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Background: The Warburg effect, also termed “aerobic glycolysis”, is one of the most
remarkable and ubiquitous metabolic characteristics exhibited by cancer cells,
representing a potential vulnerability that might be targeted for tumor therapy.
Ketogenic diets (KDs), composed of high-fat, moderate-protein and low carbohydrates,
are aimed at targeting theWarburg effect for cancer treatment, which have recently gained
considerable attention. However, the efficiency of KDs was inconsistent, and the
genotypic contribution is still largely unknown.

Methods: The bulk RNA-seq data from The Cancer Genome Atlas (TCGA), single cell
RNA sequencing (scRNA-seq), and microarray data from Gene Expression Omnibus
(GEO) and Cancer Cell Line Encyclopedia (CCLE) were collected. A joint analysis of
glycolysis and ketone bodies metabolism (KBM) pathway was performed across over
10,000 tumor samples and nearly 1,000 cancer cell lines. A series of bioinformatic
approaches were combined to identify a metabolic subtype that may predict the response
to ketogenic dietary therapy (KDT). Mouse xenografts were established to validate the
predictive utility of our subtypes in response to KDT.

Results:We first provided a system-level view of the expression pattern and prognosis of
the signature genes from glycolysis and KBM pathway across 33 cancer types. Analysis
by joint stratification of glycolysis and KBM revealed four metabolic subtypes, which
correlated extensively but diversely with clinical outcomes across cancers. The glycolytic
subtypes may be driven by TP53 mutations, whereas the KB-metabolic subtypes may be
mediated by CTNNB1 (b-catenin) mutations. The glycolytic subtypes may have a better
response to KDs compared to the other three subtypes. We preliminarily confirmed the
idea by literature review and further performed a proof-of-concept experiment to validate
the predictive value of the metabolic subtype in liver cancer xenografts.
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Conclusions: Our findings identified a metabolic subtype based on glycolysis and KBM
that may serve as a promising biomarker to predict the clinical outcomes and therapeutic
responses to KDT.
Keywords: warburg effect, ketone body metabolism, ketogenic diets, biomarker, metabolic subtypes
INTRODUCTION

Metabolic reprogramming is a well-established hallmark of cancer
(1).Malignant cells rewire their pathways of nutrient acquisition and
metabolism to satisfy their bioenergetic, biosynthetic, and redox
demands, and to further promote their growth, survival,
proliferation, and long-term maintenance (2–4). In contrast to
normal differentiated cells, which rely primarily on mitochondrial
oxidative phosphorylation (OXPHOS) to generate the energyneeded
for cellular processes, most cancer cells instead rely on aerobic
glycolysis and lactic acid fermentation to produce energy regardless
of oxygen levels, a phenomenon termedWarburg effect (5).Warburg
hypothesized that such metabolic preference was a consequence of
dysfunctional mitochondria (6). Over the last decade, considerable
progress in thefield has advanced our understanding of theWarburg
effect (7–9). Although it still remains unclear whether the Warburg
effect plays a causal role in cancers or it is a consequence of genetic
dysregulation during tumorigenesis, therapies targeting theWarburg
effect are emerging and promising (10).

Ketogenic dietary therapy (KDT) has gained substantial
attention in recent years as an alternative treatment strategy to
target altered glucose metabolism in cancer cells (11). Ketogenic
diets (KDs) are composed of high fat, moderate protein and low
carbohydrates, which favors mitochondrial respiration rather than
glycolysis for energy metabolism, such that cancer cells are
selectively starved of energy (12). The mechanism by which KDs
demonstrate anticancer effects has not been fully elucidated (13).
Evidence suggests that ketone body is the bioactive metabolite of
KDs,which is necessary and sufficient to account for the anti-cancer
effect ofKDs (14). Althoughnumerous preclinical studies indicated
a therapeutic potential for KDs in cancer treatment, it is now
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becoming clear that not all tumors might respond positively (11,
15). It has been found that certain tumors maintain oxidative
metabolism during tumor progression (16–18), and some cancer
cells redirect to use ketone bodies under a certain condition (19, 20).
Therefore, it is crucial to identify patients who may or may not
respond optimally to KDT, as the efficacy of the KDT strongly
depends on the tumor entity and its genotype (21).

SinceKDs target themetabolic shift fromOXPHOS to glycolysis
in tumor cells, it is rational to hypothesize that the tumorswith high
glycolytic enzyme and low ketolytic enzyme expressionmay benefit
from KDT, whereas tumor cells with highly expressed ketolytic
enzymes may actively consume ketone bodies as an energy source,
leading to the KDT resistance. Indeed, several studies have revealed
that the therapeutic efficacy of KDs is influenced by the expression
of metabolic enzymes, such as BDH1, OXCT1, and ACAT1 (22–
25). However, these studies suffered from limited cancer types and
genes. The growing application and integration of high-throughput
measurements provide an opportunity to investigate a wider scope
of dysregulated metabolism across different cancer types.

In this study, we comprehensively surveyed the expression
profile and prognostic value of glycolysis and ketone bodies
metabolism (KBM) genes in 33 The Cancer Genome Atlas
(TCGA) cancer types. We characterized the metabolic subtypes
in more than 10,000 tumor samples and nearly 1,000 Cancer Cell
Line Encyclopedia (CCLE) cancer cell lines based on the expression
pattern of glycolysis and KBM genes. We found that metabolic
expression subtypes showed extensive heterogeneity across cancer
types, and harbored different somatic mutations. Finally, we
demonstrated that the glycolytic subtypes, which were associated
with TP53mutations, may bemore likely to benefit fromKDT, and
further validated the predictive value of the metabolic subtypes in
KDT using HCC xenograft models.
METHODS

Data Sources
All RNA-seq gene expression data, somatic mutation data and
clinical data of TCGA were downloaded from Xena (https://
xenabrowser.net/datapages/). Only the samples with clinical
information available were kept for the following analysis. As a
result, a total of 11,031 samples including 719 non-tumor tissues
and 10,312 tumor tissues representing 33 cancer types were
included. Microarray dataset GSE36133 (from CCLE project)
(26) was collected to analyze the metabolic pattern of cancer cell
lines. Two single-cell datasets [GSE109774 (27) and GSE103867
(28)], which contain nearly 100,000 cells from 20 mouse organs
and two HCC cell lines (HuH-1 and HuH-7), separately, were
used to validate the expression patterns of glycolysis and KBM at
the single-cell level in normal tissue and tumor cell lines.
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Curation of Glycolytic and Ketone Bodies
Metabolic Gene Signatures
Gene sets involved in glycolysis and KBM were initially retrieved
from the Molecular Signatures Database v 7.1 (MSigDB) (29).
Three pathways regarding glycolysis from KEGG, REACTOME,
and HALLMARK were taken into consideration. The intersected
11 genes among these three gene sets were used as marker genes
for glycolysis. Then, we searched the MSigDB for ketone bodies
related gene sets and reviewed the genes manually. The 10 genes
from the Reactome_ketone_body_metabolism gene set were
most reasonable and considered as ketone bodies metabolic
(KBM) gene signatures (Figure S1).

Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
Single-Sample Gene Set Enrichment Analysis (ssGSEA) is an
extension of GSEA, which calculates separate enrichment scores
for each pairing of a sample and gene set (30). The ssGSEA score
was calculated using the Bioconductor GSVA package with the
aforementioned glycolysis or KBM gene signatures, which was
further used to evaluate the metabolic activities of glycolysis or
KBM pathway in tumor tissues or cell lines.

Classification of Metabolic Expression
Subtypes Based on Glycolysis and KBM
The ssGSEA score was further transformed by Z-score for glycolysis
and KBM among samples in each dataset. Patients or cancer cell lines
wereassigned to fourmetabolic subtypesbasedonthessGSEAZ-score:
the glycolytic subtype (glycolysis ≥0, KBM < 0), the KB-metabolic
subtype (glycolysis<0, KBM ≥0), the mixed subtype (glycolysis<0,
KBM ≥0), and inactive subtypes (glycolysis<0, KBM <0).

Differential Analysis
TheBioconductorpackage edgeRwasused todeterminedifferential
expression between non-tumor and tumor tissues at the RNA level
and calculate the foldchange and FDR value across cancer types.

Survival Analysis
The hazard ratio (HR) was estimated using a Cox regression
model using the survival R package. Survival analysis was carried
out using Kaplan-Meier methods and the log-rank test was used
to determine the statistical significance of differences. The
survival curve was generated by the R survminer package.

Cell Line and Culturing
The human HCC cell line HuH-7 and SK-HEP-1 were cultured in
DMEM supplemented with 10% fetal bovine serum, 100 U/mL
penicillin and 100 mg/ml streptomycin (all from Thermofisher, NY,
USA). These cell lines were authenticated by short tandem repeat
(STR) analysis and tested formycoplasma contamination. Cells were
maintained at 37°C in a humidified atmosphere with 5% CO2 and
maintained in culture for a maximum of 20 passages (two months).

Animal Studies
Male BALB/c nude mice (6 weeks old) were obtained from the
Model Animal Research Center of Nanjing University (Nanjing,
China). All experimental procedures using animals were in
Frontiers in Oncology | www.frontiersin.org 3
accordance with the guidelines provided by the Animal Ethics
Committee of the Affiliated Drum Tower Hospital of Medical
School of Nanjing University. SK-HEP-1 or HuH-7 cells were
subcutaneously injected into the flank of nude mice. The tumors
were allowed to grow until they were palpable before initiating
each treatment. The mice were randomly divided into two
groups. The control group was fed the normal diet (ND),
whereas the treatment group was fed a ketogenic diet (KD).
The ketogenic diet was purchased from Dyets (http://www.dyets-
cn.com/, #HF89.5), which consisted of 0.1% carbohydrates,
89.5% fat, and 10.4% protein. Tumor growth was determined
by measuring the short and long diameter of the tumor with a
caliper every three days. 5-6 weeks after injection, the mice were
sacrificed. Tumor volume was calculated according to the
formula volume = width × width × length/2.

Blood Biochemical Level Measurements
Blood sampleswere collectedbefore sacrificing themice. Serumlevels
of alanine aminotransferase (ALT), aspartate aminotransferase
(AST), high-density lipoprotein (HDL), low-density lipoprotein
(LDL) and total cholesterol (TC) and triglyceride (TG) were
measured using an automated chemical analyzer in the department
of Laboratory Medicine, The Affiliated Drum Tower Hospital.

Western Blot
Western blot was performed as previously described (31). Briefly, total
proteins of tumor tissues were isolated with RIPA buffer (#P0013C,
Beyotime) and the concentrations ofwhichweremeasuredusing aBCA
detecting kit (#P0012, Beyotime). The lysates were fractionated by SDS
PAGE and transferred to PVDF membranes. Primary and secondary
antibodies were used to detect the targets on the membranes. The
primaryantibodiesusedwere:anti-OXCT1(#12175-1-AP,Proteintech),
anti-HMGCS2 (#ab137043, Abcam), anti-ENO2 (#10149-1-AP,
Proteintech), anti-PKM2 (#15822-1-AP, Proteintech), anti-HK2
(#22029-1-AP, Proteintech), anti-b-actin (#4970s, CST). The
quantitative analysis was performed using Photoshop.

Statistical Analyses
All statistical analyses were performed using R language. Student’s
t-test orWilcoxon rank-sum test were used to compare themedian
values of two sets of continuous variables. The count data were
analyzed with Pearson Chi-Square. Correlation between two
continuous variables was measured by either Pearson’s r
correlation or Spearman’s rank-order correlation. The repeated-
measuresANOVAwas used to compare the difference of the tumor
volume indifferent groups.The two-sidedp-value less than0.05was
defined as statistically significant for all statistical analyses. The data
were plotted as mean ± standard deviation (SD).
RESULTS

A Systematic Landscape of the Expression
Pattern and Prognosis of Glycolysis and
KBM Signature Genes
The flow chart of our study design is displayed in Figure 1A. We
firstly explored the Molecular Signatures Database (MSigDB) to
October 2021 | Volume 11 | Article 689068
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identify glycolysis and KBM signature genes. The intersected 11
genes among the glycolysis pathway from the KEGG, Reactome,
and Hallmark annotations were considered as the glycolysis
signature (Figure S1A). We also compared the curated KBM
gene sets from MSigDB. The gene set named Reactome Ketone
Body Metabolism represented the most reasonable summary of
the KBM pathway, thus all the 10 genes from this gene set were
selected as KBM signature (Figure S1B). These 21 genes were
Frontiers in Oncology | www.frontiersin.org 4
projected onto the metabolic pathways to obtain a systematic
view and used for the following analyses (Figure 1B).

To gain a more comprehensive view of the expression pattern
of glycolysis and KBM signature genes, 17 cancer types with
matched non-tumor samples available were evaluated. Overall,
most glycolysis and KBM signature genes were differentially
expressed across cancer types, with glycolysis signature genes
upregulated (Figure 1C), whereas KBM signature genes
A

B

D

E F

C

FIGURE 1 | The expression pattern and prognosis of glycolysis and KBM genes in cancer patient samples from TCGA datasets. (A) Overview of the study
workflow. (B) Schematic model illustrating the glycolysis and KBM pathway. The selected signature genes are marked in the pathway, with glycolytic enzymes in red
and ketone bodies metabolic genes in green. The bubble plot shows the expression pattern of glycolysis (C) and KBM (D) genes in non-tumor and tumor tissues
across cancer types. Only the cancer types with at least 5 non-tumor tissues were included in this analysis. Red represents upregulation and green represents
downregulation. The point size represents fold-change and the shade of color represents p-value. The FDR and fold change were determined by edgeR. The bubble
plot shows the result of survival analysis of glycolysis (E) and KBM (F) genes for each cancer type. Both Cox proportional analysis and log-rank test were used to
determine the statistical significance, which was represented by the size and border of circle, respectively. The color of circle represents hazard ratio (HR), in which
red indicates high risk for survival and green indicates low risk. The p-value was determined by log-rank test and wald test. ns, not significanct.
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downregulated in most cancer types (Figure 1D). To further
clarify the involvement of abnormal glycolysis and KBM in
tumor progression, the correlations between signature genes
and outcomes were assessed using both Cox analysis and log-
rank analysis. Their associations with patient survival varied
significantly by different cancer types, in which most glycolysis
signature genes were associated with worse survival (Figure 1E).
In contrast, most KBM signature genes are favorable in multiple
cancer types (Figure 1F). These analyses provide a broad view of
glycolysis and KBM signature genes in human cancer.
The Metabolic Activities of Glycolysis and
KBM in Normal and Tumor Tissues and
Their Associations With Clinical Outcomes
The metabolic activities of pathways can be reflected by the
expression patterns of metabolic genes as previously described
(32). We next aimed to characterize the metabolic activities of
glycolysis and KBM based on the expression pattern of their
signature genes using the ssGSEA method. Glycolysis was
upregulated in most tumors compared to matched non-tumor
Frontiers in Oncology | www.frontiersin.org 5
tissues as calculated by ssGSEA score (Figure 2A). On the
contrary, KBM was downregulated in many cancer types
(Figure 2B). A weak negative correlation was observed
between glycolysis and KBM (Figure S2A). Besides, KBM was
highly expressed in normal liver and kidney tissue, which is
consistent with the finding that KBM primarily takes place in the
liver and kidney (33). Associations with patient outcomes were
examined for every cancer type individually. High glycolysis
activity indicated a higher death risk in eight TCGA cancer types
(HR>1, Figure 2C), whereas high KBM metabolic activity had a
favorable effect in five cancer types (HR <1, Figure 2D). Notably,
both glycolysis and KBM were negatively correlated with patient
prognosis in UVM and LGG, indicating that these cancers may
have unique metabolic features.

We further combined all cases of the 33 different cancer types
into one dataset (PANCAN) and the Kaplan-Meier curves were
utilized to display patient survival for all TCGA cases (34).
Overall, higher glycolysis activity contributes to poorer
outcomes (Figure 2E), whereas higher KBM patients had
prolonged overall survival (Figure 2F). Patients were classified
into four categories based on glycolysis and KBM levels. Having a
A B D E

F

G IH

C

FIGURE 2 | The expression profiles and clinical relevance of glycolysis and KBM activity based on ssGSEA score. Ridgeline plot shows the metabolic activity of
glycolysis (A) and KBM (B) pathway in non-tumor tissues and tumor tissues across TCGA cancer types based on ssGSEA score. The p-value was determined by
Student’s t-test. Forest plots show the hazard ratio (HR) of overall survival of the glycolysis (C) and KBM (D) ssGSEA score across cancer types. The cancer types
marked in red indicated Cox proportional p-value <0.1. Kaplan-Meier plots for glycolysis (E) and KBM (F) ssGSEA score in TCGA Pan-Cancer (PANCAN) dataset.
ssGSEA is stratified by the median value in each cancer type individually, then combined to generate the survival curve. The p value was determined by log-rank test.
(G) t-SNE plot of all cells in Tabula Muris droplet dataset, colored by organ. t-SNE plots showing expression and distribution of glycolysis (H) and KBM (I) ssGSEA
score across organs. *p < 0.05; **p < 0.01; ****p < 0.0001. n.s., not significant; NA, not available.
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high level of glycolysis and a low level of KBM resulted in
reduced overall survival compared to other groups (Figure S2B).
We then analyzed the metabolic activities of glycolysis and KBM
at the single-cell level across normal organs using the Tabula
Muris dataset (Figure 2G). Glycolysis genes were broadly
expressed in most mouse organs (Figure 2H), while KBM was
constricted to the liver and kidney, which is consistent with the
bulk RNA-seq from TCGA dataset (Figure 2I).

Metabolic Expression Subtypes Show
Extensive Heterogeneity Across
Cancer Types
Since the correlations between glycolysis or KBM and patient
overall survival differ widely across cancer types (Figures 2C, D),
we next aimed to characterize metabolic heterogeneity within
each cancer type based on the metabolic activity of glycolysis and
KBM. Taken LIHC dataset as an example, hepatocellular
carcinoma (HCC) patients were divided into four subtypes
based on the co-expression of glycolysis and KBM score: the
glycolytic subtype (high glycolysis score and low KBM score), the
KB-metabolic subtype (high KBM score and low glycolysis
score), the mixed subtype (high of both glycolysis and KBM
score), and the inactive subtype (low of both glycolysis and
KBM score) (Figures 3A, B). The KB-metabolic subtype had the
best prognosis, and the mixed subtype had the worst clinical
outcome in HCC (Figure 3C). We further explored the clinical
relevance of metabolic subtypes across cancer types. Glycolytic
subtype had worse overall survival than patients from other
subtypes in ACC and KIRP. KB-metabolic subtype patients tend to
have a better prognosis in HNSC and MESO. The mixed subtypes
had the worst outcome in UVM. Conversely, they exhibited the
longest survival time in KIRC (Figures 3D and S3). Overall, these
results highlight the diverse effect of the involvement ofmetabolism
subtypes in different cancer types.

Metabolic Expression Subtypes Are
Associated With Different Somatic Drivers
The metabolic phenotype of tumor cells is largely controlled
intrinsically by tumorigenic mutations (35). To identify genetic
alterations that potentially drive the metabolic subtypes, we
performed a correlation analysis and plotted the oncoplot of
the top 20 mutated genes for each cancer type categorized by
metabolic subtypes. We observed that glycolytic subtype harbors
higher mutational ratio of TP53 [35/83 (42.2%) vs. 39/158
(24.7%), p=0.008], but a significant lower mutational ratio of
CTNNB1 [5/83 (6.0%) vs. 65/158 (41.1%), p= 2.75e-08] than KB-
metabolic subtype in HCC (Figure 4A). No other mutations
showed differential distribution. Also, negative associations
were detected between glycolytic subtypes and tumor grade (p=
2.33e-03), stage (p= 1.12e-04) and overall survival (p= 6.65e-03).
Interestingly, we found glycolytic subtypes tended to be female in
HCC patients (p= 9.96e-05). We further compared the metabolic
activity of glycolysis and KBM (measured by ssGSEA score) in
wide-type andmutated samples. HCC patients withmutated TP53
had much higher glycolysis (p=0.031, Figure 4B) and lower KBM
metabolic activity (p=0.0087, Figure 4C) than wide-type patients.
Frontiers in Oncology | www.frontiersin.org 6
In contrast, patients with mutated CTNNB1 had lower glycolysis
score (p=1e-04, Figure 4D) but higher KBM score (p=3.7e-
12, Figure 4E).

Similarly, the phenomenon that glycolytic subtypes had much
higher mutation frequency of TP53 was observed in ACC, HNSC
and LUSC (Figure S4). Notably, no patients in the KB-metabolic
subtype harbor TP53 mutations (0/14 vs. 7/21), with more
patients bearing CTNNB1 mutations (3/14 vs. 2/21) than
glycolytic subtype in ACC. Furthermore, we compared the
glycolysis and KBM score in PANCAN dataset (n= 9632).
TP53 mutations are positively associated with glycolysis score
and negatively correlated to KBM score (Figures 4F, G). An
opposite trend is presented in patients with CTNNB1 mutation,
where CTNNB1 mutations were positively correlated with KBM
but inversely correlated with glycolysis score (Figures 4H, I).
Together, these results suggest that there are common features in
genetic alterations related to the metabolic subtypes across
cancer types and that TP53 mutations were associated with
glycolytic subtype, while CTNNB1 mutations were correlated
to KB-metabolic subtype.

Metabolic Expression Subtypes Are
Informative About the Response to
Ketogenic Diet Therapy
Next, we predicted the metabolic subtypes of individual cancer
cell lines using CCLE data. In accordance with the results
obtained from TCGA primary tumors, CCLE cell lines were
categorized into four subtypes based on glycolysis and KBM
activity, in which glycolytic subtypes highly expressed glycolysis
signature genes and KB-metabolic subtypes had abundant KBM
gene expression (Figure 5A and Table S1). The proportions of
subtypes varied substantially across primary sites and histology.
Cancer cell lines from the autonomic ganglia, kidney and biliary
tract had the highest proportion of glycolytic subtype (Figure 5B).
The neuroblastoma accounts for the highest proportion of
glycolytic subtype compared to other histology (Figure 5C).

Based on the expression characteristics of glycolytic subtypes
(high glycolysis and low KBM) and KB-metabolic subtypes (high
KBM and low glycolysis), it seems reasonable to hypothesize that
patients with high level of glycolytic enzymes and low expression
of ketone bodies metabolic enzymes (glycolytic subtypes) may
respond better to KDT. To test that hypothesis, we firstly
systematically reviewed and curated the relevant literature with
response information of KDT available from animal studies
(Table S1). Neuroblastoma and glioma are the most
extensively investigated cancer types of KDT. Therefore, we
firstly analyzed all the neuroblastoma and glioma cell lines.
Five human neuroblastoma and glioma cell lines had response
data available, two of which are experimentally verified to be
responders of KDs. Of note, both cell lines were identified as
glycolytic subtypes in our study (Figure 5D). Similarly, KDs are
reported to have an anti-tumor effect in 8505C, a thyroid
carcinoma cell line, as well as HCT 116, a large intestine cell
line, both of which are identified as glycolytic subtypes in our
study. Likewise, KDs are proved to have either no effect or even
protumor effect in carcinoma cell lines from other subtypes
October 2021 | Volume 11 | Article 689068
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(Figure 5E). Collectively, these data indicated that the metabolic
subtypes may serve as potentially useful biomarkers to select
patients who may potentially yield clinical benefits to KDT.

Validating the Predictive Utility of
Metabolic Subtypes in Response to KDT
Using the HCC Xenograft Model
We further performed a proof-of-concept experiment to validate
the predictive utility of the metabolic subtypes in KDT using
Frontiers in Oncology | www.frontiersin.org 7
xenograft models. Only three subtypes are predicted to be
present in HCC cell lines (Figure 6A). We selected two
representative lines, SK-HEP-1 (glycolytic subtype) and HuH-7
(KB-metabolic subtype) for in vivo examination of KD sensitivity
(Figure 6B). The expression pattern of glycolysis or KBM genes
in HuH-7 cells was further validated by a scRNA-seq dataset
(Figure 6C). HuH-7 cells highly expressed KBM genes with low
glycolysis gene expression (Figure 6D). SK-HEP-1 and HuH-7
cells were injected into the flank of nude mice. Mice were fed
A

B

D

C

FIGURE 3 | Classification of metabolic expression subtypes and their associations with patient survival time. (A) Scatter plot of the ssGSEA score of KBM (x-axis)
and glycolysis (y-axis) genes in each LIHC sample. Metabolic subgroups were assigned based on the relative levels of glycolysis and KBM genes. (B) Heatmap
showing the expression pattern of glycolysis and KBM genes in each subtype. (C) Kaplan-Meier survival analyses of patients with different subtypes of LIHC. (D) The
survival curves of different metabolic subtypes in different cancer types. The p-value was determined by log-rank test.
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with normal diet (ND) or ketogenic diet and humanely sacrificed
5 weeks after treatment. As anticipated, SK-HEP-1 tumor
volumes were markedly reduced in the KD group compared to
the ND group (Figure 7A, left panel). However, the HuH-7
tumors in the KD group even had a trend to grow faster than that
in the ND group (Figure 7B, left panel). No apparent signs of
toxicity or side effect were observed as evidenced by no
significant difference in the body weight (Figures 7A, B, right
panel), ALT, AST, HDL, LDL, TC and TG between KD and ND
group (Figure 7C), indicating that KD was well tolerated. Finally,
we detected the enzymes participating in glycolysis and KBM in
the tumor tissues. HMGCS2 and OXCT1, the rate-limiting
enzyme of ketogenesis or ketolysis respectively (36), were
expressed higher in HuH-7 tumors compared to SK-HEP-1
ones (Figures 7D, E). However, HK2, ENO2 and PKM2, the
vital key enzymes in the metabolic process of glycolysis (37, 38),
were highly expressed in SK-HEP-1 tumors (Figures 7D, E),
which was consistent with the results obtained from big data
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(Figures 6A, B). Notably, except HK2, which was slightly
decreased, there seems to be no change in the levels of other
glycolysis and KBM enzymes we test after KDT (Figures 7D, E).
DISCUSSION

The Warburg effect is an extensively studied phenomenon
characterized by increased aerobic glycolysis and excessive lactate
formation (5). Numerous studies have shown that enhanced
glycolysis predicts poor prognosis, promotes tumor progression,
immune escape and drug resistance in different categories of
cancers (39, 40). The classic Warburg effect describes the shift
fromOXPHOS to glycolysis, it should be noted that cancer cells can
switch their metabolism phenotypes between glycolysis and
OXPHOS during tumorigenesis and metastasis (41). Ketone
bodies generated by fatty acid oxidation can serve as an
alternative fuel for OXPHOS (42). Thus, it’s worthwhile to
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FIGURE 4 | The genomic landscape of metabolic subgroups and mutational characteristics. (A) Oncoplot summarizing the distribution of SNVs and INDELs mutational
frequency in LIHC across the metabolic subtypes for the top 20 most mutated genes. Top panel details gender, tumor grade, stage, and prognosis for HCC patients.
The metabolic activity of glycolysis or KBM in TP53 or CTNNB1 wildtype or mutation patients in LIHC (B–E) or PANCAN dataset (F–I). Student’s t-test or Wilcoxon
rank-sum test were used to compare the median values of two sets of continuous variables. The count data were analyzed with Pearson Chi-Square.
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comprehensively characterize the glycolysis and KBM pathway.
The connections between KBM and cancer are rapidly emerging
(36, 43). However, a joint analysis of glycolysis and KBM is lacking.
In this study,weperformed thefirst systematical combined-analysis
of glycolysis and KBM genes across cancers. Based on the
expression profiles of these genes, we identified the glycolytic and
KB-metabolic subtypes, which highly expressed the glycolysis or
KBM signature genes respectively, and also characterized a hybrid
metabolic subtype and an inactive subtype. The metabolic
expression subtypes showed extensive heterogeneity in prognosis
across cancer types. Surprisingly, the inactive subtypes, with low
activity of both glycolysis andKBM,whichwere supposed to be low
malignancy, tended to showaworse overall survival inKIRC, LUSC
and MESO. A possible explanation for this might be that the
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inactive subtypes are not fully metabolically inactive, for other
metabolic pathways might compensate for the low activity of
glycolysis and KBM in these cancer types. Although the previous
research has reported that expression patterns of metabolic genes
could reflect metabolic activities in cancer patients (32), further
study is still warranted to clarify the relationship between the
level of metabolic gene expression and glycolysis or KBM
pathway activities.

Theoretically ketogenic diet, which reduces glucose
availability to tumor cells, while providing ketone bodies as an
alternative bioenergetic fuel to normal cells, could result in
selective starvation of tumor cells, for tumor cells are unable to
adapt to ketone metabolism as a result of their acquired
metabolic inflexibility and genomic instability (14). However,
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FIGURE 5 | Metabolic subtypes based on glycolysis and KBM genes are informative about the response to KDT. (A) Heatmap presenting the expression pattern of
glycolysis and KBM genes in each subtype across CCLE cancer cell lines. The proportion of four metabolic subtypes based on primary site (B) and histology (C) in
the CCLE cell lines. The metabolic subtypes of neuroblastoma and glioma (D) and carcinoma cell lines (E) and their relationship with the reported response data of
ketogenic therapy.
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the efficiency of KD was inconsistent, with both the anti-tumor
effects and pro-tumor effects were well-reported in preclinical
and clinical studies (15). It is necessary to explore the
sensitive indicators that predict or affect KD effectiveness. In
this study, we found that the metabolic expression subtypes
based on glycolysis and KBM activity are informative about the
KDT. KDs reduced tumor growth and prolonged survival in the
SH-SY5Y and SK-N-BE(2) xenografts (23, 44, 45), both of which
were identified as the glycolytic subtype in our study. Three
human glioma cell lines, which were either identified as mixed or
inactive subtypes in our study, were proven to be non-responders
to KDs (46). Similarly, our metabolic subtypes predicted the
positive response to KDs in thyroid cancer (47) and large
intestine cancer cell lines (48, 49). It has been reported that
ketone bodies can behave as onco-metabolites and that ketone
bodies utilization drives tumor growth and metastasis in breast
cancers (19, 50). Interestingly, none of the cell lines were identified
as glycolytic subtypes in our study.Thus, themetabolic subtypes are
informative about the response to KDT, although these findings
may be somewhat limited by the small number of cases.We further
performed a proof-of-concept experiment to validate the predictive
value of themetabolic subtype using liver cancer, a cancer typewith
conflicting responses to KDT was reported (51, 52). Consistently,
KDs reduced the growth of the cell line belongs to the glycolytic
subtype, but tended to promote the growth of the KB-metabolic
subtype cell line. Therefore, the metabolic expression subtypes
defined here have potential clinical implications in guiding
personalized KDT, and further efforts will be required to validate
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the findings in other cancer types. Metabolic flexibility, which
means the intrinsic ability of cells to change from one metabolic
fuel source to another (53), is one of the most important
characteristics of cancers (54). Thus, the adaptability of different
cancer cells to metabolic changes cannot be ignored, which may
affect the efficacy of metabolic therapy. It is a limitation to just
consider the initial state of the cancer metabolism instead of the
metabolic changes. Also, other metabolic signatures besides
glycolysis and KBM may be of importance because of the
metabolic adaptability.

Metabolic reprogramming may result from diverse somatic
driver alterations. We explored the somatic mutations
underlying the different subtypes. TP53 mutations were
associated with glycolytic subtype, while CTNNB1 mutations
were correlated to the KB-metabolic subtype. This observation
may support the hypothesis that TP53-driven tumors are
candidates for KDT, while b-catenin-driven tumors are in the
contrast. Previous research has established that TP53 mutations
increase glycolysis in multiple cancer types (55–59). Several
attempts have also been made to illustrate the role of CTNNB1
and KBM. It has been reported that HMGCS2, a rate-limiting
ketogenic enzyme in the synthesis of ketone bodies, was is a
novel target of Wnt/b-catenin (60). Moreover, recent studies
have shown that b-catenin-activated HCC were not glycolytic
but intensively oxidized fatty acids. PPARa, the key transcription
factor taking part in fatty acid oxidation and ketogenesis, is also a
b-catenin target (33, 61). Therefore, b-catenin may control the
ketogenesis process. In our study, we found that both ketogenesis
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FIGURE 6 | Exploring the metabolic subtypes in HCC cell lines. (A) Scatter plot showing the subtype of CCLE HCC cell lines. Red indicates glycolytic subtype, and
green indicates KB-metabolic subtype. The cell lines in the dashed boxes were chosen for the following experiment. (B) Heatmap showing the expression pattern of
glycolysis and KBM genes of CCLE HCC cell lines with different subtypes. (C) t-SNE plot of HuH-1 and HuH-7 from GSE103867 dataset. (D) The pathway activity of
glycolysis and KBM represented by ssGSEA score in t-SNE space from cells in (C).
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and ketolysis enzymes were highly expressed in the KB-
metabolic subtype. However, the relationship between b-
catenin and ketolysis has not yet been deciphered. Continued
efforts are needed to assess the broader role of b-catenin in KBM.
CONCLUSIONS

In conclusion, we performed a joint analysis of glycolysis and
KBM genes in this study. We identified four subtypes based on
the activity of glycolysis and KBM pathway. The subtypes were
correlated extensively but diversely with clinical outcomes and
somatic mutations. Both literature review and a proof-of-concept
experiment provide preliminary but exciting evidence
supporting that our subtypes were informative about the
Frontiers in Oncology | www.frontiersin.org 11
response to KDT, and further studies both in the laboratory
and clinically will still be warranted.
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FIGURE 7 | Validating the predictive value of metabolic subtypes in KDT in HCC xenograft model. HCC cell line SK-HEP-1 (glycolytic subtype) and HuH-7 (KB-
metabolic subtype) were subcutaneously inoculated into the flank of nude mice. The tumor-bearing mice were random allocated to the normal diet (ND) or ketogenic
diet (KD) group. Tumor volumes were monitored every three days. Tumor growth curve and body weight growth curve of SK-HEP-1 (A) and HuH-7 (B) were shown.
(C) The serum ALT, HDL and TC level in ND and KD group mice. (D) Western blot analysis of glycolysis and KBM enzymes in SK-HEP-1 and HuH-7 tumors. Limited
by the well number of SDS PAGE, we randomly test three samples from each group. (E) Quantification of protein levels normalized onto b-actin in each condition.
Data are presented as mean ± SD. Student t-test was used for statistical analysis. *p < 0.05; **p < 0.01; n.s., not significant.
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