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Abstract

With the objective of assisting in the understanding of the chromosome evolution of Pentato-

momorpha and in the quest to understand how the genome organizes/reorganizes for the

chromosomal position of the 45S rDNA in this infraorder, we analyzed 15 species (it has

being 12 never studied before by FISH) of Pentatomomorpha with the probe of 18S rDNA.

The mapping of the 45S gene in the Coreidae family demonstrated that the species pre-

sented markings on the autosomes, with the exception of Acanthocephala parensis and

Leptoglossus gonagra that showed markers on m-chromosomes. Most species of the Pen-

tatomidae family showed marking in the autosomes, except for two species that had 45S

rDNA on X sex chromosome (Odmalea sp. and Graphosoma lineatum) and two that showed

marking on the X and Y sex chromosomes. Species of the Pyrrhocoridae family showed

18S rDNA markers in autosomes, X chromosome as well as in Neo X. The Largidae and

Scutelleridae families were represented by only one species that showed marking on the X

sex chromosome and on a pair of autosomes, respectively. Based on this, we characterized

the arrangement of 45S DNAr in the chromosomes of 12 new species of Heteroptera and

discussed the main evolutionary events related to the genomic reorganization of these spe-

cies during the events of chromosome and karyotype evolution in Pentatomomorpha

infraorder.

Introduction

The Heteroptera suborder (Insecta, Hemiptera) is the largest and most diverse group of insects

with incomplete metamorphosis, being formed by seven infraorders (Leptopodomorpha, Ger-

romorpha, Nepomorpha, Pentatomomorpha, Cimicomorpha, Dipsocoromorpha and Enico-

cephalomorpha) composed of more than 40,000 species distributed in approximately 80

families [1, 2]. These insects of medical and agricultural importance have a great diversity of
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habitats (aquatic, terrestrial and parasitic of birds and bats) and they present different feeding

habits, such as phytophagous, predators, necrophagous and hematophagous [1].

The Pentatomomorpha infraorder is the second largest and one of the most economically

important of Heteroptera with approximately 15,000 species and 40 families worldwide [1].

This infraorder can cause great damage to agricultural production, and act on the transmission

of phytopathogens [1]. However, not all species of Pentatomomorpha are harmful, because

there are examples that act in the biological control of agricultural pests, as well as in environ-

mental bioindication, increasing or decreasing the diversity of species when great environmen-

tal disturbances occur [1, 3].

The first cytogenetic survey in Heteroptera was initiated in 1891 with the description of the

spermatogenesis of Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae) [4]. Posteriorly, several

chromosomal and karyotype analysis were performed, with emphasis on the characterization

of the chromosome number, relative size of the autosomes and sex chromosomes and descrip-

tion of the sex-determination system [5–7]. These insects of medical and agricultural impor-

tance have unique chromosomal characteristics as holocentric chromosomes, micro

chromosomes (m-chromosomes), which are generally aquiasmatic during the onset of pro-

phase I, inverted meiosis for sex chromosomes and end to end pairing [5, 6, 8, 9].

The diploid number of chromosomes in Heteroptera varies from 2n = 4 [Lethocerus sp.

(Hemiptera, Belostomatidae)] to 2n = 80 [(Lopidea marginalis (Hemiptera, Miridae)], with the

majority of species from 12 to 34 chromosomes (70% of species), being the most common dip-

loid number of 2n = 14 (460 species) [9]. Chromosomal sex-determination system mecha-

nisms known are divided into simple [XY/XX (71.4%) and X0/XX (14.7%)] and multiples

[XnY/XnXn, Xn0/XnXn and XYn/XX (13.5%)] [6, 7]. In addition, there is the Neo XY system

that basically is the fusion of sex chromosomes X or Y with autosomes [9].

It is suggested that the chromosomal sex-determination system simple and multiple with

presence of the Y sex chromosome (XY and XnY), present in Nepoidea and Gelastocoroidea

superfamilies, is a plesiomorphic feature and the presence of a pair of m-chromosomes and

different chromosomal sex-determination system with absence of Y sex chromosome (X0 and

X1X20), present in Naucoroidea and Notonectoidea superfamilies, is an apomorphic feature

[10–12]. Cytogenetic analysis suggest that the absence of m-chromosomes and the presence of

Y sex chromosomes could be considered plesiomorphic characters, because it is believed that

the sex systems X0 and X1X20 originated through the loss of the Y sex chromosome (aneu-

ploidy), as well as loss of Y followed by fragmentation of the X chromosome, respectively [12];

those sex-determination systems together with the presence of a pair of m-chromosomes

could be considered as derived characters [12].

Fusion (simploidy) and fission (agmatoploidy), together with aneuploidies, are the main

mechanisms of evolution of the karyotype in Heteroptera [5, 6, 13, 14, 15], which support the

probable sex systems XnY, X0 and X1X20, as well as Neo XY, from the simple sex determina-

tion system (XY) [13, 16], being all previously reported sex-determination system already noti-

fied for the Pentatomomorpha infraorder [6, 17].

In relation to the survey Heteroptera suborder, there are currently three hypotheses: Sher-

bakov and Popov [18] and Mahner [11] were congruent in the hypotheses proposals, they pro-

posed that Nepomorpha is a sister group of the remainder of Heteroptera. The other two

hypotheses correspond to Wheeler et al. [19] and Xie et al. [20] that demonstrated that all

infraordens are monophyletic with a phylogenetic relationship between Enicocephalomorpha

(Nepomorpha (Leptopodomorpha (Gerromorpha + Dipsocoromorpha) + (Cimicomorpha

+ Pentatomomorpha))) for Xie et al. [20] and Enicocephalomorpha (Dipsocoromorpha (Ger-

romorpha (Nepomorpha (Leptopodomorpha (Cimicomorpha + Pentatomomorpha)))) for
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Wheeler [19], resulting in new questions about the evolutionary relations of these infraordens

[2].

Due to these inconsistencies, the use of complementary techniques such as classical and

molecular cytogenetic analysis, can help to elucidate the relationships between species, con-

tributing to phylogenetic, evolutionary and taxonomic studies [5,6, 12, 21–24]. The use of fluo-

rescent in situ hybridization (FISH) allows mapping of specific DNA sequences in the

chromosomes of the species [25]. The chromosome mapping has been usually performed in

Heteroptera, being the study of the number and location of the 45S ribosomal genes the most

frequent [22–24, 26, 27]. This gene generally appears as repeated sequences and grouped into

particular chromosomes, especially at the ends of autosomes and/or sex chromosomes [22–24,

26–28]. In different groups of insects, such as Coleoptera, Diptera, Hymenoptera, Lepidoptera

and Orthoptera, the distribution of 45S rDNA has been applied with the objective of assisting

in phylogenetic, taxonomic and evolutionary studies [22–24, 26, 29–34].

For the chromosomal mapping of the 45S ribosomal gene in Heteroptera, the 18S rDNA

probe has been widely used [22–23, 26, 28, 35, 36]. With the aim of assisting in the understand-

ing of the chromosome evolution of Pentatomomorpha and in the quest to understand how

the genome organizes/reorganizes for the chromosomal position of the 45S rDNA in this

infraorder, we analyzed 15 species (it has being 12 never studied before by FISH) of Pentato-

momorpha with the probe of 18S rDNA.

Methods

Animals

A total of 150 adult males of 15 species were analyzed: nine species of the Coreidae family

(Acanthocephala parensis, Anasa bellator, Spartocera fusca, S. batatas, Dallacoris pictus, D.

obscura, Leptoglossus zonatus, Lucullia flavovittata and Phthia picta), five species of Pentatomi-

dae (Edessa collaris, Loxa virescens, Mormidea v-luteum, Odmalea sp. e Thyanta perditor) and

one species of the Scutelleridae family (Pachycoris torridus). The insects were collected by

active search in the Institute of Biosciences, Letters and Exact Sciences (IBILCE / UNESP), São

José do Rio Preto, São Paulo, Brazil (geographical coordinates: Latitude: -20.802, Longitude:

-49.3707 20º 49’ 13” South, 49º 22 ’47’ ’West) during the period from March 2015 to May 2018.

Chromosome preparations

The insects were dissected, the testes were removed and fixed in Carnoy’s solution (absolute

ethanol: acetic acid, 3: 1). The slides were prepared using a portion of the tests which was mac-

erated in 50% acetic acid and then dried on a hot plate at 45–50˚ C.

DNA isolation

The DNA was obtained from a sample of muscle tissue of the M. v-luteum species. The sample

was digested with proteinase K for 3 h, was added phenol/Tris-HCl, pH 8.0, followed by centri-

fugation and washing with phenol/Tris-HCl, pH 8.0 and isoamyl alcohol-chloroform. After

centrifugation, isoamyl alcohol-chloroform was added and the DNA was precipitated with ice-

cold absolute ethanol for 12h at -20º C and eluted in Tris EDTA (TE; 1:10) + RNAse. The 18S

rDNA probes were generated by Polymerase Chain Reaction (PCR), using the primers:

Foward 5'-AACCTGGTTGATCCTGCCA-3 ’and Reverse 5'-CTGAGATCCAACTACGAG
CTT-3' [37]. The obtained fragments were purified and sequenced. The sequences were sub-

jected to the BLAST nucleotide [38] to confirm the identity of these sequences.
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Fluorescence in situ hybridization (FISH)

FISH was performed according to Pinkel et al. [39], with modifications of Cabral-de-Mello

et al. [40]: the 18S rDNA probe obtained from M. v-luteum was used in all insects analyzed.

The DNA fragments were labeled with biotin-14-dUTP (Invitrogen) by PCR and the products

visualized by 1% agarose gel electrophoresis to verify the amplification of the sequences. FISH

signals were detected using alexa-flu-488 (Life Technologies) and the preparations were

stained with 4 ’, 6-diamidine-2’-phenylindole dihydrochloride (DAPI) and then assembled

using Vecta shield (Vector). The preparations were observed using an Olympus BX61 Fluores-

cence microscope with DP70 refrigerated digital camera. Images were merged and optimized

for brightness and contrast using Adobe Photoshop CS2 software.

Results and discussion

We characterize the number and distribution of the 45S DNAr for 15 species (being 12 never

before studied by FISH) belonging to three families of the Pentatomomorpha (nine species of

Coreidae, five of Pentatomidae and one of Scutelleridae) (Table 1).

With regard to the diploid chromosome complements of the Pentatomomorpha infraorder,

the representatives of the Coreidae family presented karyotype ranging from 2n = 15 to 27,

with sex-determination system XX/XO and presence of m-chromosomes (except Acanonicus
hahni) (Table 1). The Pentatomidae and Scutelleridae families had the same number of chro-

mosomes, namely, 2n = 14 (12A + XY) and sex-determination system XX/XY (Table 1). Pyr-

rhocoridae presented a karyotype varying from 2n = 12 to 18, with chromosomal of sex-

determination system XY, X0 and Neo XY (Table 1), the Rhopalidae, Largidae and Lygaeidae

families presented sex-determination system X0, X0 and XY, respectively (Table 1), being

detected m-chromosomes in Rhopalidae and Lygaeidae (Table 1).

The mapping of the 45S gene in the Coreidae family demonstrated that the species pre-

sented markings on the autosomes (Table 1, Fig 1B–1I), with the exception of A. parensis and

Leptoglossus gonagra that showed markers on m-chromosomes (Table 1, Fig 1A). Taking into

account that Coreidae is a monophyletic group [47] and that most species of this family share

m-chromosomes, sex-determination system X0 and presence of the 45S gene in a pair of auto-

somes (Table 1), we suggest that the main events that led to numerical variation in the karyo-

type of these insects came from agmatoploidy/simploidy in the autosomes.

The FISH markings on m-chromosomes for A. parensis and L. gonagra (Table 1) when

associated with the monophyly of the Coreidae family [47] allows us to propose that these

chromosomes have an autosomal origin, since all other species of the Coreidae family showed

marking in a pair of autosomes (Table 1) and agmatoploidy events are relatively common in

holocentric chromosomes [15]. In addition, although Bressa et al. [48] emphasize that nothing

can still be said about the information that m-chromosomes carry or what their function

might be in the genetic system of the species that possess them, our results together with the

results of Bardella et al. [26] demonstrate that these chromosomes have transcriptional activity

(in this case, related to ribosomal biosynthesis by the presence of the 45S gene [49]), contribut-

ing, substantially, with the knowledge about these chromosomes little studied.

Most species of the Pentatomidae family showed marking in the autosomes (Table 1, Fig

2B–2E), except for two species that had 45S rDNA on X sex chromosome (Odmalea sp. and

Graphosoma lineatum) (Table 1, Fig 2A), one that showed marking on the X and Y sex chro-

mosomes (Eurydema oleracea) and one that showed marking on the autosome, as well as X

and Y sex chromosomes (Oebalus poecilus) (Table 1). Rebagliati et al. [50] proposed that the

maintenance of the chromosome number in Pentatomidae is associated with genomic stabil-

ity. However, Bardella et al. [27] from the results of the rDNA mapping suggest that although
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Table 1. Chromosomal complement, number of clusters and chromosomal pair where there was the labeling of 45 rDNA in the infraorder Pentatomomorpha. A:

autosomes, X: X sex chromosome, X: Y sex chromosome.

Pentatomomorpha Infraorder Karyotype Number of Clusters FISH (45S rDNA) References

Coreidae family

Spartocera batatas 2n = 23 (20 + 2m + X0) 2 A Present study

S. fusca 2n = 23 (20 + 2m + X0) 2 A [41], Present study

Dallacoris pictus 2n = 21 (18 + 2m + X0) 2 A Present study

D. obscura 2n = 21 (18 + 2m + X0) 2 A Present study

Hypselonotus interruptus 2n = 19 (16 + 2m + X0) 2 A [26]

H. fulvus 2n = 19 (16 + 2m + X0) 2 A [26]

Anasa bellator 2n = 21 (18 + 2m + X0) 2 A Present study

Zicca annulata 2n = 23 (20 + 2m + X0) 2 A [26]

Z. nigropunctata 2n = 23 (20 + 2 m +X0) 2 A [27]

Althos obscurator 2n = 25 (22 + 2m + X0) 2 A [26]

Lucullia flavovittata 2n = 21 (18 + 2m + X0) 2 A Present study

Acanthocephala parensis 2n = 21 (18 + 2m + X0) 2 m-chromosome Present study

Leptoglossus gonagra 2n = 21 (18 + 2m + X0) 2 m-chromosome [26]

L. zonatus 2n = 21 (18 + 2m + X0) 2 A [26], Present study

L. neovexillatus 2n = 21 (18 + 2m + X0) 2 A [27]

Anisoscelis foliaceus 2n = 27 (24 + 2 m + X0) 2 A [27]

Holhymenia histrio 2n = 27 (24 + 2m + X0) 2 A [26]

Chariesterus armatus 2n = 25 (22 + 2m + X0) 2 A [26]

Phthia picta 2n = 21 (18 + 2m + X0) 2 A [26], Present study

Athaumastus haematicus 2n = 21 (18 + 2m + X0) 2 A [26]

Acanonicus hahni 2n = 19 (18 + X0) 2 A [26]

Cebrenis sp. 2n = 23 (20 + 2m + X0) 2 A [26]

Pachylis argentinus 2n = 15 (12 + 2m + X0) 2 A [42]

Holhymenia rubiginosa 2n = 27 (24 + 2m + X0) - A [43]

Camptischium clavipes 2n = 21 (18 + 2m + X0) 2 A [44]

Machtima crucigera 2n = 21 (18 + 2 m + X0) 2 A [27]

Pentatomidae family

Loxa virescens 2n = 14 (12 + XY) 2 A Present study

Mormidea v-luteum 2n = 14 (12 + XY) 2 A Present study

M. notulifera 2n = 14 (12 + XY) 2 A [27]

Arvelius albopunctatus 2n = 14 (12 + XY) 2 A [26]

Thyanta perditor 2n = 14 (12 + XY) 2 A Present study

Odmalea sp. 2n = 14 (12 + XY) 2 X Present study

Antiteuchus tripterus 2n = 14 (12 + XY) 2 A [26]

Euschistus cornutus 2n = 14 (12 + XY) 2 A [26]

E. heros 2n = 14 (12 + XY) 2 A [26]

Edessa collaris 2n = 14 (12 + XY) 2 A Present study

E. rufomarginata 2n = 14 (12 + XY) 2 A [26]

E. impura 2n = 14 (12 + XY) 2 A [26]

E. meditabunda 2n = 14 (12 + XY) - A [26]

Eurydema oleracea 2n = 14 (12 + XY) 2 X and Y [28]

Graphosoma lineatum 2n = 14 (12 + XY) 1 X [28]

Nezara viridula 2n = 14 (12 + XY) 2 A [42]

Oebalus poecilus 2n = 14 (12 + XY) 4 A, X and Y [27]

Proxysalbo punctulatus 2n = 14 (12 + XY) 2 A [27]

Rhopalidae family

(Continued)
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the chromosome number is constant, different mechanisms of genomic reorganization are in

place, causing amplification and dissemination of repetitive DNAs without the occurrence of

macro-chromosomal alterations. Different from that observed for Coreidae, which justifies the

variation of the locations of the ribosomal gene based on chromosomal breaks, on the basis of

karyotypic stability (2n = 14) and the monophyletic origin of the Pentatomidae [51], we sug-

gest that the mechanisms that led to the 45S gene diversification in this family are related to

transposition elements (TEs), as suggested by Panzera et al. [22] and Pita et al. [23, 24] for the

chromosome diversification of triatomines.

Species of the Pyrrhocoridae family showed 18S rDNA markers in autosomes, X chromo-

some as well as in Neo X (Table 1). Analyzing specifically the species of the Dysdercus genus,

all species (except Dysdercus albofasciatus) present 2n = 13 (12 + X0) chromosomes and FISH

labeling in a pair of autosomes (Fig 1). Based on the origin of the sex chromosomes NeoX and

NeoY (from the fusion of the X or Y chromosome with an autosomes [9]) and on the karyo-

type and chromosomal homogeneity of the Dysdercus genus, Bressa et al. [45] suggest that the

ancestral karyotype of Dysdercus is XO and that the neo-X chromosome evolved by insertion

of the original X chromosome into one NOR-bearing autosome (and as a consequence, the

homologue of this NOR-autosome became the neo-Y chromosome). These authors support

this hypothesis based on four factors, namely, (i) reduced chromosome number by one pair

when compared to other species of the genus, (ii) two heteropycnotic chromatin bodies in the

diffuse stage, indicating separation of the ancestral X chromosome into two segments, (iii)

occurrence of one or, less frequently, two terminal chiasmata in the neo-sex chromosome biva-

lent, and (iv) reduction segregation of the neo-X neo-Y bivalent at anaphase I.

However, taking in consideration that other species of the family Pyrrhocoridae have XY

sex determination system (Table 1), we cannot rule out the hypothesis that possibly the ances-

tor of the species of Dysdercus genus may have presented a XY sex determination system and

the chromosomal diversification could have derived in two different ways: i) an aneuploidy

event occurred for the Y chromosome which resulted in the XO sex determination system and

ii) a simplify event occurred between the XY sex chromosome pair and the pair of autosomes

Table 1. (Continued)

Pentatomomorpha Infraorder Karyotype Number of Clusters FISH (45S rDNA) References

Harmostes prolixus 2n = 13 (10 + 2m + X0) 2 A [26]

Pyrrhocoridae family

Dysdercus ruficollis 2n = 13 (12 + X0) 2 A [45]

D. imitator 2n = 13 (12 + X0) 2 A [26]

D. fulvoniger 2n = 13 (12 + X0) 2 A [26]

D. albofasciatus 2n = 12 (10 + Neo XY) 2 neo X [45]

D. chaquensis 2n = 13 (12 + X0) 2 A [45]

Pyrrhocoris apterus 2n = 23 (22 + X0) 2 X [28]

Oncopeltus femoralis 2n = 18 (16 + XY) - A [46]

Ochrimnus sagax 2n = 14 (12 + XY) - A [46]

Lygaeus peruvianus 2n = 12 (10 + XY) - A [46]

Largidae family

Euryophthalmus rufipennis 2n = 13 (12 + X0) 1 X [26]

Lygaeidae family

Oxycarenus lavaterae 2n = 18 (14 + 2m + XY) 2 A [28]

Scutelleridae family

Pachycoris torridus 2n = 14 (12 + XY) 2 A Present study

https://doi.org/10.1371/journal.pone.0228631.t001
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that had the 45S gene and subsequently there was loss of the ribosomal locus of the neo Y chro-

mosome. The first hypothesis can be sustained by the simple fact that other species of the Pyr-

rhocoridae family present a sex-determination system XY (Table 1) and the second hypothesis

can be based on the heterochromatic nature of the X sex chromosome of the insects of the Pen-

tatomomorpha infraorder [6], because with the intention of minimizing the deleterious effects

of TEs, they are often directed to regions of heterochromatin [52, 53]. This same hypothesis of

transfer of 45S rDNA by TEs and subsequent loss of the ribosomal gene was used by Pita et al.

[24] to explain the diversification of ribosomal genes in triatomines of the Rhodniini tribe.

The Largidae and Scutelleridae families were represented by only one species that showed

marking on the X sex chromosome (Table 1) and on a pair of autosomes (Table 1, Fig 2F),

respectively. Although they are initial characteristics important and shared with other families

of the Pentatomomorpha infraorder (Table 1), new species should be analyzed for evolutionary

inferences to be made.

Conclusions

Based on this, we characterized the arrangement of 45S DNAr in the chromosomes of 12 new

species of Heteroptera and discussed the main evolutionary events related to the genomic

Fig 1. Fluorescent in situ hybridization using the 18S probe in species of the family Coreidae. a) Acanthocephala
parensis, b) Spartocera fusca, c) Phthia picta, d) Leptoglossus zonatus, e) Lucullia flavovittata, f) Dallacoris pictus, g)

Anasa bellator, h) Spartocera batatas and i) D. obscura. Asterisk: marking on the m-chromosome, Arrow: terminal

marking on the autosomes, X: X sex chromosome, Y: Y sex chromosome. Bar: 10 μm.

https://doi.org/10.1371/journal.pone.0228631.g001
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reorganization of these species during the events of chromosome and karyotype evolution in

Pentatomomorpha infraorden.
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location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res.

2012; 138: 56–67. https://doi.org/10.1159/000341888 PMID: 22907389

23. Pita S, Lorite P, Nattero J, Galvão C, Alevi KCC, Teves SC, et al. New arrangements on several species

sub complexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera

—Triatominae). Infect Genet Evol. 2016; 43: 225–231. https://doi.org/10.1016/j.meegid.2016.05.028

PMID: 27245153
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