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Abstract

Approaches to identify significant pathways from high-throughput quantitative data have

been developed in recent years. Still, the analysis of proteomic data stays difficult because

of limited sample size. This limitation also leads to the practice of using a competitive null as

common approach; which fundamentally implies genes or proteins as independent units.

The independent assumption ignores the associations among biomolecules with similar

functions or cellular localization, as well as the interactions among them manifested as

changes in expression ratios. Consequently, these methods often underestimate the asso-

ciations among biomolecules and cause false positives in practice. Some studies incorpo-

rate the sample covariance matrix into the calculation to address this issue. However,

sample covariance may not be a precise estimation if the sample size is very limited, which

is usually the case for the data produced by mass spectrometry. In this study, we introduce

a multivariate test under a self-contained null to perform pathway analysis for quantitative

proteomic data. The covariance matrix used in the test statistic is constructed by the confi-

dence scores retrieved from the STRING database or the HitPredict database. We also

design an integrating procedure to retain pathways of sufficient evidence as a pathway

group. The performance of the proposed T2-statistic is demonstrated using five published

experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differen-

tiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets pro-

duced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling

pathway is a gene expression dataset of limited sample size. Compared with other popular

statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the

discussion of the original publication. We implemented the T2-statistic into an R package

T2GA, which is available at https://github.com/roqe/T2GA.
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Author summary

Pathway analysis is a common approach to quickly access the pathways being regulated in

the experiments. There are numerous statistics to perform pathway analysis; most of them

assume that the genes or proteins are independent of each other for statistical ease. This

assumption, however, is unrealistic to the real biological system and may cause false posi-

tives in practice. A standard way to address this issue is to measure the associations

among genes or proteins. Unfortunately, the estimation of associations requires sufficient

sample size, which is usually not available for proteomic data produced by mass spectrom-

etry. In this study, we propose a T2-statistic, which estimates the associations among gene

products, to perform pathway analysis for quantitative proteomic data. Instead of calculat-

ing the associations directly from data, we use the confidence scores retrieved from

protein-protein interaction databases. We also design an integrating procedure to reserve

pathways of sufficient evidence as a regulated pathway group. We compare the proposed

T2-statistic to other popular statistics using five published experimental datasets, and the

T2-statistic yields more accurate descriptions in agreement with the discussion of the orig-

inal papers.

Introduction

Great progress has been made toward the development of high-throughput technologies and

their application to biological and clinical research. In a quantitative experiment, genes or

proteins with significant changes in expression are potential to have important roles in a

given phenotype or phenomenon. Therefore, the analysis of quantitative experimental data

generally produces a list of differentially expressed genes or proteins in order. The list may

share some insights if the aim of the experiments is restricted to few targets. As regards high-

throughput data, the list hardly provides biological understanding of the mechanisms being

studied, since the data involve complicated regulations among biomolecules and the number

of biomolecules is too large to examine all candidates individually. Systematically investigat-

ing the underlying mechanisms from a high-throughput data therefore become a new

challenge.

To confront the challenge, one idea is to apply pathway analysis to identify the genes or pro-

teins that are known to be involved in a biological process or interaction based on the existing

knowledge. Many approaches of pathway analysis have been developed over years concerning

different methodologies. Some general reviews of pathway analysis approaches can be found

in [1–4]. These approaches can be broadly divided into two major factions: a competitive null

with a gene sampling model and a self-contained null with a subject sampling model. The null

hypothesis of a competitive test suggests that the target pathway (or a predefined gene set) is

differentially expressed as well as the rest of all pathways. Practically a competitive null is

closely tied to (although not necessarily) a gene sampling approach [5]. A gene sampling model
principally implies the independence assumption; the assumption presupposes that genes are

expressed independently of each other so that these genes can be manipulated as the sampling

subject to produce the null distribution. The null hypothesis of a self-contained test, on the

other hand, suggests that the target pathway is not differentially expressed between distinct

phenotypes. Using the phenotypes of the experiments as the sampling subject is the setup of a
subject sampling model. In other words, a competitive null with a gene sampling approach let

pathways compete with each other in order to rank these pathways and use the number of

genes as the sample size in the meanwhile; whereas a self-contained null with a subject
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sampling approach examine each single pathway to determine if the pathway is indeed differ-

entially expressed between phenotypes and use the number of experiments as the sample size.

Intuitively, a competitive null aims to find the pathway that is most significant among all path-

ways; a self-contained null aims to find the pathway that is the most significantly expressed

between phenotypes. The classification of null hypotheses and sampling methods is firstly sug-

gested by Geoman et al [5]. Even both categories have their own pitfalls and benefits, the

authors suggested using a self-contained null with a subject sampling model in pathway analy-

sis. Competitive null with gene sampling model usually implies the independence assumption

which may produce inaccurate small p-values, cause serious false positives [6], and result mis-

leading interpretations [5]. Further methodology issues of using a self-contained null can be

found in [7–9], and of using a competitive null can be found in [10].

Another issue of pathway analysis comes from the construction of test statistics. These sta-

tistics can be divided into univariate tests and multivariate tests. Univariate statistics, such as a

modification or a weighted summation of the t-scores [11–14], only focus on expression of

genes or proteins and assume these biomolecules as independent units for statistical ease. The

independence assumption ignores the associations among biomolecules with similar functions

or cellular localization, as well as the interactions among them manifested as changes in

expression ratios. In contrast, multivariate statistics take into consideration the associations

among genes or proteins [15–20]. Some methodology studies [9, 21–23] have evaluated uni-

variate tests and multivariate tests with synthetic and experimental datasets. Compared with

multivariate tests, univariate tests generally result a decrease in statistical power [21] and an

increase in false positive rate [22] along with the rise of average correlation. Multivariate

approaches usually incorporate the sample covariance matrix into calculation to address bio-

logical interaction. However, the sample covariance may not be precise enough to estimate the

associations if the sample size is very limited. Compared with other gene expression data,

proteomic data produced by mass spectrometry are more difficult to analyze systematically

due to the limited number of experiments. This limitation causes current multivariate tests

incompetent because the sample covariance will not be a robust statistic.

The composition of pathway diagrams also become a challenge to pathway analysis. A path-
way is a group of biomolecules that participate in a particular cellular process. The members of

a pathway are usually defined by the tradition (i.e., the history of pathway discovery) of molec-

ular biology scientists. The structure of pathway diagrams is not standardized and therefore

arises some issues to pathway analysis. First, the same pathway from different databases or

other sources may have the same core members but different side members. Under different

experimental conditions, the size of accessible biomolecules also changes. For example, the

phosphorylation proteomic data may not provide information to the proteins not belong to

phosphoproteome. Since the number of members within a pathway is not a constant, using

this number as a parameter to determine if the pathway is significant or not may lead to incon-

sistent results. This issue arises with the assumption of a competitive null. Second, some mole-

cules appear over pathways may play important roles as communication centers. For example,

p53 appears in 38 pathways in the KEGG database. The shared members may interact or coop-

erate with each other and form a functional module. If this module is regulated (i.e., the mem-

bers within the module are differentially expressed as they cooperate together), the subsets of

this module may present in abundant pathways and make these pathways seemingly signifi-

cant. To identify the regulated pathway among the significant pathways of common modules,

biologists usually utilize the distinctive molecules participating in that specific pathway;

whereas pathways do not contain distinctive molecules may be irrelevant to the underlying

mechanism. However, most of the current approaches do not take consideration of this issue.

The suggestion of irrelevant pathways due to the redundancy over the significant pathways
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usually causes confusion to data description. A recent study [24] also focuses on the second

issue. They demonstrate how the shared members affect p-values, and try to address this prob-

lem under a competitive null.

In this study, we introduced a multivariate test, based on the Hotelling’s T2-statistic, to per-

form pathway analysis for quantitative proteomic data. The most serious problem of analyzing

proteomic data produced by mass spectrometry is the limited number of experiments. We

usually obtain only a few replicates (biological or technical) per experimental condition. To

manage this issue, we had two special designs in our test. First, instead of using the sample

covariance matrix (which is not robust when the sample size is limited), we use the covariance

matrix that is constructed of the probabilistic confidence scores provided by the STRING and

HitPredict databases. The proposed T2-statistic is then built of the protein expression profile

and the covariance matrix to consider the expression level of individual proteins along with

the associations among them. Second, we designed a self-contained model to produce a null

distribution of altering protein expression while retaining the structure of protein associations.

We are not capable of applying a subject sampling model because the number of experiments

is too limited. In addition to the settlement of sample size issue, we designed an integrating

procedure to categorize significant pathways as well as to avoid redundancy. The performance

of the proposed T2-statistic is demonstrated using five public experimental datasets with differ-

ent levels of biological complexity: the T-cell activation, the cAMP/PKA signaling, the effect of

dasatinib on the BCR-ABL pathway, the differentiation process of myoblast, and the protective

effect of myocilin via the MAPK signaling pathway. The first four datasets are proteomic data

produced by mass spectrometry; the last dataset is a gene expression data of low sample size.

We compared T2 with other popular statistics: DPA [25], GSEA [26], DAVID [27, 28], and

IPA [29]. For most of the situations, T2 yielded more accurate descriptions in agreement with

the discussion of the original publication.

Materials and methods

Experimental data

We took four proteomic datasets of different biological complexity and experimental proper-

ties to demonstrate our approach. To be comprehensive, the testing datasets include the case

of pathway activation and inhibition; also the case of signaling phosphoproteome and cellular

proteome. We only used the final ratios provided by the datasets since they may have different

integration approaches (e.g. to combine the results of biological and/or technical repeats, to

handle missing data or outliers) under different experimental designs. The summarized ratio

is also the most available format for quantitative proteomic data. In this situation, the sample

size of data becomes only one, calculating a covariance matrix is not even possible. Our

approach provide a solution to undertake this difficulty. We also applied our approach on a

gene expression dataset of three samples to demonstrate that the general idea is applicable to

other quantitative data of low sample size.

The phosphoproteomic data of TCR signaling. The T-cell receptor (TCR) signaling

phosphoproteomic data [30] aim to reveal system-wide phenomena associated with T cell

activation. The authors used OKT3, an antibody specific to CD3�, to initiate the TCR signaling

transduction in the human leukemia cell line Jurkat T lymphocyte. They used stable isotope

labeling by amino acids in cell culture (SILAC) method to perform large-scale quantitative

phosphoproteomic analyses and identified 696 TCR-responsive phosphorylation sites on

453 proteins. Phosphopeptides showing more than 1.85-fold change in abundance are quali-

fied as “TCR-responsive” sites, suggested by the authors under their experimental conditions.

We used these 696 proteins since the original publication does not provide raw data, and we
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aimed to use this small dataset as a positive control to evaluate the proposed statistic. The data-

set contains three time points: 5, 15, and 60 min; the number of UniProt accessions are

30, 376, and 330, respectively. The authors specifically enriched pTyr-contained peptides in

5 and 15 min experiments since pTyr constitutes less than 1% of the total amino acid content;

a global phosphopeptide-enrichment approach was used for 15 and 60 min experiments. The 5

min experiment is extremely small because it contained only pTyr-enriched peptides.

The phosphoproteomic data of cAMP/PKA signaling. The cAMP-dependent protein

kinase (i.e. protein kinase A, PKA) signaling phosphoproteomic data [31] aim to provide a

resource of substrates of PKA. The authors also used SILAC to profile quantitative changes of

potential PKA substrates. Prostaglandin E2 (PGE2) was applied to increase intracellular cAMP

and activate PKA in Jurkat T cells. The light cells (L) was used for control, the medium (M)

and the heavy (H) were treated with PGE2 for 1 and 60 min, respectively. The authors identi-

fied 4284 phosphorylation sites on 607 proteins, and they discussed the dynamic phosphoryla-

tion upon stimulation by PGE2. The study considered two expression ratios: M/L and H/L; the

number of UniProt accessions are 594 and 595, respectively.

The cellular proteomic data of myogenesis. This cellular proteomic data [32] monitor

the changes in protein expression underlying the phenotypic conversion of human primary

myoblasts; from primary mononucleated muscle cells to multinucleated myotubes, using the

SILAC method. The authors used human satellite cells isolated from a quadriceps muscle

biopsy of a 5-day old infant. The light (L), medium (M) and heavy (H) cells were first treated

with the growth medium (serum-supplemented; low glucose), then switched to the differentia-

tion medium (serum-free; high glucose) for 0, 24, and 72 hr, respectively. This study quantified

2240 proteins, in which 2227 unique UniProt identifiers are quantified for both M/L and H/L

expression ratios.

The phosphoproteomic data of BCR-ABL signaling for CML treatment. The pathology

of chronic myeloid leukemia (CML) is commonly associated with an oncogenic tyrosine

kinase BCR-ABL. Dasatinib is an inhibitor of the BCR-ABL and Src family tyrosine kinase,

and it serves as a clinical drug for treatment of CML. This phosphoproteomic data [33] aim to

inspect the effects of dasatinib on the entire cell signaling network, using the SILAC method.

The authors used the human leukemia cell line K562, which expresses the activated BCR-ABL

fusion protein, to examine cellular phosphorylation levels for three conditions. For one hour,

the light cells (L) was treated with DMSO only, the medium (M) and the heavy (H) were

treated with 5 and 50 nM dasatinib, respectively. The authors identified 5063 phosphorylation

sites on 1889 proteins, and they further discussed the mechanisms induced by dasatinib. The

study considered two expression ratios: M/L and H/L; the number of UniProt accessions are

5453 and 5443, respectively.

The gene expression data of MAPK signaling. The MAPK signaling gene expression

data [34] aims to understand the functions of myocilin, a causative gene for open angle glau-

coma. The authors suggested that myocilin promotes cell proliferation and resistance to apo-

ptosis via the ERK1/2 MAPK signaling pathway. The microarray analysis compared a stably

transfected HEK293 cell line expressing myocilin with the control cell lines. The cells were

treated with the 10μm MEK inhibitor U0126 two hours prior to the induction of myocilin

expression. The gene expression profiling was performed using Human Affymetrix Gene Chip

U133 Plus version 2.0. The processed dataset includes three treatment and three control

expression values. We took the mean of the triplicated data as the representative expression.

Then we took the difference of the treatment group and the control group since the processed

data is already normalized. We used the identifier mapping files from the official websites and

the final data include 21816 unique UniProt identifiers.
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Databases

To provide more generalized results, we choose two pathway databases and two protein-

protein interaction databases: KEGG and Reactome provide pathway categories served as pre-

defined gene sets, STRING and HitPredict contributes the confidence scores to estimate the

covariance between protein expressions.

KEGG. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [35]

collects manually drawn pathway maps in various topics, especially in metabolism. We down-

loaded the pathway database in the KGML format from the KEGG website. We used the ver-

sion last updated on 5th July 2016. The human pathway database (the organism code: hsa)

contains 303 pathway diagrams. We excluded the overview maps since they depict very general

biological concepts (e.g. one overview map is titled “Metabolic pathways”). There remain 290

pathways for the following analysis. For each pathway, we retrieved the components tagged as

gene, enzyme, and group. Those components are associated with gene products so we use them

to map the identifiers of experimental data onto pathways.

Reactome. The Reactome pathway database [36] provides curated pathways of signal

transduction, transport, DNA replication, protein synthesis, metabolism and other cellular

processes. We downloaded the pathway database in the tab-delimited format from the Reac-

tome website. We used the version last updated on 30th June 2016 (v57). The human pathway

database (the organism code: 9606) contains 1618 pathway diagrams of the lowest level (i.e.

most specific) and we only used the lowest level pathways for the following analysis.

STRING. The STRING database [37] scores and integrates known and predicted protein-

protein interactions and gives a global perspective for many organisms. STRING provides

eight PPI types: neighborhood, gene fusion, co-occurrence, co-expression, experiments, databases,
textmining and homology [38]. STRING suggests four levels of confidence score: low confidence
(0.150), medium confidence (0.400), high confidence (0.700), and highest confidence (0.900). The

version for the following analysis is version 9.1, and we only used the interactions above

medium confidence since it is the default threshold of the STRING website.The results were

produced using the experiment PPI score to avoid artificial correlation due to special interest

in the research community.

HitPredict. The HitPredict database [39] provides the reliability scores of experimentally

identified, physical protein-protein interactions (PPI). The database integrates five popular

source database: IntAct, BioGrid, HPRD, DIP, and MINT. HitPredict also annotates the confi-

dence scores into two levels: low and high. The version for the following analysis is version 4,

and we only retrieved the interactions annotated with high quality.

A knowledge-based T2-statistic

Data processing and pathway mapping. The required input format is a list of protein

identifiers (e.g. UniProt accession number) with the expression ratios of the experimental

group to the control. The list is subjected to the following data processing steps. First, we per-

form log2 transformation and winsorization on the data subsequently (if needed). Extreme val-

ues beyond the threshold are replaced with a maximum permitted value within the threshold.

For example, if the expression ratios are (−7, −1, 3, 4, 6) and the threshold is set to 5, then the

extreme value 6 will be replaced by the maximum permitted value 4, and -7 replaced by -4.

Users can adjust the threshold based on the experimental conditions (i.e., different models or

settings of mass spectrometry machines). The reason to set a threshold is to manually control

the contribution of proteins with extreme values, since those proteins usually have very a low

abundance (maybe beneath the threshold of quantification) in one of the experimental condi-

tions. The default setting of the threshold is 10 and none of the testing data presented in this
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paper exceed the threshold. Second, we deal with the problem of multiple identifications and

multiple ratios. This problem originates from the mapping of different primary identifiers to

UniProt accession numbers. If there exists any ratio with multiple identifiers, we assign the

same expression ratio to those identifiers. If there exists any identifier with multiple ratios, we

assign the median of the ratios to the identifier. Third, we standardize the data by dividing the

standard deviation. Last, we map these proteins with their expression ratios to the pathways.

The identifier mapping tables are downloaded from the KEGG and the Ensembl [40] official

websites.

The proposed T2-statistic. Hotelling’s T2-statistic is a multivariate generalization of Stu-

dent’s t statistic. Let x1, . . ., xn be n independent random variables of an m-variate normal dis-

tribution, an original Hotelling’s T2-statistic for an one-sample T2 test is defined as follows:

T2 ¼ nð�x � μ0Þ
TS� 1ð�x � μ0Þ

where �x is the vector of column means, S is an m × m sample covariance matrix, and μ0 is a

given vector. The null hypothesis is that the population mean vector of data μ is equal to a

given vector μ0; �x is served as an estimation of μ.

Here we introduce the notation to describe the design of the proposed T2-statistic. Let a

pathway P be the set of the proteins that are mapped from the data. Then,

P ¼ fpiji ¼ 1; . . . ; qg

where each pi indicates a specific protein with a corresponding ratio xi, and q the number of

mapped proteins (i.e., the size of a pathway). To ensure the biological robustness of the expres-

sion ratios {xi}, we have another threshold representing our confidence toward the expression

direction of the data, the default setting is 1.5. Only the proteins showing more fold change

beyond the threshold are qualified to possess their original ratios; the ratios of other proteins

are recognized as disturbance and set to zero. We use the proteins with high expression ratios

to represent the expression directions of the pathway. If directions of these proteins fit the

covariance matrix, then the pathway is more likely to be enriched. In other words, we think

the direction is not stable for those proteins of low expression ratios; we only care if the pro-

teins of high expression ratios fit the covariance matrix. Again, users should adjust the thresh-

old based on the experimental conditions.

We collect the processed ratios into a column vector x. The proposed T2-statistic is con-

structed with the vector x and the covariance matrix S of x, the former represents the signifi-

cance of protein expression; the latter represents the interaction structure among the proteins.

The covariance matrix S is not computed from the experimental data. Due to the limitation of

sample size, calculating an informative covariance is infeasible. Our idea is to use the confi-

dence score provided by protein-protein interaction databases to represent the strength of the

covariance, and use the expression direction provided by the testing dataset to indicate the

sign of the covariance. In order to apply this idea, we have an assumption below:

If pi and pj have a strong interaction supported by experimental evidence, their expression
ratios xi and xj will have a high covariance sij with a consistent sign,

where xi and xj are any two elements of x and sij is the corresponding covariance of S. To be

more precise, we denote the PPI database as the set I and the interaction pairs collected as its

A T2-statistic for pathway analysis
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elements:

I ¼ cpvpu

�
�
�
�
�

pv and pu are any two distinctive proteins with a confidence score

cpvpu describing the strength of their interaction:

( )

On the basis of the confidence scores in I and the protein expression ratios, each element sij of

S is determined by the following four rules:

1. For the elements where i = j, the main diagonal of S, namely the variance of x. In this case,

there is no evidence score to refer, we have to assign a constant to the diagonal elements.

This constant represents our confidence toward the accuracy of the data, we use the

medium confidence level suggested by STRING, which is 0.4.

2. For the elements where i 6¼ j, the confidence score between protein pi and pj exist in I , and

the ratios xi and xj are of the same sign. In this case, either xi and xj are both up-regulated or

both down-regulated, the covariance between them should be positive. We use cpi pj directly

as the substitute of the covariance.

3. For the elements where i 6¼ j, the confidence score between protein pi and pj exist in I , and

the ratios xi and xj are of opposite signs. In this case, one of xi and xj is up-regulated and the

other is down-regulated, the covariance between them should be negative. We take the neg-

ative value of cpi pj to be the substitute of the covariance.

4. For the elements where i 6¼ j, and the confidence score between protein pi and pj does not

exist in I . In this case, we assign zero to these elements.

The possible values of sij can be summarized as follows:

sij ¼

0:4 if i ¼ j:

cpipj if i 6¼ j; cpipj 2 I ; and xi � xj � 0:

� cpipj if i 6¼ j; cpipj 2 I ; and xi � xj < 0:

0:0 if i 6¼ j and cpipj=2I :

8
>>>>>>>><

>>>>>>>>:

Since our aim is to test if a pathway P is differentially expressed, our null hypothesis can be

described as follows:

For those proteins mapped to the pathway being evaluated, they are not differentially expressed
between distinctive phenotypes under certain structure of protein interaction.

This self-contained null suggests that the expression ratios of data μ is equal to zero (i.e. the

experiment and the control have the same expression values) under the same S. We presup-

pose the sample size is equal to one because in data processing section we already use the

median of ratios to represent the expression level for each protein. Therefore we use x as an

estimator of μ. The proposed T2-statistic for a specific pathway P is then defined as,

T2 ¼ xTS� 1x � w2
q

where x is the vector of expression ratios, xT is the transpose of x, S−1 is the inverse of the

covariance matrix S, and q is the number of mapped proteins in P. Since S is constructed

from databases, it is possible that S is degenerate. In this case, we construct a Moore-Penrose

pseudoinverse of S as a substitute, and q becomes the rank of S. The p-value of the pathway P

A T2-statistic for pathway analysis
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is derived from the w2
q distribution. Note that the p-values under a self-contained null are not

for comparison among pathways. The significance only indicates if the pathway being tested,

as an individual, is differentially expressed from one phenotype to another.

Pathway integration

As we mentioned in Introduction, subsets of one common active module may cause a lot of

pathways statistically significant. These pathways may only have slight relevance to the target

mechanisms (Fig 1). To avoid misinterpretation due to irrelevant pathways being reported, we

identify delegates to categorize pathways into pathway groups. A pathway group is a set of path-

ways, in which the pathway being the superset of other pathways is defined as the delegate.

Since other pathways do not show any distinctive proteins to support themselves, the signifi-

cance of other pathways may simply originate from the regulation of the delegate. In other

words, we want to avoid the situation that a pathway is enriched only because of some com-

mon proteins that are shared with other pathways.

Our pathway integration procedure operates as follows. The set of the pathways being

evaluated is denoted by P and each pathway P 2 P is associated with a p-value. We iteratively

perform the following steps until all the pathways in P are assigned to a specific pathway

groupM.

1. We identify the pathway with the maximum number of mapped proteins Pm from P.

2. We create a new setM ¼ fPmg for the delegate Pm, then we remove Pm from P.

3. For each pathway P 2 P, if P � Pm, we put P inM and remove P from P.

Fig 1. Redundant pathway versus non-redundant pathway. The expressed proteins of the pathway B are a subset of the expressed

proteins of the pathway A. There is no evidence that pathway B is regulated since the significance may come from the merit of pathway

A. On the contrary, some expressed proteins are unique to pathway A to support that pathway A may be regulated as a pathway group.

https://doi.org/10.1371/journal.pcbi.1005601.g001
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4. We check if there is any pathway remaining in P. If P 6¼ ⌀, we go back to the step 1. Other-

wise, we check the p-value for every delegate Pm. Only those Pm with a significant p-value

are preserved as our final result.

A demonstrative example can be found in S1 Fig.

The pathway integration procedure aims to find the pathways with the most sufficient

information to represent current data. Please notice that this idea is not similar to pathway

hierarchy in which higher level pathways are defined as the supersets over lower level path-

ways, in that case only the pathways of highest level are able to be delegates. One can only

apply the integration procedure to pathways without hierarchy relationship. In addition, the

procedure is only applicable to the statistical test using a self-contained null since the measure

of significance is independent for each pathway.

Results and discussion

To demonstrate the advantages of the proposed T2-statistic, we compared our results with pop-

ular pathway analysis services within the community: Ingenuity1 Pathway Analysis (IPA), the

Database for Annotation, Visualization and Integrated Discovery (DAVID), Gene Set Enrich-

ment Analysis (GSEA), and Direction Pathway Analysis (DPA). Among these tools, IPA and

DAVID use a competitive null; DPA uses a self-contained null; and GSEA uses a hybrid

approach by default but suggests to use a gene sampling model when the sample size is smaller

than seven [41]. The parameter settings for each tool are described in S1 Text. Their default

significance requirements and ranking statistics are listed in Table 1. All of these tools apply

univariate statistics, which means they do not consider the associations among gene products.

We do not compare to any other multivariate statistics because using a multivariate statistics

requires large sample size to calculate the covariance matrix, so they are not applicable to the

proteomic data of only one experiment. In addition, the performance of T2-statistic has been

evaluated in [17], which suggested that T2-statistic generally outperforms other tools in all sim-

ulation cases in their study. The proposed T2-statistic, DPA, and GSEA were evaluated using

the same version of KEGG and Reactome databases; whereas DAVID had their own versions

as web services and IPA was bounded to its own curated database. The following discussion

mainly focused on the results of KEGG pathways since the they are canonical to the commu-

nity; the results of Reactome pathways were summarize in S1 Table.

As we mentioned above, different approaches of pathway analysis may have different statis-

tical assumptions; comparing the performance between these approaches becomes even

harder. Since there are no accepted gold-standards to evaluate the methods of pathway analy-

sis, we tried to match the results reported by these methods to the biological idea provided by

Table 1. The significance requirement and the ranking statistic for each tool.

Tools Significance requirement Ranking statistic

T2 raw p-value� 0.05 number of mapped proteins

DPA raw p-value� 0.05 p-value

GSEA FDR adjusted p-value (i.e. q-value)� 0.25 NES

DAVID EASE� 0.1 p-value

IPA Benjamini corrected p-value� 0.05 p-value

The significance requirements and the ranking statistics for each tool are suggested in their associated

publications or websites. For the pathways fulfilled the requirement of significance, we rank them using the

ranking statistic.

https://doi.org/10.1371/journal.pcbi.1005601.t001
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the original publication. In other words, we took the aspect of explanatory power (i.e. the inter-

pretation of true positive cases). Generally speaking, a good statistic should be able to deter-

mine if a pathway is significant: if a statistic reports very little significant pathways (much less

than our expectation regarding the data), it might have the problem of false negatives; if a sta-

tistic reports a large number of significant pathways, it might have the problem of false posi-

tive. Practically the false positive under a competitive null may originate from high mapping

rate with low expression level; the false positive under a self-contained null may originate from

low mapping rate with high expression level. We supposed that the number of significant path-

ways is one of the attribute to evaluate these methods, at least for the significance evaluation

part (i.e. revealing the consequence of different null hypotheses). Also, a good statistic should

be capable of enriching the true positive pathways. Based on these assumptions we had a pre-

liminary evaluation as below.

The numbers of proteins, PPI clusters (i.e. the networks constructed by mapped proteins

and interactions), and pathways for each dataset are listed in S2 Table, their trends and correla-

tion are illustrated in Fig 2. With the exception of the TCR dataset, the identified proteins for

each data in the same dataset are almost identical, yet with different amount of quantification

values; the pathways enriched in the same dataset are similar. The numbers of enriched path-

ways should be related to the number of quantified proteins; and the number of potential

treatment targets should also reveal the complexity of the five datasets. The treatment of the

TCR dataset, anti-CD3�, is a monoclonal antibody, whose target is specific and the influence

should be limited. The case of the MAPK dataset is similar, U0126 is a highly selective inhibitor

for MEK1 and MEK2. In the case of the PKA dataset, four targets of PGE2 are all subtypes of

EP receptors (i.e. EP1, EP2, EP3, and EP4). Most of the downstream pathways are regulated by

the second messenger cyclic adenosine monophosphate (cAMP) [31, 42]. On the other hand,

dasatinib has about 10 targets of different kinase families [43] although its main target is

BCR-ABL. The myogenesis dataset does not have a clear target, the size of the dataset is

between the PKA dataset and the CML dataset. More targets suggest more proteins and path-

ways could be involved because of the treatment, and the number of enriched pathways should

grow as well. Except for the gene expression data, we indeed observed an increasing trend of

quantified proteins and PPI clusters (Fig 2a). However, the results of these tools (Fig 2b) do

not totally concur with this hypothetical expectation. From Fig 2c we found both T2-statistics

with positive coefficients between the data and the result, DPA and DAVID with some positive

and some negative coefficients, and GSEA and IPA with negative coefficients all along. Having

a negative coefficient between the data and the result is counter-intuitive, but a competitive

null tends to behave in this fashion (GSEA in KEGG, GSEA and DAVID in Reactome, and

IPA). Besides the null hypothesis, the construction of the statistics may also contribute. Both

DPA and GSEA are based on the approach combining many gene-level statistics into a path-

way-level statistics. The pathway-level statistic usually take into consideration the number of

gene-level statistics it integrates, therefore the effect size for each gene-level statistic becomes

important. In simple words, the average expression of the pathway dominates the enrichment

result. For example, the TCR dataset is a cleansed dataset (S2a Fig) showed that there are only

few proteins are of low expression ratios), almost all proteins are of high expression ratios. In

this case, pathways can easily become significant because the average of expression ratios is

usually high. In contrast, the PKA, the myogenesis, the CML, and the MAPK datasets have

substantial proteins of low expression ratios (S2b, S2c, S2d and S2e Fig). These proteins will

dilute the significance of others therefore the pathways can hardly become significant. Both

DAVID and IPA are based on Fisher’s exact test, a small dataset will result unequally distribu-

tion among the cells of the table and pathways can easily become significant consequently.

A T2-statistic for pathway analysis
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Fig 2. The consistency between data complexity and the number of enriched pathways. (a) The line chart indicated that the number of mapped

IDs and the number of PPI-clusters have a close similarity. (b) The line chart showed an increasing trend of the number of enriched pathways for both

T2 approaches; whereas the same trend can be hardly observed for other tools. (c) We compute the correlation coefficient between the number of

mapped clusters and the number of enriched pathways. A plus sign (“+”) indicates a positive coefficient and a minus sign (“−”) indicates a negative

coefficient.

https://doi.org/10.1371/journal.pcbi.1005601.g002
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DAVID performs better because it uses a more stringent post hoc correction toward its signifi-

cance level.

We determined the target pathway for each dataset according to their original publication:

“TCR signaling pathway” for the TCR dataset, “cAMP signaling pathway” for the PKA dataset,

“ECM-receptor interaction” for the myogenesis dataset, “chronic myeloid leukemia” for the

CML dataset, and “MAPK signaling pathway” for the MAPK dataset. Generally the target

pathway is directly provoked by the treatment, but in the myogenesis dataset, there does not

exist such a clear target since the removal of serum takes away various kinds of growth factors.

Therefore we chose one pathway that is clearly stated to be differentially expressed for both

experimental conditions (24hr/0hr and 72hr/0hr). As a preliminary evaluation of perfor-

mance, we tried to locate the target pathway among the significant pathways reported by each

tool. The ranks of the target pathways were summarized in Table 2. Generally speaking, T2

with STRING (T2×ST) and T2 with HitPredict (T2×HP) found all the target pathways signifi-

cant; and DAVID found eight out of ten; IPA found seven targets and DPA also found six.

GSEA did not perform very well; it might because the design of the statistics is more suitable

for the dataset of more experiments.

The mechanisms at pathway level behind the five datasets were depicted: Fig 3 for the TCR

dataset, Fig 4 for the PKA dataset, Fig 5 for the myogenesis dataset, Fig 6 for the CML dataset,

and Fig 7 for the MAPK dataset. Except for the myogenesis dataset, the target pathway is located

in the center, related pathways are either neighbors or joined by arrows. Please note that the

arrows between the treatment and the target pathway indicate the type of regulation (i.e. activa-

tion or inhibition) but the arrows between pathways indicate the direction of time. Each path-

way is depicted by a circle with a ring of six segments: the background of a circle indicates the

pathway is either the focus of the original publication or mentioned in pathway databases or lit-

erature; the color for each segment represents the significance reported by the certain tool. For

example, in Fig 3, the T cell receptor signaling pathway is the focus of the original publication,

and it is enriched by T2×ST, T2×HP, GSEA, DAVID, and IPA in the 5 min experiment. Please

note that pathways are human-defined biological concepts, the components of one pathway

Table 2. The ranks of the target pathways in KEGG.

Dataset TCR PKA Myogenesis CML MAPK

Treatment α-CD3ϵ PGE2 Serum-free Dasatinib U0126

5 min 15 min 60 min 1 min 60 min 24 hr 72 hr 5 nM 50 nM 10 μM

KEGG pathway T cell receptor signaling

pathway

cAMP signaling

pathway

ECM-receptor

interaction

Chronic myeloid

leukemia

MAPK signaling pathway

T2×ST

p-value

1/13

< 0.0001

1/57

< 0.0001

2/36

0.0019

16/45

< 0.0001

17/47

< 0.0001

15/54

< 0.0001

16/75

< 0.0001

20/111

< 0.0001

23/119

< 0.0001

3/118

< 0.0001

T2×HP

p-value

1/14

< 0.0001

1/59

0.0002

2/17

0.0011

17/49

< 0.0001

18/51

< 0.0001

16/56

< 0.0001

15/70

< 0.0001

20/113

< 0.0001

25/121

< 0.0001

3/117

< 0.0001

DPA

p-value

- 8/68

0.0007

20/71

0.0024

11/15

0.0414

7/19

0.0178

18/73

0.0004

- - - 2/17

0.0007

GSEA

q-value

68/69

0.1786

7/60

0.1039

- - - 22/31

0.1416

- - - -

DAVID

p-value

1/47

< 0.0001

1/53

< 0.0001

1/35

< 0.0001

- - 40/73

0.0041

40/73

0.00041

8/54

0.0004

8/54

0.0004

8/119

0.0002

IPA

p-value

1/225

< 0.0001

2/232

< 0.0001

89/185

0.0022

60/79

0.0186

60/79

0.0191

- - 52/129

0.0013

52/129

0.0013

-

We had a preliminary evaluation of the pathway enrichment tools using the ranks of the target pathway for each testing dataset. The numerator is the rank

value and the denominator is the number of significant pathways.

https://doi.org/10.1371/journal.pcbi.1005601.t002
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may appear in other pathways and these components usually interact with each other. Our pre-

sentation only depicted the main branches directed from the target pathway that are commonly

described in the literature. In addition, since the pathway database of IPA is different from oth-

ers, we used the most similar pathway title instead. Even the pathway is of the same title, the

components of the pathway may still differ; the result is obliquely comparable.

Fig 3. The results of the TCR dataset in KEGG. There are three possible downstream routes: the IL-2 expression and the

cytoskeleton remodeling routes are the targets in the original publication, the former is enriched by T2×ST, T2×HP, DAVID, and IPA;

the later is enriched by T2×ST, T2×HP, DAVID, and IPA; the proliferation route is also suggested by T2×ST and IPA.

https://doi.org/10.1371/journal.pcbi.1005601.g003
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Fig 4. The results of the PKA dataset in KEGG. There are four possible downstream routes: the proliferation route is the target in

the original publication and enriched by T2×ST, T2×HP, IPA; the glycogen synthesis route is also suggested by IPA; the cytoskeleton

remodeling route is suggested by T2×ST, T2×HP, DPA and IPA; and the DNA repair route is suggested by T2×ST, T2×HP and DPA.

https://doi.org/10.1371/journal.pcbi.1005601.g004
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Fig 5. The results of the myogenesis dataset in KEGG. There are five routes mentioned in the original publication: the RNA

metabolism route is enriched by T2×ST, T2×HP, DAVID and IPA; the cell cycle withdrawal route is enriched by T2×ST, T2×HP and

IPA; the proteolysis and cell fusion route are suggested by T2×ST, T2×HP, and DAVID, and IPA; the cell adhesion and migration route

are suggested by T2×ST, T2×HP and DAVID; and the myofibril formation and muscle contraction route is only enriched by T2×ST and

T2×HP.

https://doi.org/10.1371/journal.pcbi.1005601.g005
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Fig 6. The results of the CML dataset in KEGG. There are three possible downstream routes: the cytoskeleton remodeling and the

survival are the targets in the original publication, both of them are enriched by T2×ST and T2×HP; and the proliferation route is

suggested by T2×ST, T2×HP, DAVID and IPA.

https://doi.org/10.1371/journal.pcbi.1005601.g006
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Fig 7. The results of the MAPK dataset in KEGG. There are two possible upstream routes: the GPCR receptors and the notch

receptors. The former is enriched by T2×ST, T2×HP, DPA and DAVID; the later is enriched by T2×ST, T2×HP and DAVID. There are

two possible downstream routes: both of the proliferation and the survival are the targets in the original publication. The former is

enriched by T2×ST, T2×HP and DAVID; the later is roughly enriched by T2×ST, T2×HP, DAVID and IPA.

https://doi.org/10.1371/journal.pcbi.1005601.g007
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The phosphoproteomic data of TCR signaling

We discussed the flow of signal transduction in time order since the dataset is a time-series of

5 min, 15 min, and 60 min experiments. In the beginning, the treatment anti-CD3� activated

TCR signaling pathway. The TCR signaling pathway in KEGG and IPA depicts the signals

from the TCR receptors all the way to the IL-2 expression. Usually, the response of signal

transduction comes rapid, we expected that the TCR signaling pathway should be enriched in

early time points; the downstream from the TCR signaling pathway to the IL-2 expression

should be enriched in late time points. From Table 2 we found that T2×ST, T2×HP, DAVID,

and IPA enriched the TCR signaling pathway in all experiments; GSEA enriched the TCR sig-

naling pathway in 5 and 15 min experiments only. The ranks of the TCR signaling pathway are

top in T2, DAVID, and IPA. The downstream of the TCR signaling pathway was illustrated in

Fig 3, there are three possible routes directed from TCR signaling. The original publication

focused on the TCR/Ras/MAPK route to the IL-2 expression and the cytoskeleton remodeling

response. The TCR/PI3K-Akt/mTOR route, on the other hand, is also important and has been

discussed as a cluster in literature [44–47]. From Fig 3 we found the enriched pathways by

T2×ST were well-grounded for the following reasons:

1. The phosphorylation of Ras/MAPK is an early event [30]. Most proteins in the Ras/MAPK

route are phosphorylated at serine and threonine whereas the 5 min experiment only con-

tains tyrosine-enriched peptides. As a result, related pathways should be enriched in the

15 min data, T2×ST, T2×HP, DAVID, and IPA achieved this goal.

2. Most proteins in the PI3K-Akt/mTOR are phosphorylated at serine and threonine, and the

phosphorylation should happen in order. both T2×ST and IPA matched the description,

but in IPA these pathways are of low ranks.

3. The regulation of actin as the response of TCR signaling is also a main subject of the origi-

nal publication. T2×ST, T2×HP, DAVID, and IPA successfully enriched the cytoskeleton

remodeling route.

To sum up above, we found the results of T2×ST fit our expectation: T2×ST enriched the

TCR signaling pathway in the early time data, the route TCR/Ras/MAPK and TCR/PI3K-Akt/

mTOR in time order, and the response of actin regulation, in both pathway databases. T2×HP,

DAVID, and IPA enriched most of the expected pathways in KEGG, although the ranks of

these pathways are occasionally low in IPA; T2×ST, T2×HP and DAVID also enriched most of

the expected pathways in Reactome (S1 Table); GSEA failed to enrich half of the expected

pathways in both pathway databases. We also found that there is no distinguishable difference

between the result using a self-contained null (T2×ST, T2×HP, DPA) or a competitive null

(GSEA, DAVID, IPA) in the TCR dataset.

The phosphoproteomic data of cAMP/PKA signaling

The target of the original publication is PKA substrates. As the authors described in their

results; PGE2 induced a rapid and maximal increase in phosphorylation level after 1 min,

and the level remained high before the number of substrates gradually returned to near-basal

conditions after 60 min (S2b Fig). From Table 2 we found T2×ST, T2×HP, DPA, and IPA

enriched the cAMP signaling pathway for both 1 min and 60 min experiments. The down-

stream of the cAMP signaling pathway was illustrated in Fig 4, there are four possible routes

directed from cAMP signaling. The proliferation route was suggested by T2×ST, T2×HP, and

IPA; and the cytoskeleton remodeling route also, with an addition of DPA. The DNA repair

route was enriched by T2×ST, T2×HP, and DPA, in both pathway databases. The glycogen
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synthesis route, on the other hand, was enriched only by IPA. The reason is that T2 takes

expression ratios as an important feature, whereas the mapped proteins of the “Glycolysis /

Gluconeogenesis” pathway are all of low ratios (min = −0.23710, max = 0.14950,

mean = 0.02742).

Briefly, we found the results of T2 reasonable: T2×ST and T2×HP enriched the cAMP

signaling pathway for both datasets; the PKA/Rap1/PI3K-Akt route in time order, and also

the cytoskeleton remodeling route and the DNA repair route. DPA and IPA also enriched

most of the expected pathways. GSEA and DAVID failed to enrich most of the expected path-

ways in both pathway databases. We also found that the result using a self-contained null

(T2×ST, T2×HP, DPA) enriched more expected pathways than a competitive null (GSEA,

DAVID, IPA). Since the pathways competes with each others under a competitive null,

the success of some pathways will obstacle other pathways. For example, the top 1 enriched

pathway provided by DAVID for the 1 min data is “Ribosome”. The pathway includes 87 pro-

teins, and 51 of them were mapping by the data. The cAMP signaling pathway, on the other

hand, includes 73 proteins, but only 8 of them were mapping by the data. The high mapping

rate of “Ribosome” will makes it harder for DAVID to enrich the target cAMP signaling

pathway.

The cellular proteomic data of myogenesis

This study aims to characterize the changes in protein expression underlying the phenotype

conversion from mononucleated muscle cells to multinucleated myotubes. According to the

their analysis, five functional clusters were identified in this dataset: cell cycle withdrawal
(72hr/0hr), cell adhesion and migration (24hr/0hr), RNA metabolism (both 24hr/0hr and 72hr/

0hr), myofibril formation (72hr/0hr), and proteolysis, fusion, and ECM remodeling (both 24hr/

0hr and 72hr/0hr). The corresponding KEGG pathways were illustrated in Fig 5. We chose the

pathway “ECM-receptor interaction” as the target pathway in Table 2 because it is clearly

stated to be differentially expressed in both experiments. From Table 2 we found the ECM-

receptor interaction pathway was enriched by T2×ST, T2×HP and DAVID for both experi-

ments. The original publication focused on the change of cellular phenotype accompanying

myogenic differentiation and the development of myofibril. From Fig 5 we found the myofibril

formation route was enriched by T2×ST, T2×HP, DAVID, and IPA. T2×ST and T2×HP further

enriched muscle contraction related pathways, which were associated with myotube matura-

tion as discussed in the original publication. The cell adhesion and migration play an essential

role in the fusion of mononucleated myoblasts. Pathways related to adhesion and migration

were enriched by T2×ST, T2×HP, and DAVID; those related to fusion were enriched by

T2×ST, T2×HP, DAVID, and IPA. The elevation of lysosomal proteins contributed in remodel-

ing intracellular components during the course of myotube formation. All tools enriched the

lysosome pathway with an exception of IPA. The RNA metabolism and the cell cycle with-

drawal routes represented the termination of proliferation since the growth factors and nutri-

tion were removed from the medium. Related pathways were enriched by T2×ST, T2×HP and

IPA. Briefly, T2×ST and T2×HP enriched all the pathways discussed in the original publication;

the interpretation made by T2 fit the description of the dataset pretty well. In the meantime,

DAVID and IPA also enriched most of the expected pathways, asides from muscle contraction

pathways. DPA enriched most of the expected pathways in Reactome, but failed in KEGG;

GSEA failed in both pathway databases. We also found that there is no distinguishable differ-

ence between the result using a self-contained null (T2×ST, T2×HP, DPA) or a competitive

null (GSEA, DAVID, IPA) in the myogenesis dataset.
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The phosphoproteomic data of BCR-ABL signaling for CML treatment

This dataset, unlike the previous, is not a time series; it is a dose-comparison experiment.

According to the original publication, two datasets shared nearly all identified proteins

although 50nM dataset did down-regulate more phosphopeptides (S2d Fig). Consequently, the

authors only paid attention to the proteins that are regulated by both 5nM and 50nM dasati-

nib. The main target of dasatinib is the BCR-ABL signaling pathway, which is described in the

pathway “Chronic myeloid leukemia (CML)” of KEGG. From Table 2 we found the CML

pathway was enriched by T2×ST, T2×HP, DAVID and IPA for both experiments. The down-

stream of the CML pathway was illustrated in Fig 6, there are three possible routes directed

from the inhibition of BCR-ABL. Since the two datasets shared nearly all proteins, we used the

ranks of 5 nM dataset to represent the common pathways over two datasets. The original pub-

lication focused on the BCR-ABL/Ras/MAPK route and the connection between BCR-ABL

signaling and apoptosis. From Fig 6 we found the enriched pathways by T2 were plausible for

the following reasons:

1. In the case of the BCR-ABL/Ras/MAPK route, T2×ST, T2×HP, DAVID, and IPA all agreed

with the description. The BCR-ABL/PI3K-Akt/Apoptosis route was also enriched by

T2×ST, T2×HP and IPA.

2. Even though not mentioned in the original publication, the BCR-ABL/JAK-STAT/Apopto-

sis route is also well-known [48–50]. Among all the tools for comparison, T2×ST and

T2×HP were the only tools that enriched the “JAK-STAT signaling pathway” in 50nM data.

3. The initiation of focal adhesion components is also related to BCR-ABL. The STRING ana-

lyzing result of the original publication also implied the mechanisms of cytoskeleton

remodeling. T2×ST, T2×HP, DAVID, and IPA achieved to enrich the pathway “Regulation

of actin cytoskeleton”; but only T2×ST and T2×HP enriched the “Focal adhesion” pathway.

In short, we found the performance of T2 pleasant: T2×ST and T2×HP enriched the

BCR-ABL/Ras/MAPK route, the BCR-ABL/PI3K-Akt/Apoptosis route, the JAK-STAT signal-

ing pathway, and the pathways related to actin response. Both DAVID and IPA enriched some

of the expected pathways. GSEA and DPA failed to enrich most of the expected pathways in

both pathway databases. Generally there is no distinguishable difference between the result

using a self-contained null or a competitive null, but T2 enriched more expected pathways

than other methods.

The gene expression data of MAPK signaling

The dataset includes only one experiment, comparing the gene expression of myocilin

expressed cells to control cells, under U0126 treatment. The authors concluded that myocilin

has a protective effect to against apoptosis and further promotes cell survival and proliferation

via the MAPK signaling pathways. They also experimentally confirmed that the Raf-

MEK-ERK-MAPK cascade was activated by myocilin. From Table 2 we found T2×ST, T2×HP,

DPA, and DAVID enriched the MAPK signaling pathway; all three methods under a self-con-

tained null successfully enriched the target pathway, whereas only DAVID is under a competi-

tive null. The upstream and downstream of the MAPK pathway was illustrated in Fig 7. There

are two possible upstream receptors of the MAPK signaling pathway: the GPCR receptors and

the Notch receptors. In KEGG, both upstreams were enriched by T2×ST, T2×HP and DAVID,

DPA only enriched the GPCR/Ras/MAPK route and IPA only enriched the Notch/Ras/MAPK

route. In Reactome, both upstreams were enriched by T2×ST and T2×HP, DAVID only

enriched the Notch/Ras/MAPK route (S1 Table). The are two downstream routes, both are
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supported by the original publication. The results from both T2×ST and T2×HP suggested that

the differentially expressed pathways are more upstream. This conclusion actually fit the dis-

cussion of the original publication, which suggests that myocilin may also regulate the

upstream kinase of the MAPK signaling pathway. Briefly, both T2×ST and T2×HP successfully

enriched the MAPK signaling pathway and its upstream; other tools enriched only some of the

expected pathways.

Generally speaking, we found that the proposed T2-statistic was able to enrich the pathways

in agreement with the original publication, whereas the performances of DPA, GSEA, and

DAVID were not stable. IPA, as a commercial software with high cost, also enriched most of

the relevant pathways. Nevertheless some of the pathways are low-ranked and the numbers of

enriched pathways are enormous. The results suggested that our multivariate design of the

proposed T2-statistic does provide important information toward pathway analysis by consid-

ering the strength of interactions among proteins. In the meantime, our self-contained null

hypothesis is capable of enrich relevant pathways by the significance of protein expression

ratios, whereas the focus of the competition among pathways may neglect the clear distance

between phenotypes. Both DAVID and IPA are based on the competitive null hypothesis,

although DAVID performs a more stringent post hoc correction, they shared the failure of

some relevant pathways. The tremendous numbers of enriched pathways also suggested IPA

may report more false positive results. GSEA also applies a competitive null when the sample

size is limited and its KS statistic is sensitive to small sample size. The unsatisfied results sug-

gested that GSEA is not suitable for data of limited experiments. The design of DPA is similar

to the proposed T2-statistic; both DPA and T2 are specifically designed for quantitative proteo-

mic data, and they both use self-contained null hypotheses. The performance difference

between DPA and T2 primarily comes from the aspect of statistic construction. The proposed

T2-statistic outperformed DPA because it considers the strength of interactions among pro-

teins. Briefly, in five testing datasets, the results using a self-contained null is generally more

well founded than the results using a competitive null.

Robustness test: Using permuted and purged confidence scores

The importance of applying the covariance matrix is to estimate accurate confidence interval.

We illustrated an example in Fig 8 to demonstrate the situation that may cause inaccurate esti-

mation. Both M1 and M2 are accurate null distributions since the data are normalized using

proper covariance matrix and the distribution hence follows χ2. M4 indicates that situation

that an independent data are misinterpreted as a correlated data. This happens when we have

false positive protein-protein interactions in the databases. In order to minimize the risk, we

only use the confidence scores derived from directly experimental evidence. M3 represents the

case that a correlated data are misinterpreted as an independent data. This may actually hap-

pen due to our incomplete knowledge of the biology system. In this case, the null distribution

will not follow χ2 and the estimation of p-value will be inaccurate. Even so, for pathways of

vary high expression ratios, applying the covariance matrix or not does not change its p-value

dramatically. Here we demonstrated the impact toward p-values using permuted and purged

confidence scores. We performed 100 experiments with 30% and 60% permuted confidence

scores (i.e. we reassign the score using the same score distribution) and another 100 experi-

ments with 30% and 60% purged confidence scores (i.e. we randomly remove the scores from

the PPI databases), and we checked if the expected pathways are still significant under current

significance level (α = 0.05). From Table 3 we observed that:

1. In practice, most of expected pathways contain proteins of high expression ratios, so the

influence toward their p-values is limited.
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2. Some pathways are more easily to be affected by permuted scores rather than purged scores,

such as Cell cycle in CML 5 nM experiment and PI3K-Akt signaling pathway in MAPK

10 μM experiment. In this case, the covariance matrix for the pathway is close to an identity

matrix. It might be a M3 case that we do not have enough information to construct the

covariance matrix, the p-values tend to be smaller, so the interpretation of significant path-

ways should be careful.

3. Some pathways are more easily to be affected by purged scores rather than permuted scores,

such as PI3K-Akt signaling pathway in PKA 1 min experiment and Endocytosis in myogen-

esis 72 hr experiment. In this case, the covariance matrix for the pathway provides abun-

dant information. The removal of these information will decrease the chance for the

pathway to be enriched. It might be a M4 case that we use some fake information to

Fig 8. A demonstrative example of accurate and inaccurate estimation. We simulated a toy example to demonstrate

the situation that may cause inaccurate estimation. The simulation data consisted 10000 random samples; the correlated

data are derived from MVN (0, S) and the independent data are from MVN(0, I), where S is a 20 × 20 matrix with diagonal

equals to one and off-diagonal equals to 0.5.

https://doi.org/10.1371/journal.pcbi.1005601.g008
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Table 3. The results using permuted and purged confidence scores.

Dataset Experiment Pathway Title original

p-value

30%

permuted

60%

permuted

30%

purged

60%

purged

TCR 5 min T cell receptor signaling pathway < 0.0001 100% 100% 100% 100%

15 min Ras signaling pathway 0.0017 100% 100% 100% 100%

Regulation of actin cytoskeleton < 0.0001 100% 100% 100% 100%

MAPK signaling pathway < 0.0001 100% 100% 100% 100%

PI3K-Akt signaling pathway < 0.0001 100% 100% 100% 100%

60 min mTOR signaling pathway 0.0002 97% 98% 100% 100%

PKA 1 min Regulation of actin cytoskeleton < 0.0001 100% 100% 100% 100%

PI3K-Akt signaling pathway < 0.0001 92% 81% 86% 84%

MAPK signaling pathway < 0.0001 100% 100% 100% 100%

Rap1 signaling pathway < 0.0001 100% 100% 100% 100%

cAMP signaling pathway < 0.0001 100% 100% 100% 100%

Glycolysis / Gluconeogenesis 1 0% 0% 0% 0%

60 min Cell cycle < 0.0001 100% 100% 100% 100%

mTOR signaling pathway 0.0024 100% 100% 100% 100%

Base excision repair < 0.0001 100% 100% 100% 100%

myogenesis 24 hr Endocytosis 0.0441 60% 64% 48% 69%

Focal adhesion < 0.0001 100% 100% 100% 100%

Lysosome < 0.0001 100% 100% 100% 100%

Gap junction < 0.0001 100% 100% 100% 100%

ECM-receptor interaction < 0.0001 100% 100% 100% 100%

72 hr Regulation of actin cytoskeleton < 0.0001 100% 100% 100% 100%

Tight junction < 0.0001 100% 100% 100% 100%

RNA degradation < 0.0001 100% 100% 100% 100%

Cell cycle < 0.0001 100% 99% 98% 91%

Adherens junction < 0.0001 100% 100% 100% 100%

Vascular smooth muscle contraction < 0.0001 100% 100% 100% 100%

Cardiac muscle contraction < 0.0001 100% 100% 100% 100%

CML 5 nM MAPK signaling pathway < 0.0001 100% 100% 100% 100%

Regulation of actin cytoskeleton < 0.0001 100% 100% 100% 100%

Cell cycle 0.0001 90% 92% 98% 99%

Focal adhesion < 0.0001 100% 100% 100% 100%

Ras signaling pathway < 0.0001 100% 100% 100% 100%

PI3K-Akt signaling pathway < 0.0001 100% 100% 100% 100%

Chronic myeloid leukemia < 0.0001 100% 100% 100% 100%

50 nM Apoptosis < 0.0001 100% 100% 100% 100%

Jak-STAT signaling pathway 0.0003 100% 100% 100% 100%

MAPK 10 μM PI3K-Akt signaling pathway 0.0271 70% 69% 90% 90%

Neuroactive ligand-receptor interaction < 0.0001 100% 100% 100% 100%

MAPK signaling pathway < 0.0001 100% 100% 100% 100%

Ras signaling pathway < 0.0001 100% 100% 100% 100%

mTOR signaling pathway < 0.0001 100% 100% 100% 100%

Wnt signaling pathway 0.001 100% 100% 100% 100%

p53 signaling pathway < 0.0001 100% 100% 100% 100%

Notch signaling pathway 0.0252 82% 87% 94% 99%

Apoptosis 0.9882 0% 0% 0% 0%

The percentage indicated the proportion that was successfully enriched under current permutation or removal setting. Pathways highlighted by green

background are easily affected by permuted scores than purged scores; pathways highlighted by red background are easily affected by purged score than

permuted scores.

https://doi.org/10.1371/journal.pcbi.1005601.t003
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construct the covariance matrix, the p-values tend to be larger, so the users should manually

examine the pathways of borderline p-values.

The construction of the proposed T2-statistic showed T2 is heavily dependent on expression

ratios. After all, the null hypothesis for T2 is to test if the mean vector equals to zero. The con-

tribution of applying the covariance matrix is to estimate p-values in a more accurate manner:

to rescue some pathways with moderate expression ratios but their regulation directions are

consistent with current knowledge of protein interaction, and to discard some pathways with

inconsistency.

Conclusion

In this study, we presented a knowledge-based T2 approach to perform pathway analysis for

quantitative proteomic data of a limited number of experiments. The proposed T2 is con-

structed as a multivariate statistic and the test of significance is under a self-contained null. We

use the probabilistic confidence score provided by the STRING or HitPredict databases to

approximate the covariance matrix of the protein profiles. The proposed T2-statistic is there-

fore able to reveal the influence of protein-protein interactions while performing the analysis.

In addition, our pathway integration procedure is able to categorize pathways into pathway

groups as well as to avoid redundancy. We performed the T2-statistic on five published quanti-

tative proteomic dataset. In all cases, T2 was able to eliminate irrelevant pathways, as well as

correctly identify relevant pathways that had been discussed in the original publication. The

idea of incorporating biological evidence into conventional statistic can be widely applied to

the analysis of quantitative proteomic data.
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S1 Text. Versions and parameter settings of other tools.

(PDF)

S1 Fig. A demonstrative example of pathway integration procedure. This diagram used a

toy example to illustrate the procedure of data processing, filtering, pathway mapping, statisti-

cal testing, and finally pathway integration.

(PDF)

S2 Fig. Data distribution. (a) The TCR dataset contains three proteomic experiments. The

5 min data describe the initiation of the TCR signaling pathway. The following response inter-

fered lots of downstream proteins, resulting the 15 min data have the largest number of pro-

teins among this dataset. Then the signal was transmitted to the nuclear and the amount of

high-ratio proteins decreased, as described in the 60 min data. (b) The PKA dataset contains

two proteomic experiments. The initiation of the cAMP signaling pathway came rapid, so the

1 min data almost illustrate all the following events. The 60 min data have fewer high-ratio

proteins because the response of the signal had gradually vanished. (c) The myogenesis dataset

contains two proteomic experiments. The 24 hr data have more differentially expressed pro-

teins than the 72 hr data. (d) The CML dataset contains two proteomic data. Their distribu-

tions look quite alike, despite that the 50 nM treatment did down-regulate more proteins.

Most proteins are down-regulated since the experiment aims to repress the BCR-ABL signal-

ing pathway. (e) The MAPK dataset contains one gene expression experiment. The up-

regulated probes slightly outnumber the down-regulated (54% versus 46%), and there are few

probes of high ratios.

(PDF)
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S1 Table. The results of all datasets in Reactome.

(PDF)

S2 Table. The number of proteins and pathways for each dataset. The enriched pathways

are the pathways that fulfilled the significance requirements described in Table 1. We listed the

number of clusters using different confidence levels. The number of PPI clusters is calculated

for clusters with at least two proteins. Anti-CD3� is specific to CD3�; PGE2 targets four EP

receptors but the downstream is almost under control of cAMP; serum starvation may result

in cell cycle arrest and turn on muscle regulatory factors to promote myogenesis; dasatinib

mainly targets BCR-ABL but has about 10 other targets of different kinase families; U0126 is a

highly selective inhibitor of MEK1 and MEK2.

(PDF)
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