2 Example images from each of the three subsets (training, validation and testing) of the fake food buffet data set, along with
the corresponding ground-truth label images. The third image column contains predictions from the FCN-8s deep learning model.
Each colour found in the images represents a different food or drink item; these items and their corresponding colours are listed to
the right of the images
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process of automated dietary assessment is a really
important task because they have different nutritional
profiles. It follows that the description of the food classes
that is the result of the deep learning model is the key to
how successful the automatic food matching will be. In the
present study, we evaluated the proposed methodology
using the food classes described in the FFB method. The
StandFood description part has an accuracy of 86%. In the
14% that are not correctly described, this is caused by
some culture-specific foods or food classes for which the
StandFood description part could not find nouns in their
description. This happened because the StandFood
description part uses the extracted nouns from POS tag-
ging for each food class, and to produce its relevant match
the FoodEx2 data are searched for the names that consist
of at least one of the extracted nouns. In cases when
nouns are not found in a food class description, the
description accuracy increases to 93% by using the
extension of the description part. Two randomly selected
examples in the case of fake foods when this happened
are for the food classes ‘French dressing’ and ‘herring’.
After the POS tagging, ‘dressing’ and ‘herring’ were not
recognized as nouns and the StandFood description part
did not provide a result. However, this was solved using
the Levenshtein distance between the food class and
each description presented in the FoodEx2 data. In the
examples of ‘French dressing’ and ‘herring’ this returned
‘salad dressing’ and ‘herrings’.

In addition to the FoodEx2 identifier, the StandFood
description part returns the FoodEx2 food category of the
most relevant match. This is further combined and used in
the post-processing rules together with the food category
obtained by the StandFood classification part to improve

the classification accuracy. Table 3 presents the results of
three randomly selected food classes after the post-
processing part. After the post-processing part, the classi-
fication accuracy increases to 93%.

In addition, if we want to link these food classes to the
FCDB, we need to search the FCDB for their FoodEx2
identifiers. If the FCDB lacks the FoodEx2 identifiers,
StandFood can be used to find these identifiers and to
describe all the food items that exist in it.

Discussion

In the current study we have developed an advanced
methodology for automatic food image recognition and the
standardization of food items that supports the process
of automated dietary assessment. The methodology was
evaluated using food images collected using the FFB
method.

Since this is the first automatic solution for recognizing
the images of fake foods, we consider our results as a
baseline for any future studies. Directly comparing our
pixel accuracy with the classification accuracy results of
other food image recognition solutions(16–27) is not
appropriate because not only were those solutions tested
on different data sets with a different number of food
classes, but there is also a difference in the performance
measures used and in the image variance; fake food
generally exhibits less variance than real food, as real food
can be prepared in multiple ways, which can affect its
visual appearance. There have been some food recog-
nition solutions that apply pixel-level segmentation in the
past, but only one that uses deep learning(22). However,
even that one uses manually defined feature descriptors
for the segmentation phase and deep learning only for the
classification, so to the best of our knowledge the present
study is the first that applies a single deep learning
network for the joint segmentation and classification of
food items. The study’s results provide a base for an
automated dietary assessment solution.

As the food-matching approach also enables the semi-
automated assignment of food descriptors (with respect to
the selected food classification and indexing system, such
as FoodEx2), the linkage of food items with any FCDB
complying with the selected food classification and
indexing system can be performed.

Table 2 Correctly classified food classes using the StandFood
classification part and description of the food classes using the
StandFood description part

Correctly classified food classes using the StandFood classification
part

Food class (result from the
deep learning model)

StandFood food category
(according to FoodEx2)

Broccoli Raw (r)
Sugar Derivative (d)
Pasta Aggregated composite (c)
White bread Simple composite (s)

Description of food classes using the StandFood description part

Food class (result from the
deep learning model)

StandFood relevant FoodEx2
item and its descriptor

Apple Apples (A01DJ)
Biscuit Biscuits (A009V)
Sugar White sugar (A032J)

Brown sugar (A032M)
Flavoured sugar (A032Q)
Sugars and similar (A0BY6)

Pasta Fresh pasta (A007F)
Dried pasta (A007L)

Table 3 StandFood post-processing result of three randomly
selected food classes

Food class (result
from the deep
learning model)

StandFood
classification food
category (according
to FoodEx2)

StandFood post-
processing food category
(according to FoodEx2)

Muffin Raw (r) Aggregated composite (c)
Praline Raw (r) Simple composite (s)
Coffee Derivative (d) Simple composite (s)
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Automation of the recognition of fake foods and
matching them with information from a nutrient database
offers great potential for research. In particular, it would
reduce the effort to collect and analyse the data; that
is, foods selected by participants can be assessed from
photographs instead of by manual handling. In practice,
the simplest approach would be to implement the solution
proposed herein in a smartphone app, which would allow
researchers to automatically gain relevant information
about the selected foods by taking a photograph using the
smartphone’s camera, thus allowing them to instanta-
neously analyse the data. This type of automation would
also reduce the biases introduced by human errors in the
data and would facilitate data standardization, comparison
and exchange between different laboratories using this
research tool. Research questions, such as which food
groups were selected more often, could be investigated
automatically. The matching also allows us to study
patterns in food choice (e.g. which foods are selected in
combination, etc.). It can also facilitate secondary data
analysis on fake-food studies, where photographs have
been taken. Photographs from different experiments and
laboratories could be combined for this.

Future work includes an extension of this methodology
with a tool that automatically measures weight (e.g. food
scape lab), or a technology that automatically estimates
food volume, as this is currently the only missing part in
the process of automated dietary assessment. Although
the predictions from the deep learning model for the
validation and testing images are not as detailed as for the
training ones, they still describe the food and drink items
with an accuracy that could also be sufficient for a food
and drink volume estimation when paired with either a
reference object or a fixed-distance camera.
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