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Abstract

Human African trypanosomiasis, endemic to sub-Saharan Africa, is invariably fatal if untreated. Its causative agent is the
protozoan parasite Trypanosoma brucei. Eflornithine is used as a first line treatment for human African trypanosomiasis, but
there is a risk that resistance could thwart its use, even when used in combination therapy with nifurtimox. Eflornithine
resistant trypanosomes were selected in vitro and subjected to biochemical and genetic analysis. The resistance phenotype
was verified in vivo. Here we report the molecular basis of resistance. While the drug’s target, ornithine decarboxylase, was
unaltered in resistant cells and changes to levels of metabolites in the targeted polyamine pathway were not apparent, the
accumulation of eflornithine was shown to be diminished in resistant lines. An amino acid transporter gene, TbAAT6
(Tb927.8.5450), was found to be deleted in two lines independently selected for resistance. Ablating expression of this gene
in wildtype cells using RNA interference led to acquisition of resistance while expression of an ectopic copy of the gene
introduced into the resistant deletion lines restored sensitivity, confirming the role of TbAAT6 in eflornithine action.
Eflornithine resistance is easy to select through loss of a putative amino acid transporter, TbAAT6. The loss of this transporter
will be easily identified in the field using a simple PCR test, enabling more appropriate chemotherapy to be administered.
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Introduction

Human African trypanosomiasis (HAT) is a neglected tropical

infectious disease transmitted by biting tsetse flies and is prevalent

in sub-Saharan Africa [1,2]. In humans, the disease is caused by

two sub-species of the protozoan Trypanosoma brucei – T. b. gambiense

and T. b. rhodesiense. T. b. gambiense is responsible for around 95% of

all cases of the disease. An alarming resurgence of the disease in

the latter part of the twentieth century stimulated a renewed

interest in HAT control [2].

There are two stages of HAT. The first stage is characterised by

parasite proliferation in the blood and lymph, while the second

stage occurs when parasites enter the CSF (cerebrospinal fluid) and

brain, resulting in symptoms that include confusion, depression,

personality changes and the altered sleep-wake patterns that give

the disease its common name of sleeping sickness. Death follows,

inevitably, without treatment. Chemotherapy in stage two HAT

requires melarsoprol, a melaminophenyl arsenical, or eflornithine,

an amino acid analogue which inhibits the polyamine biosynthetic

enzyme ornithine decarboxylase (ODC).

Melarsoprol is exceedingly toxic, killing 5% of recipient HAT

patients [2]. Furthermore, treatment failure with melarsoprol has

led to its being superseded by eflornithine. Recently, nifurtimox

use with eflornithine has been recommended [3,4] and the

combination added to the WHO list of essential medicines.

Eflornithine targets ornithine decarboxylase in trypanosomes

[5,6], and this causes diminished polyamine biosynthesis [5] and

reduced production of the trypanosome specific redox active

metabolite trypanothione [7]. Accumulation of S-adenosyl methi-

onine has been reported in eflornithine treated cells, which might

perturb cellular methylation reactions [8] although recent data

identified increased levels of decarboxylated S-adenosyl methionine,

but not its precursor [9]. How eflornithine enters trypanosomes is a

subject of debate. An early report that eflornithine uptake by

trypanosomes was not saturable established the idea that eflor-

nithine enters trypanosomes by passive diffusion [10]. However,

studies on eflornithine resistant procyclic trypanosomes showed

reduced accumulation of eflornithine [11] and uptake of eflor-

nithine was by a saturable process typical of a transporter. Bellofatto

et al [12] also found uptake of eflornithine to be temperature

dependent and thus likely to be transporter mediated. Indeed as a

zwitterionic, charged amino acid, eflornithine would not be

expected to diffuse across membranes and transport mediated

uptake would be a pre-requisite for uptake. In T. brucei loss of

transport has been shown to be a key determinant in resistance to

melaminophenylarsenicals [13] and diamidine drugs [14–16].

Given the increased use of eflornithine, alone or in combination

with nifurtimox, a better understanding of the risk of resistance is

critical. Such an understanding may help limit its spread and allow
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the development of diagnostic tools such as those described for

melarsoprol resistance [15,16].

We have investigated the mechanism of resistance to eflor-

nithine and show that acquisition of selected resistance is

accompanied by loss of a specific transporter. We further show,

using genetic manipulation, that this transporter mediates uptake

of eflornithine and that its loss confers resistance, whilst its

expression in resistant lines restores sensitivity.

Results

Selection of eflornithine resistant bloodstream form T.
brucei

Eflornithine resistant parasites were derived in vitro from a

wildtype bloodstream form T. brucei brucei strain 427 by growth in

increasing concentrations of drug. It took two months (24 passages)

to attain a line expressing forty fold less sensitivity to drug, based on

the IC50 value of eflornithine in the drug sensitive parent strain

(Fig. 1A) and no growth phenotype was observed. Two independent

cell lines were generated in this way. There was no cross-resistance

with other currently used trypanocides (Table 1), although there was

a significant increase in sensitivity to pentamidine, which we cannot

explain at this juncture. The resistant lines also grew in female ICR

(Institute for Cancer Research) mice and exhibited resistance to

Author Summary

We have found that the loss of a single gene, TbAAT6, is
sufficient to render African trypanosomes resistant to the
only safe drug, eflornithine, in use against them. The fact
that parasites lacking TbAAT6 are viable in animals and
retain the resistance phenotype indicates a simple means
by which parasite populations could develop resistance.
The loss of this gene can be detected by PCR apparatus,
offering the potential for a simple, cheap test in the field,
meaning that the drug will not be prescribed when it
would be inefficient. It will be critical to monitor parasite
populations in endemic regions for the status of this gene
as eflornithine is used increasingly in trypanosomiasis
therapy.

Figure 1. Resistance in T. brucei brucei (A), Selection of eflornithine resistance in Trypanosoma brucei. Black triangles and left hand y-axis
show the eflornithine concentration in which the parasites grew. Bars and the right hand y-axis show molar IC50 values at various stages of the
selection process. One clone out of two is shown. (B), Treatment of mice infected with wildtype or eflornithine resistant parasites. Closed circles;
untreated, open diamonds; 2% eflornithine, open squares; 5% eflornithine, closed triangles; pentamidine (2mg/ml).
doi:10.1371/journal.ppat.1001204.g001

Loss of TbAAT6 Confers Resistance to T. brucei
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both the minimum curative dose of 2% w/v and a higher 5% w/v

eflornithine whilst mice infected with wildtype cells were cured with

the lower 2% w/v dose. Resistant cells remained susceptible to

pentamidine (4 mg kg21, four daily doses) (Fig. 1B). This

demonstrates that the in vitro selected mechanism for resistance is

also operative in vivo. Interestingly, isobologram analyses (Fig. 2)

revealed that nifurtimox and eflornithine are not synergistic to one

another’s activity in vitro. The average fractional inhibitory

concentration (FIC) is used as a measure of interaction between

two drugs and is a sum of the IC50 of the drug acting in combination

divided by the IC50 of the drug acting alone. An FIC of 1.5 was

recorded for eflornithine and nifurtimox, where a value $1.4 is

taken as antagonistic [17]). This was a surprise given the theory that

eflornithine would deplete cellular trypanothione thus rendering the

cells more susceptible to oxidative stress induced by nifurtimox.

Polyamine pathway metabolite levels are unchanged in
eflornithine resistant cells

Eflornithine’s target is the enzyme ornithine decarboxylase.

Alterations to the amino acid composition of proteins is often

responsible for drug resistance as variants with diminished ability

to bind drug are selected [18]. We therefore amplified the ODC

gene from the wildtype and the resistant cell line (DFMOR1 and

R2) and found no differences in the sequence or copy number.

Earlier work [19] had pointed to possible changes in S-adenosyl

methionine and polyamine metabolism relating to refractoriness to

eflornithine. We therefore subjected wildtype and resistant cells to

untargeted metabolomic analysis to determine whether changes in

relative levels of key metabolites could be determined (Figure S1

and Table S1). Significant differences between the untargeted

metabolite profiles of wildtype and resistant cells were not

apparent using multivariate statistical analysis, nor were changes

seen in any of the identified polyamine pathway metabolites

including S-adenosyl methionine (Fig. 3A). However, in a targeted

analysis of eflornithine (m/z = 183.0940) accumulation, it was

evident that eflornithine levels were greatly reduced in resistant

cells compared to wildtype (Fig. 3B). This result indicated that

exclusion of drug from the resistant line (DFMOR1) rather than

changes to metabolism were responsible for loss of sensitivity.

Loss of eflornithine accumulation into resistant cells
To determine quantitatively the relative transport rates of the

drug in wildtype and resistant cells, 3H-eflornithine was used to

measure accumulation in each cell type. A greater rate of

eflornithine uptake was observed in the wildtype cell line

compared to the resistant line (DFMOR1), with around five fold

more drug taken into wildtype cells after 30 minutes (Fig. 3C).

These data indicated a transporter phenotype, as seen previously

in selection of resistance to melamine based arsenicals [13] and

diamidines [14,16,20,21]. As eflornithine is an amino acid analogue

(Fig. 4), we hypothesised loss of an amino acid transporter. To test

this, members of the amino acid permease gene family (Fig. 5) in the

T. brucei genome [22] were systematically amplified from both

wildtype and each of the two independently selected resistant lines.

In each of the independently selected lines only one single copy

amino acid transporter gene, TbAAT6 (Tb927.8.5450), was shown

to be absent (Fig. 5). PCR analysis indicated a deletion of this, and

surrounding genes, from both resistant lines (DFMOR1, Fig. 6, R2

not shown). This result indicated the possibility that the TbAAT6

gene could play a role in eflornithine’s entry into T. brucei and that its

loss was responsible for drug resistance. The gene was amplifiable at

day 34 (Fig. 1A), but by day 50 (Fig. 1A) was no longer amplifiable.

Functional confirmation of a role for TbAAT6 in
eflornithine resistance

To confirm a role for TbAAT6 in eflornithine resistance we

used RNA interference [23] to ablate its expression in Trypanosoma

brucei. A cloned line was selected and this TbAAT6RNAi mutant

became resistant to eflornithine to an extent similar to the lines

selected for resistance to the drug (40.16resistance factor) (Fig. 7A)

when expression was ablated by addition of tetracycline. Next, we

expressed the TbAAT6 gene in the eflornithine selected trypano-

somes using vector pHD676 [24]. Cloned cells in which the gene

was re-expressed regained levels of eflornithine sensitivity similar

to wildtype (Fig. 7B). Loss of expression of TbAAT6 is therefore

both necessary and sufficient to confer resistance to eflornithine

and its re-expression in defective lines capable of restoring

sensitivity, regardless of other changes to the cell.

Discussion

Human African trypanosomiasis, also known as sleeping

sickness in its second stage when parasites have invaded the brain,

is a neglected tropical disease [1]. Major epidemics at the end of

the twentieth century were brought under control largely through

increased efforts in distribution and treatment with the few drugs

available to treat the disease [2]. An alarming increase in the

Figure 2. Isobologram analysis of nifurtimox and eflornithine
combination. Closed circles show the IC50 values of drugs alone. Open
circles show the IC50 values of the drug combinations.
doi:10.1371/journal.ppat.1001204.g002

Table 1. IC50 values for known trypanocides on wildtype and
eflornithine resistant cell lines.

Trypanocide
Wildtype
IC50 (nM)

Resistant
IC50 (nM)

Average
R:WT

Suramin (n = 3) 4.660.7 4.460.4 0.99

Melarsen Oxide
(n = 2)

4.3 2.4 0.67

Cymelarsan (n = 2) 6.3 3.7 0.73

Nifurtimox (n = 5) 2,9406600 2,8806300 1.09

Pentamidine (n = 5) 0.4360.1 0.160.04 0.27*

Eflornithine (n = 5) 22,00063,000 906,0006192,000 41.46*

Number of replicates are in parentheses, numbers represent mean 6 s.e.m
where appropriate.
*indicates significance at a p = 0.05 level.
doi:10.1371/journal.ppat.1001204.t001

Loss of TbAAT6 Confers Resistance to T. brucei
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incidence of treatment failure with melarsoprol has led to its being

replaced with eflornithine as first line treatment for stage 2 HAT

[2]. Combination therapy using eflornithine with the nitrofuran,

nifurtimox, licensed for use in Chagas’ disease has been added to

the World Health Organisation’s list of essential medicines as part

of the nifurtimox-eflornithine combination therapy for HAT [3].

Although several initiatives are underway to develop new drugs for

human African trypanosomiasis, none are currently in human

trials and a minimum of five years will elapse before a new drug

could complete trials and reach the market place. The loss of

eflornithine, alone or in the nifurtimox combination, would

represent a calamity in terms of sustaining control of HAT.

Figure 3. Metabolomic analysis of eflornithine resistance and uptake. (A), Relative abundance of polyamine metabolites in wildtype (WT)
and eflornithine resistant (R) cell extracts. (B), Uptake of eflornithine in wildtype (filled bars) and resistant cells (hatched bars) over one hour. Stars
indicate a significant difference at a 0.01 level between WT at time 0 and WT after 60 minutes. A hash indicates that R at time 0 and R after
60 minutes show no significant difference at a 0.05 level. (C), Eflornithine uptake in wildtype and resistant cells. 3H-eflornithine transported into
wildtype (triangles) and resistant (circles) cells was measured over 30 minutes. Measurements are an average of four separate experiments, each with
three internal replicates. Error bars are the standard error of the mean. Inset graph shows threonine uptake in the same cell lines. The y-axis shows
nmol of threonine per 107 cells. The x-axis shows the time in minutes.
doi:10.1371/journal.ppat.1001204.g003

Loss of TbAAT6 Confers Resistance to T. brucei
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The data presented here show that resistance to eflornithine is

easily selected in the laboratory. Selection of resistance in two

independently derived lines led to deletion of the TbAAT6 gene.

Eflornithine uptake was lost indicating that this gene encodes a

transporter capable of carrying the drug into trypanosomes. The

loss of TbAAT6 either by gene deletion as observed in the selected

drug resistance lines, or by RNAi is sufficient to render

trypanosomes over 40 fold less sensitive to eflornithine than

wildtype cells. Furthermore, ectopic expression of TbAAT6 in

trypanosomes that have deleted the gene is sufficient to restore

wildtype levels of eflornithine sensitivity confirming that loss of

TbAAT6 alone is necessary and sufficient to generate resistance.

We have, as yet, been unable to assign a physiological function

to TbAAT6 in African trypanosomes, and this is a topic of

ongoing research. However, it is one of a large family of related

genes described in the kinetoplastida belong to the amino acid

transporter 1 superfamily. Only a few other members of the family

have been functionally characterised. These include an arginine

transporter in Leishmania donovani [25], an arginine transporter in

T. cruzi [26] and polyamine transporters in L. major [27] and T.

cruzi [28]. The AAT6 gene is not syntenic with genes in Leishmania

spp. or T. cruzi. Furthermore, the evolution of the AAT family [22]

makes it impossible, currently, to define specific functionality to

any of these transporters based on homology alone.

Previous work with bloodstream and procyclic form trypano-

somes also revealed a relative simplicity in selecting eflornithine

resistance [11,12,29]. In procyclic forms reduced rates of eflor-

nithine uptake were identified [11,12] with possible changes to other

transporters for ornithine and putrescine also suggested. In

bloodstream forms reduction in eflornithine uptake was noted in

two of six eflornithine refractory T. b. rhodesiense lines [29], but in the

majority of cases no difference in eflornithine uptake was noted

leading the authors to dismiss altered drug uptake as an underlying

mechanism for the natural refractoriness of many strains of T. b.

rhodesiense in the field [30]. Possible changes to S-adenosylmethio-

nine metabolism instead were inferred as being significant in that

study [29]. Our metabolomics experiments showed that none of the

measured polyamine pathway metabolites differed significantly

between wildtype and resistant lines in our study. Furthermore, as

noted above, the reduced uptake of eflornithine by trypanosomes

lacking TbAAT6, without further requirement of changes in

metabolism, is both necessary and sufficient to yield a resistance

phenotype without any requirement for changes to metabolic

pathways which will be essentially unchanged as drug no longer

accumulates to inhibitory levels in trypanosomes. Recently, two

groups have employed high throughput RNAi screening to

determine whether knockdown of any genes correlate with to

resistance to various trypanocides including eflornithine. In both

instances, TbAAT6 was implicated in loss of sensitivity to

eflornithine (David Horn, London School of Hygiene and Tropical

Medicine, personal communication) and Isabel Roditi [31].

Since eflornithine has only recently been implemented as first

line treatment for stage two HAT, formal published reports of

clinical resistance have not yet appeared, although unpublished

data (Enock Matovu (Makerere University), personal communi-

cation) points to a substantial increase in eflornithine treatment

failures in Northern Uganda. Furthermore, given that the actions

of nifurtimox and eflornithine are not synergistic, trypanosomes

already bearing resistance, through loss of transport, to eflor-

Figure 4. Eflornithine (left) is a derivative of ornithine (right).
doi:10.1371/journal.ppat.1001204.g004

Figure 5. Cladogram of the amino acid transporters predicted to be in T. brucei and how amplification of wildtype and resistant cell
PCR products of 17 amino acid transporters from the wildtype and resistant cell lines shows TbAAT6 to be absent. Inset: Southern
blotting showed the loss of TbAAT6 in resistant, but not wildtype cells. ODC (ornithine decarboxylase) and b-tubulin remained unchanged.
doi:10.1371/journal.ppat.1001204.g005

Loss of TbAAT6 Confers Resistance to T. brucei
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nithine would effectively be subject to nifurtimox monotherapy

even in combination chemotherapy. Nifurtimox resistance has

been selected in vitro and has been shown to be cross resistant with

another emerging trypanocide, fexinidazole, currently in clinical

trials [32]. Given nifurtimox’s lack of efficiency [33], eflornithine

resistance alone is likely to lead to large numbers of treatment

failures from the combination. If the loss of TbAAT6 is involved in

resistance in the field, then it will be possible to implement a

simple PCR-based test for resistance, allowing for more suitable

treatments to be administered.

Materials and Methods

Ethics statement
This study was undertaken in adherence to experimental

guidelines and procedures approved by the UK Home Office

under Project Licence No. 60/3760 as complying with the

Animals (Scientific Procedures) Act 2006 entitled Biochemistry,

genetics and immunology of parasitic protozoa.

Culturing bloodstream form trypanosomes
Wildtype 427 bloodstream form trypanosomes were cultured in

HMI-9 (Biosera) [34] supplemented with 10% foetal calf serum

(Biosera) at 37uC, 5% CO2. Eflornithine resistant parasites were

selected in increasing concentrations of drug starting at 15 mM.

When cells were growing at a rate comparable to wildtype they

were cloned by limiting dilution and subcultured into double the

drug concentration.

In vitro drug treatment
The Alamar blue assay developed by Raz et al. [35] for

bloodstream form trypanosomes was used. Bloodstream form

parasites were seeded 46104 cells per ml into a serial dilution of

eflornithine (a gift from Pere Simarro, WHO) starting at 20 mM.

Plates were incubated for 48 hours at 37uC, 5% CO2 then 20 mL

Resazurin dye (Sigma) at 0.49 mM was added to each well. Plates

were incubated for a further 24 hours then read on a fluorimeter

(emission 530, excitation 595) (FLUOstar Optima, BMG Labtech).

IC50 values were calculated using Graphpad Prism5 Software and

defined as the concentration of drug required to diminish

fluorescence output by 50%. Significance was determined using

an unpaired t-test with a Dunnett’s post hoc test. For the

isobologram analysis Alamar blue assays were conducted using

nifurtimox in serial dilution under eflornithine concentrations of

2.5 mM, 15 mM and 25 mM.

In vivo drug treatment
Four groups of mice (three mice per group) were inoculated

with T. brucei 427 wildtype and another four groups with one of the

selected eflornithine resistant lines (termed DFMOR2). Each

inoculum consisted of 16106 parasites per animal (i.e. 200 mL of

56106 cells mL21) which was administered via intraperitoneal

injection. The groups of mice infected with T. brucei 427 wildtype

and T. brucei eflornithine resistant clones were treated in parallel to

each other 24 hours post-infection with the different treatment

groups as described below following earlier protocols [30]. (a)

Eflornithine 2% w/v for six days in drinking water with the

eflornithine solution being refreshed every three days; (b)

Eflornithine, 5% w/v for six days in drinking water, with the

eflornithine solution being refreshed every three days; (c)

Pentamidine 4 mg kg21 injected daily via intraperitoneal route

for four days (200 mL per injection); and (d) Untreated (i.e. no

treatment administered). The exact dosing of eflornithine was

determined by daily water consumption measurements. Parasit-

aemia levels of each animal were monitored daily via venepunc-

tures and microscopic observations of subsequent blood smears. In

instances where infection reaches ,108 cells mL21 or at the end of

the experiment, mice were euthanised using a Schedule 1 method.

PCR analysis
Genomic DNA was denatured at 94uC for two minutes,

followed by 30 cycles of 94uC for 15 seconds, annealing (50–55uC
depending on specific oligonucleotide) for 15 seconds and

extension at 72uC for 30 seconds/500 bases. A final elongation

of 7 minutes was used. See Text S1 for primer sequences used.

Transfection of trypanosomes
2T1 bloodstream form cells were used to create the RNAi cell

line with the pRPaSLi stem loop construct [23]. Eflornithine

resistant cells (derived from wildtype 427) were used with the

pHD676 [24] construct to create the re-expressor line. Linearised

plasmid was transfected into the cells using programme X-001 on

an Amaxa Nucleofector II. For the RNAi construct, selection was

with hygromycin (15 mg/ml) (Sigma). Cells positive for the re-

expression construct were selected with hygromycin (15 mg/ml)

(Roche) were added after 24 hours and clones were obtained.

Amino acid uptake
Uptake was analysed using tritiated substrate and eflornithine

accumulation using a mass spectrometry approach. In the mass

spectrometry approach cells were harvested in mid-log growth

Figure 6. PCR analysis of the region of chromosome 8 housing the single copy TbAAT6 (black box) in T. brucei. An area of DNA is
missing including TbAAT6. The exact boundary of the missing area is unknown (represented by the dotted line). Genes are (left to right) Tb927.8.5410
(hypothetical), Tb927.8.5420 (hypothetical), Tb927.8.5430 (hypothetical), Tb927.8.5440 (Tb-24, a flagellar calcium-binding protein), Tb927.8.5450
(TbAAT6), Tb927.8.5460 (Tb-44 a flagellar calcium-binding protein), Tb927.8.5465 (Tb-24, a flagellar calcium-binding protein), Tb927.8.5470 (Tb-17 a
flagellar calcium-binding protein), Tb927.8.5480 (hypothetical), Tb927.8.5490 (hypothetical). Not all of these genes were amplified as Tb17, Tb24 and
Tb44 are repetitive throughout the genome.
doi:10.1371/journal.ppat.1001204.g006

Loss of TbAAT6 Confers Resistance to T. brucei
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phase and resuspended at 16109 in HMI-9 with added

eflornithine at 0.1 mM. These were incubated for 30 minutes,

washed in HMI-9 and quenched in hot ethanol. The cell lysate

was then run on the Orbitrap mass spectrometer as detailed below.

Tritiated eflornithine was obtained from Moravek Biochemicals

with a specific activity of 1.6 Ci/mmol, 1mCi/ml. Mid-logarith-

mic growth phase cells were grown up to attain sufficient cell

densities to permit use of 26107 cells per reaction. Cells were

washed in CBSS buffer (25 mM HEPES, 120 mM NaCl, 5.4 mM

KCl, 0.55 mM CaCl.2H2O, 0.5 mM MgSO4.7H2O, 5.6 mM

Na2HPO4, 11.1 mM D-glucose) and resuspended to a density of

16108/ml. A rapid oil/stop spin protocol, previously described by

Carter & Fairlamb [13], was used. 100 ml of oil (1-Bromodo-

decane, density: 1.066 gcm-3) (Aldrich) and 100 ml radiolabelled

eflornithine in CBSS buffer was added to 0.5 ml Eppendorf tubes.

These were centrifuged briefly to remove bubbles. Cells were

added to the tubes at room temperature and centrifuged through

the oil at 16, 000 RCF for one minute to stop the uptake after

various time points. The resulting cell pellet was flash frozen in

liquid nitrogen and the base of the tube containing the pellet was

cut into 200 ml of 2% SDS in scintillation vials and left for

30 minutes. Three ml of scintillation fluid was added to each vial

and these were left overnight at room temperature. Samples were

read on a 1450 microbeta liquid scintillation counter (Perkin

Elmer).

Southern blot
Southern blots performed according to standard procedures

[36]. DNA was digested with Eco RI (Promega), blotted using a

hybond-N membrane (Amersham) and probed with Easytides 32P-

ATP (Perkin Elmer) incorporated into TbAAT6 using the

Stratagene Prime-it kit.

RNA interference
2Ti bloodstream form cells were used to create the RNAi cell

line with the pRPaSLi construct [23]. Cells were induced with

1 mg/ml tetracycline for 8 days before calculation of the IC50

value.

Metabolite extraction and analysis
Cultures were kept in log phase growth (below 16106/ml).

Metabolites were extracted from cell cultures simultaneously by

two methods.

In method A, cells were centrifuged at 1,250 RCF for

10 minutes and re-suspended in HEPES-free HMI-9 to a density

of 16109 cells/ml. These cells were left to recover in an incubator

for 30 minutes before quenching by addition of 80uC ethanol to

the cell suspension at a 4:1 ratio ethanol:cell suspension. These

were left at 80uC for two minutes to allow the cells to lyse and

denature any proteins. Extracts were then transferred to ice and

left for 5 minutes and vortexed briefly.

In method B, 46107 cells were rapidly cooled to 4uC by

submersion of the flask in a dry ice/ethanol bath, and kept at 4uC
for all subsequent steps. The cold cell culture was centrifuged at

1,000 RCF for 10 minutes, supernatant removed, and the pellet

washed in 30 mL HEPES-free HMI-9. The washed cells were

then centrifuged and the supernatant completely removed. Cell

Figure 7. RNAi and re-expression of TbAAT6. (A), RNAi was
induced for 12 days and the IC50 value to eflornithine measured. Stars
indicate significant difference at a 0.05 level compared to wildtype,
whereas a hash indicates that RNAi and resistant lines show no
significant difference. (B), The IC50 value of a constitutive re-expressor of

TbAAT6 put into the resistant line. Stars indicate a significant difference
at a 0.05 level compared to resistant, whereas a hash indicates that
wildtype and re-expressor show no significant difference. Wildtype
24.665.8 mM, Resistant 8866200 mM, Re-expressor 111618 mM, RNAi
773653 mM. IC50 measurements were at least n = 5.
doi:10.1371/journal.ppat.1001204.g007
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lysis and protein denaturation was achieved by addition of 200 mL

of cold chloroform/methanol/water (ratio 1:3:1), followed by

vigorous mixing for 1 hour at 4uC.

For both methods, extract mixtures were centrifuged for two

minutes at 16,000 RCF, 4uC. The supernatant was collected,

frozen and stored at 280uC until further analysis.

Samples were analysed on an LTQ Orbitrap mass spectrometer

(Thermo Fisher) in positive mode, coupled to HPLC separation

using a ZIC-HILIC column (Sequant) according to the method

published by Kamleh et al. [37]. Each sample was also analysed on

an Exactive orbitrap mass spectrometer (Thermo Fisher) in both

positive and negative modes (rapid switching), coupled to HPLC

with a ZIC-HILIC column. Exactive data was acquired at 25,000

resolution, with spray voltages +4.5kV and 22.6kV, capillary

temperature 275uC, sheath gas 20, aux gas 15 and sweep gas 1

unit. Minor adjustments were made to the published HPLC

mobile phase gradient as follows: Solvent A is 0.1% formic acid in

water, and solvent B is 0.1% formic acid in acetonitrile, 80% B

(0 min), 50% B (12 min), 50% B (26 min), 20% B (28 min), 20% B

(36 min), 80% B (37 min), 80% B (47 min).

Metabolite identification and relative quantitation was under-

taken using ToxID software (Thermo Fisher), by searching for

peaks that correspond to the accurate mass of metabolite ions

within a 3 ppm window (or 5 ppm window for Exactive data). The

metabolite lists were obtained from trypanosome-specific databas-

es in Trypanocyc (metacyc.org) and KEGG (www.genome.jp/

kegg/), lipids were excluded from the data analysis. Metabolite

levels are expressed as mean peak height from 3 biological

replicates. Multivariate statistical analysis comprised a principal

component analysis based on putatively identified metabolites, and

significance for individual metabolites was calculated by t-test

(a= 0.05).

Cladogram construction
Cladograms were constructed using the CLC genomics

workbench software alignment and tree building tools. A

neighbour joining algorithm was used and the tree was

bootstrapped 1000 times.

Supporting Information

Text S1 Oligonucleotides used for amplification of TbAAT

genes and vector construction.

Found at: doi:10.1371/journal.ppat.1001204.s001 (0.08 MB

DOC)

Figure S1 The mass of each metabolite is shown on the right

hand side. The y-axes show relative intensities for each metabolite

on exit from the chromatography column.

Found at: doi:10.1371/journal.ppat.1001204.s002 (0.47 MB TIF)

Table S1 Retention times on the HILIC column along with

ratios and p values are shown for each detected metabolite.

Found at: doi:10.1371/journal.ppat.1001204.s003 (0.06 MB XLS)
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