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Abstract

Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-

muscular communication channel mainly for patients with impaired motor functions. How-

ever, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI

that is based on only frontal brain areas and can be operated in an eyes-closed state for end

users with impaired motor and declining visual functions. In our experiment, electroenceph-

alography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured

while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline

state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related

brain activation. We then compared classification accuracies using two unimodal BCIs

(EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the

hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-

based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed

performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our

study shows that an eyes-closed hybrid BCI approach based on frontal areas could be

applied to neurodegenerative patients who lost their motor functions, including oculomotor

functions.

Introduction

Brain-computer interfaces (BCIs) have in the past enabled patients to control external devices

directly without the help of muscular movements [1–5]. Thus, many research groups have

explored BCI technology and considerably improved the performance of BCI systems [6–12].

Various BCI paradigms based on electroencephalography (EEG) have been introduced to

implement BCIs for physically challenged patients. These paradigms include motor imagery

[13–15], P300 [16–18], steady-state visual evoked potential (SSVEP) [19], and others. How-

ever, these paradigms have limitations with respect to severely motor-impaired patients such

as late-stage amyotrophic lateral sclerosis (ALS). For example, some of them cannot generate
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reliable sensorimotor rhythms for motor-imagery-based BCI [20–22]. Also, as BCIs based on

exogenous paradigms such as conventional visual P300 and SSVEP generally require moderate

oculomotor functions, these exogenous paradigms cannot be fully exploited for those with

oculomotor dysfunctions that are often presented in late-stage ALS or completely locked-in

state (CLIS) patients [23]. To overcome these constraints, previous studies introduced BCIs

based on cognitive tasks instead of motor imagery tasks and validated its feasibility with both

healthy subjects and ALS patients [20–22]. Also, an eyes-closed (EC) SSVEP-based BCI was

recently introduced [19], which validated the feasibility of an SSVEP-based BCI under EC con-

ditions for healthy participants and for an (ALS) patient with partially impaired oculomotor

functions. A more recent study introduced a novel EC BCI paradigm based on visual P300 and

demonstrated its effectiveness [23].

In our previous study, we first proposed an EC BCI system using a representative endoge-

nous BCI paradigm, namely, mental arithmetic (MA), to check whether an endogenous BCI

paradigm can also be used in an EC condition [24]. In [24], we used near-infrared spectros-

copy (NIRS) signals of prefrontal cortex (PFC) areas, which represents a promising alternative

to EEG for BCI research, as its sensitivity to physiological artifacts (e.g., electrooculogram

(EOG)) is limited. It has been well documented that EEG signals significantly change under an

EC state (e.g., α-rhythm). However, because PFC hemodynamic changes are irrelevant to an

EC condition [25], the feasibility of the EC NIRS-BCI could be successfully verified. Moreover,

because PFC is essentially below the hair-free region of the skull, we could shorten preparation

time and speed up the experiment. In fact, many NIRS-BCI studies have focused on PFC

hemodynamic changes, as PFC areas are free from one of the critical drawbacks of a NIRS-

based BCI: signal amplitude attenuation as a result of dense, long, and dark hairs blocking

light penetration to the scalp [26–32].

Although we successfully demonstrated the feasibility of an EC NIRS-BCI system, the clas-

sification accuracy was relatively low compared to those reported in standard EEG-BCI studies

[19, 23]. One possible means of improving classification accuracy is to use a hybrid approach

that combines two brain-imaging modalities (e.g., EEG and NIRS [33–36]). That the hybrid

BCI can increase the reliability of BCI systems in terms of performance has already been dem-

onstrated [37, 38]. In particular, the performance of BCI systems could be enhanced by inte-

grating two kinds of BCI systems or using complementary information of brain activations

measured with different modalities. As an example of the former case, a hybrid EEG-NIRS

BCI using the SSVEP paradigm was studied, in which NIRS and EEG signals were utilized to

operate a brain switch and produce an actual BCI command, respectively [39]. As an example

of the latter case, EEG and NIRS data were simultaneously used to decode motor imagery

tasks. Here, the decoding performance improved considerably compared to that when using

the unimodal data (EEG or NIRS) [33].

Although hybrid EEG-NIRS BCIs have proven useful, they may still be impractical in real

clinical scenarios because most hybrid BCI systems employ sensor positions of the scalp with

hairs. For NIRS, dense hairs interfere with light penetration to the scalp, which leads to a

decrease in signal-to-noise ratio. Regarding EEG, recording EEG signals from the scalp cov-

ered in hair also creates practical concerns (attaching electrodes and washing hairs after the

experiment). This is particularly the case with patients. Employing frontal areas that include

hair-free regions as much as possible is a potential means of reducing this problem. In this

case, as a result of the location of their respective brain sources, non-motor tasks (e.g., MA) are

considered more appropriate than standard BCI paradigms (e.g., motor imagery). However,

no study has yet been conducted to investigate the feasibility of using frontal areas for a hybrid

EEG-NIRS BCI approach.
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Our previous research aimed to verify the feasibility of the EC NIRS-BCI based on an

endogenous BCI paradigm, namely, MA [24]. This study proposes a hybrid EEG-NIRS BCI

that utilizes frontal areas, including a hair-free PFC, to improve the BCI performance of our

previous EC NIRS-BCI in terms of classification accuracy in an offline mode. To this end, our

present study examines the performance of an EC hybrid EEG-NIRS BCI operated by MA that

uses only the frontal areas for a convenient system setup.

Materials and methods

Participants

Twelve participants participated in the experiment (five males and seven females, 26.7 ± 3.7

(mean ± standard deviation)), none of whom reported any previous or current mental illness.

They were given detailed information about the experiment, and a written consent was

obtained from each. After completing the experiment, participants were financially reim-

bursed. Our experiment was performed in compliance with the Declaration of Helsinki and

was approved by the Ethics Committee of the Institute of Psychology and Ergonomics, Berlin

Institute of Technology (approval number: SH_01_20150330).

Instrumentation

A brainAmp amplifier (Brain Products GmbH, Gliching, Germany) was used to record EEG

signals using linked mastoid reference (sampling rate: 1000 Hz) from 22 locations on a cus-

tom-made elastic cap (EASYCAP GmbH, Herrsching, Germany; AFp1, AFp2, AFF1h, AFF2h,

AFF5h, AFF6h, F3, F4, F7, F8, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, OI1, and OI2). The

ground electrode was placed on Fz. A NIRScout (NIRx GmbH, Berlin, Germany) was used to

record NIRS signals (sampling rate: 12.5 Hz). Five NIR light sources and three detectors were

positioned on the PFC. The adjacent sources and detectors consisted of nine channels near

Fp1, Fp2, and Fpz. The inter-optode distance was set as 30 mm. NIRS optodes were placed on

the same cap as the EEG electrodes. Fig 1 shows the EEG electrodes (blue and white circles)

and NIRS channels (red circles). The one gray circle indicates the ground electrode. EOG was

recorded using the same BrainAmp amplifier at the same sampling rate of the EEG using two

vertical (above and below the left eye) and two horizontal (the outer canthus of each eye) elec-

trodes. All signals were recorded simultaneously, and trigger signals were sent to each system

via a parallel port using MATLAB for data synchronization. All data used in this study are fully

available without any restriction from the following website: https://doi.org/10.6084/m9.

figshare.5900842.v1

Experimental paradigm

All participants were seated in a comfortable armchair 1.6 m from a 50-inch white screen and

all instructions were displayed by a video projector. Fig 2 shows the experimental paradigm.

Each session consisted of a pre-rest (15 s) with a fixation cross and 20 repetitions of a single

trial followed by a post-rest (15 s). In the pre- and post-rest periods, participants rested with

their eyes open while looking at a fixation cross that was displayed in the middle of the screen.

A single trial included a visual instruction (2 s) indicating the type of task, a task period (10 s),

and a rest period with a random length (15 to 17 s). In the instruction period, the type of task

was randomly given (MA or BL). For MA, an arbitrary three-digit number minus a one-digit

number between 6 and 9 was given as an initial calculation. For BL, a fixation cross was dis-

played. Participants were instructed to close their eyes as soon as they recognized the type of

task. During the task period that began with a short beep (250 ms), participants were asked to
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continue performing the given task with their eyes closed. For MA, participants continuously

subtracted a one-digit number from the result of their previous calculation. For BL, partici-

pants remained relaxed. After the short beep (250 ms), a “STOP” sign was displayed on the

screen, the fixation cross reappeared, and participants relaxed with their eyes open while look-

ing at the cross.

Data analysis

Preprocessing

MATLAB R2013b (MathWorks, Natick, MA, USA) was used for data analysis. For data pro-

cessing and analysis, only frontal EEG electrodes (AFp1, AFp2, AFF1h, AFF2h, AFF5h,

AFF6h, F3, F4, F7, and F8) were used together with the NIRS channels in order to investigate

the feasibility of the EC hybrid BCI employing only frontal areas. The EEG signals were down-

sampled to 200 Hz and band-pass filtered (3rd-order Butterworth filter with 0.5–50 Hz pass-

band) before EOG rejection. Blind source separation-based EOG rejection was performed

using the automatic artifact rejection toolbox in EEGLAB [40, 41]. For NIRS, the modified

Fig 1. Location of EEG electrodes (blue, white, and gray circles) and NIRS channels (red circles). Gray indicates the

ground electrode. Blue and white electrodes represent frontal and parieto-occipital EEG channels, respectively. Note

that only the frontal EEG channels were used with NIRS channels in data analysis to investigate the feasibility of the

EEG-NIRS EC BCI employing only frontal areas.

https://doi.org/10.1371/journal.pone.0196359.g001
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Beer-Lambert law was applied to convert light intensity changes to the concentration changes

of deoxy- and oxyhemoglobin (ΔHbR and ΔHbO) [42]. ΔHbR and ΔHbO were band-pass fil-

tered using a 6th-order zero-phase Butterworth filter with a passband of 0.01–0.2 Hz. Fig 3

provides a flow of the data processing and analytical procedure.

Feature extraction

We used EEG epochs acquired from the entire task period (i.e., 0–10 s) and NIRS epochs

acquired from the end of the task period for 5 s (i.e., 10–15 s) based on the preliminary analysis

investigating the impact of analysis time window on classification performance (see S1 Fig).

For EEG, prior to spatial filtering, the EEG data were band-pass filtered with a participant-spe-

cific passband. For 0–10 s EEG data, the participant-specific passband was selected using the

heuristic band selection method based on signed r2-values (sgn r2) using point biserial correla-

tion coefficient with sign preserved [43, 44]. The common spatial pattern (CSP) filter was then

applied to the filtered EEG data [45–50]. Note that the CSP filter and participant-specific pass-

band were determined based only on the training data within the inner cross-validation loop

to avoid over-fitting. Feature vectors were produced by calculating the log variances of the first

Fig 2. Block of the experimental paradigm. Each session consisted of pre-rest (15 s) staring at a fixation cross, then 20 repetitions of a single trial followed by a post-

rest (15 s). With respect to the instruction period, “567–8” and “+” indicate MA and BL, respectively. Note that different combinations of three- and one-digit numbers

were used to prevent the participants from becoming accustomed to the problem.

https://doi.org/10.1371/journal.pone.0196359.g002

Fig 3. Flow of EEG and NIRS data processing and analysis. EEG data were downsampled by 5. Both EEG and NIRS data were band-pass filtered (BPF). Blind source

separation (BSS) was performed to remove ocular artifacts in the EEG data. For both sets of data, feature vectors were independently constructed and shrinkage linear

discriminant analysis (sLDA) was used to discriminate between specific task-related brain activations. For the hybrid approach, the classifier outputs of EEG and NIRS

data were concatenated, thus creating a separate feature vector. The classifications of EEG, NIRS, and hybrid data were performed separately.

https://doi.org/10.1371/journal.pone.0196359.g003
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and last three CSP components based on the ratio-of-medians score. This score is more robust

with respect to outliers than conventional eigenvalue scores [47]. For NIRS data, considering

the hemodynamic delay, the mean value and average slope of ΔHbR and ΔHbO between 10

and 15 s were used to create feature vectors, as the hemodynamic change fully developed dur-

ing the period [51] and showed the highest discriminative information (see the result section

for details).

Classification

A shrinkage linear discriminant analysis (sLDA) was used as a classifier [48, 52]. The classifica-

tion performance was calculated by 10 x 5-fold cross-validation. The same classifier and cross-

validation approach were applied to EEG and NIRS. The combined EEG and NIRS data were

evaluated according to a meta-classification method. The outputs of each classifier (i.e., EEG,

HbR, and HbO) were combined to build new feature vectors for the meta-classifier [33]. The

classification performance of all possible combinations of EEG and both NIRS chromophores

were examined (HbR+HbO, EEG+HbR, EEG+HbO, and EEG+HbR+HbO).

Information transfer rate (ITR)

Among diverse metrics to assess the performance of a BCI system, information transfer rate

(ITR), in bits per minute, has been commonly used as a measure of the BCI performance [53].

ITR can be computed as [7]

ITR ¼ m � ðlog
2
N þ Plog

2
P þ ð1 � PÞlog

2

1 � P
N � 1

Þ ð1Þ

where m is number of trials per minute, N is the number of task types and P is the classification

accuracy (N is 2 in this study). Because the length of the rest period (15–17 s) was redundantly

long in terms of unimodal EEG-BCI, in order to fairly assess the ITR, we set a single trial

length considering only the length of the task period (10 s) excluding the length of the rest

period.

Experimental results

Spectral, temporal, and spatial characteristics

Fig 4 shows the grand-average time-frequency analysis results of EEG, in which spectral power

changes due to MA and BL and the difference between MA and BL are shown. The spectral

power changes were averaged over 10 frontal channels (AFp1, AFp2, AFF1h, AFF2h, AFF5h,

AFF6h, F3, F4, F7, and F8). For reference, mean spectral power changes of five central (Cz, C3,

C4, T7, and T8), five parietal (Pz, P3, P4, P7, and P8), and two occipital channels (POO1 and

POO2) were also provided. Note that only the 10 frontal electrodes were used for classification.

An increase of natural α-rhythm power with closed eyes was observed over whole areas. The

second harmonic of the natural α-rhythm was clearly observed in the occipital area. By con-

trast, decrease in power resulting from closed eyes was clearly observed except in the α- and

low β-bands in the frontal and central areas [54]. In accordance with [55], a decrease in task-

related α-rhythm spectral power was also observed through whole brain areas, and thus dis-

tinct spectral power difference between MA and BL (MA-BL) was observed (see the third col-

umn in Fig 4).

Fig 5 shows task-related spectral power difference in terms of signed r2-values (sgn r2) for

each frequency band in detail. Dark blue indicates the higher separability of MA and BL. In

the θ- (4–8 Hz) and low β-band (13–20 Hz), parietal and occipital areas showed higher

Eyes-closed hybrid brain-computer interface
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separability. In addition, higher separability was apparent near frontal areas in the α-band (8–

13 Hz). The high β- (20–30 Hz) and γ-bands (30–50 Hz) do not present a strong and meaning-

ful spectral power difference between MA and BL for discrimination. Considering only frontal

Fig 4. Grand average of time-frequency analysis results for MA, BL, and the difference between MA, BL (MA-BL). The spectral power changes were

averaged over 10 frontal (AFp1, AFp2, AFF1h, AFF2h, AFF5h, AFF6h, F3, F4, F7, and F8), five central (Cz, C3, C4, T7, and T8), five parietal (Pz, P3, P4, P7, and

P8), and two occipital channels (POO1 and POO2). The colorbar indicates the spectral power in dB.

https://doi.org/10.1371/journal.pone.0196359.g004
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areas were used for classification, the highest separability appeared in the α-band, whereas

moderate separability was apparent in the θ- and low β-band. Conforming to the results

shown in Figs 4 and 5, the α-band was mostly included in participant-specific passbands for

classification, followed by the θ- and low β-band (see Table 1).

Fig 6 shows the grand average scalp maps of hemodynamic responses. HbR decrease and

HbO increase were observed in the early stage (0–5 s) for both MA and BL. After 5 s, an oppo-

site trend was observed, and they peaked at 10–15 s. For HbR, the activation was stronger at

anterior channels than posterior ones. Then, the amplitude of activation generally decreased.

Note that even though MA and BL induced similar spatial patterns of hemodynamic responses

for each period, MA led to higher brain activation than BL in general.

Fig 5. Signed r2-values (sgn r2) in the θ- (4–8 Hz), α- (8–13 Hz), low β- (13–20 Hz), high β- (20–30 Hz), and γ-band (30–50 Hz). The colorbar indicates the level of

sgn r2 ranging from -0.04 to 0 dB. Note that the lower value (dark blue) indicates better separability than the higher value (light blue). Considering only frontal areas

used for data analysis, the highest separability is shown in the α-band; moderate separability is shown in the θ- and low β-band.

https://doi.org/10.1371/journal.pone.0196359.g005

Table 1. Individual classification accuracy of EEG, NIRS, and hybrid approaches (HYB). Note that “std” refers to

standard deviation and [fL fH] indicates the most frequently selected participant-specific passbands for CSP filters esti-

mated by the heuristic method. The p-values were corrected by the false discovery rate.

Participant Classification Accuracy

EEG [fL fH] NIRS HYB

1 96.5 [4.0 11.5] 76.0 96.3

2 79.0 [5.5 10.5] 75.3 84.0

3 58.2 [14.0 35.0] 67.3 67.5

4 90.7 [4.5 10.5] 81.0 92.3

5 95.7 [8.0 12.5] 74.5 96.2

6 83.0 [14.5 19.5] 89.5 91.8

7 50.7 [23.5 35.0] 71.8 70.2

8 66.2 [19.5 23.5] 71.8 74.2

9 81.2 [4.0 8.0] 68.0 85.7

10 76.8 [24.5 35.0] 77.8 80.2

11 96.0 [4.0 10.5] 85.0 95.3

12 53.7 [6.0 9.0] 73.0 72.8

mean 77.3 75.9 83.9� ,†

std 15.9 6.3 10.3

Wilcoxon signed rank sum test

�p< 0.01 (NIRS vs. HYB) and
†p< 0.01 (EEG vs. HYB)

p-values are corrected by the false discovery rate

https://doi.org/10.1371/journal.pone.0196359.t001
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Performance

The offline classification accuracies of EEG, NIRS, and hybrid approach and their averages are

shown in Table 1. Frontal channel EEG scored 77.3 ± 15.9% and NIRS reached a slightly lower

classification accuracy (75.9 ± 6.3%), but the difference was not statistically significant (Fried-

man test, p = 0.018; post-hoc: Wilcoxon signed rank sum test with false discovery rate (FDR)

correction, corrected-p = 0.694). The average hybrid approach (HYB) had significantly higher

classification accuracy (83.9 ± 10.3%) than those derived from EEG or NIRS. Most participants

(10 of 12) showed considerably improved classification accuracies when using the hybrid

approach (bold numbers in Table 1). Performance improvement with respect to classification

accuracy is shown in Fig 7. Blue and red circles indicate individual performances for unimodal

EEG or NIRS, respectively, compared to HYB. 83.3% of participants showed improved classifi-

cation accuracies by HYB (FDR corrected-p< 0.01 for both EEG vs. HYB and NIRS vs. HYB).

Fig 8 shows the average ITRs across all participants. NIRS scores lower ITR (1.32 bits/min.)

than EEG (2.03 bits/min.) while HYB shows ITR improvement (2.53 bits/min.). Note that

Fig 6. Spatial distribution of hemodynamic responses at given time intervals. (a) Δ[HbR] for MA and BL. (b) Δ
[HbO] for MA and BL. The colorbar indicates the amount of change in concentration.

https://doi.org/10.1371/journal.pone.0196359.g006
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significant difference is verified between EEG/NIRS and HYB (Friedman test: p = 0.018, post-

hoc: Wilcoxon signed rank sum test with false discovery rate-corrected p< 0.01), while no sig-

nificant difference between EEG and NIRS (corrected p = 0.301).

Discussion

In our previous EC NIRS-based BCI study [24], we confirmed that the performance of an EC

NIRS-based BCI (75.6 ± 7.3%) was comparable with that of an EO NIRS-based BCI

(77.0 ± 9.2%), thus demonstrating for the first time the feasibility of an EC NIRS-based BCI. In

this study, we attempted to implement a hybrid EEG-NIRS BCI using only frontal brain activa-

tions that were generated by MA and BL under an EC state in order to improve the perfor-

mance of an EC NIRS-based BCI. As expected, we confirmed in our offline study that the

classification accuracy of an EC NIRS-based BCI as implemented in this study was similar to

the previous one (76.4 ± 6.3%), even though participants differed between the two studies.

With the hybrid EEG-NIRS BCI, we achieved significantly improved classification accuracy

(83.9 ± 10.3%) compared to that obtained using only NIRS (75.9 ± 6.3%) or EEG

(77.3 ± 15.9%). It is noteworthy that the performance improvement was accomplished using

only a few frontal EEG electrodes, and not all EEG electrodes were attached over the entire

scalp.

For EEG, the α-rhythm induced under an EC state appeared over whole scalp areas (Fig 4).

Nevertheless, EEG classification accuracy was not considerably affected by the natural α-

Fig 7. Comparison of classification accuracies of unimodal BCI (EEG or NIRS) and the HYB. Each circle indicates

the individual result. Blue and red circles refer to the performance of EEG vs. HYB and NIRS vs. HYB, respectively.

Note that the circles above the diagonal line indicate that the individual classification accuracy improved by HYB.

Percentage values show the ratio of the number of improved individual classification accuracies by HYB over the total

number of participants.

https://doi.org/10.1371/journal.pone.0196359.g007
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rhythm. The decrease in α-power during the MA task was still detectable when eyes were

closed, as shown in Fig 4. Based on this neurophysiological phenomenon, despite the presence

of very strong α-rhythms, we were able to achieve reasonable classification accuracy using

only the frontal EEG, which is comparable to that of a previous study in which 75.9% classifica-

tion accuracy was achieved and which was estimated by using EEG electrodes distributed over

the entire scalp [44].

As CLIS patients are generally bed-ridden and artificially ventilated through tracheostoma,

sensors used to capture brain activity in an experiment should be carefully attached. In fact, a

recent EEG-based BCI study performed with ALS patients reported the same difficulty, where

EEG electrodes were attached around occipital areas to measure SSVEPs [56]. As a result, our

hybrid BCI employing only frontal brain areas is expected to provide a safer and more conve-

nient means of communicating with paralyzed patients, especially those having impaired ocu-

lomotor functions.

In most BCI studies, BCI systems were designed and assessed in eyes-open state, while a

few number of recent BCI studies were conducted for verifying the feasibility of EC BCI sys-

tems [23, 24, 57]. Our results added another piece of evidence to previous EC BCI studies,

demonstrating its feasibility. However, BCIs that are independent of the state of the eyes

should be fundamentally developed for end users such as late-state ALS patients because they

are frequently unable to voluntarily control their eye-lids, e.g., opening and closing the eyes.

To develop a BCI system independent of eyes’ state, one study investigated the effect of the

state of the eyes on BCI performance, and showed closing the eyes during a cognitive task

decreases BCI performance compared to eyes-open condition for amplitude modulation but

not for frequency modulation features [58]. This result can be utilized when developing a

hybrid BCI system totally independent of eyes’ state in future studies.

Recently, one BCI study was the first to apply simultaneous recordings of EEG and NIRS

for ALS and CLIS patients. However, the modalities were independently employed and not

fused for data analysis [59]. In addition, the locations of EEG electrodes and NIRS optodes

were somewhat different from that (i.e., the brain region) used in our study, as the fronto-cen-

tral region was used in [59]. Thus, further studies for patients having neurodegenerative dis-

eases must be conducted in order to address thoroughly the clinical benefits of EEG and NIRS

hybrid BCIs when employing only frontal brain areas.

Conclusion

In this study, we proposed an EC hybrid BCI that combines EEG and NIRS in order to improve

the performance of the single modality-based EC BCI. Specifically, only frontal brain areas were

used to discriminate MA-related brain activation from that related to BL. We achieved a prom-

ising classification accuracy with our hybrid BCI under EC condition. Our results provide evi-

dence that a hybrid EEG-NIRS BCI can be implemented with only frontal areas and EC, and

may be useful for future applications in studies on end users having oculomotor dysfunctions.

Supporting information

S1 Fig. Impact of analysis time window on classification performance. EEG, NIRS and HYB

classification accuracies calculated by using various time windows. The Tables below the

Fig 8. Information transfer rates (ITRs) computed by using EEG (top), NIRS (middle) and HYB (bottom). Average

ITRs (AVG) are shown in the corresponding subfigures. The ITRs of NIRS are obtained using the classification

accuracies of HbR+HbO. Dotted lines are theoretical ITRs according to classification accuracy. ‘+’ symbols indicate the

individual ITRs.

https://doi.org/10.1371/journal.pone.0196359.g008
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figures denote time periods for EEG and NIRS data used for calculating the corresponding

classification accuracies. For the upper panel, the EEG time window is fixed and the NIRS

time window varies, while the EEG time window varies and the NIRS time window is fixed for

the lower panel.
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