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Axons in the central nervous system often fail to regenerate after injury due to the
limited intrinsic regeneration ability of the central nervous system (CNS) and complex
extracellular inhibitory factors. Therefore, it is of vital importance to have a better
understanding of potential methods to promote the regeneration capability of injured
nerves. Evidence has shown that non-coding RNAs play an essential role in nerve
regeneration, especially long non-coding RNA (lncRNA), microRNA (miRNA), and
circular RNA (circRNA). In this review, we profile their separate roles in axon regeneration
after CNS injuries, such as spinal cord injury (SCI) and optic nerve injury. In addition, we
also reveal the interactive networks among non-coding RNAs.
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INTRODUCTION

Central nerve injuries are commonly seen in clinical practice. They can severely affect quality of life
and may be fatal. Unfortunately, there is still no known cure for these kinds of injuries because
of their complex pathophysiology. Damaged axons in the central nervous system (CNS) rarely
regenerate, mainly due to the inhibitory environment around the damaged nerves and a lack of
intrinsic neuronal growth ability (Goncalves et al., 2015). In the search for a cure for CNS injuries,
researchers have made a leap in progress in terms of the mechanisms of neuronal regeneration.
Evidence shows that multiple transcriptional regulatory pathways can promote the capacity of
neurite regrowth (Sun et al., 2011; Apara et al., 2017; Wang Z. et al., 2018). Non-coding RNAs,
which used to be regarded as transcription noise, are now proven to be important transcriptional
and post-transcriptional regulators in the development of the nervous system and neurological
diseases (Wu et al., 2013). In recent years, the functions of non-coding RNAs in axon regeneration
in the peripheral nervous system (PNS) have continuously been revealed, which has provided
clues about CNS axon regeneration. Researchers have found that multiple non-coding RNAs are
differentially expressed after CNS injuries, such as spinal cord injury (SCI) and optic nerve injury,
which implies that non-coding RNAs may have the potential to become brand new biomarkers and
targeted therapies for axon regeneration in the CNS. Therefore, in this review, we first profile the
extrinsic and intrinsic mechanisms for nerve regeneration; then, we give a brief introduction on
long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA), which are
widely associated with axon regeneration. Finally, we focus on some typical non-coding RNAs to
demonstrate the separate and interactive functions of non-coding RNAs in nerve regeneration. Last
but not least, we also suggest potential directions for future research.

Extrinsic and Intrinsic Mechanisms for Nerve Regeneration
After nerve damage in nervous systems, successful compensation may include axonal sprouting
from intact neurons or regeneration from injured axons, therefore, bringing about function
recovery. Unlike the robust regrowth in the peripheral nervous system (PNS) following injury,
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the central nervous system (CNS) appears to have defects
related to nerve regeneration (Oh et al., 2018). In mammals,
this process relies both on the improvement of a permissive
extracellular environment (Tom et al., 2004) and intrinsic
growth ability (Goncalves et al., 2015). In the last century,
Aguayo et al. revealed that axons in an injured spinal cord
and brainstem could successfully regrow over long distances
when the CNS glial environment was replaced by peripheral
nerves (David and Aguayo, 1981), showing that the inhibitory
microenvironment attributes to the failure of axon regeneration
in the CNS. Over time, varieties of extrinsic factors were
discovered to have a relationship with the regeneration process
after CNS injury. Glial scars, myelin debris, and axonal growth
inhibitors form significant impediments to axonal regeneration
(Li et al., 2020). Glial scars, which serve a primary role in
preventing inflammatory processes from propagating to healthy
tissue (Cregg et al., 2014), also create a physical barrier
in which axonal tips get trapped. Confronted with the scar
tissue, the ends of regenerating axons cease to extend and
turn into abnormal growth cones that can remain for years
without robust regeneration (Tom et al., 2004). Moreover,
demyelination occurs after nerve damage, which severely
impairs axon survival as the myelinating cells of the CNS,
oligodendrocytes, are lost through injury. Under permissive
conditions, they can be replaced by oligodendrocyte progenitor
cells and differentiate into mature oligodendrocytes. However,
myelin debris inhibits the differentiation process, so it is of vital
importance to clear the myelin debris following demyelination
(Church et al., 2017). Apart from that, a variety of neurite
growth inhibitory factors were found to strongly suppress the
sprouting and regeneration of injured neurites after CNS injury.
In addition to myelin-associated glycoprotein (MAG), Nogo-
A, and oligodendrocyte-myelin glycoprotein (OMgp), which are
expressed by the myelin sheath in injured axons (Gribble and
Scott, 2002), chondroitin sulfate proteoglycans (CSPGs), released
by hypertrophic astrocytes at the lesioned site, present a potent
barrier to axon regeneration (Yiu and He, 2006). Although we
can remove molecules that restrict regrowth in the extracellular
environment, the effect of regeneration is insufficient (Holmes,
2017). As a result, more attention has been focused on how to
promote the inherent growing ability of the lesioned axons. As is
known, gene transcription and protein translation play a key role
in this course. Researchers have found that a series of genes take
part in intrinsic regulation following CNS injury, including Pten,
Klf4/9, Socs3, B-RAF, c-Myc, GSK3, and Lin28 (Moore et al.,
2009; Luo and Park, 2012; Saijilafu et al., 2013; O’Donovan et al.,
2014; Wang X.W. et al., 2018; Zhang et al., 2018; Ma et al., 2019).
Moreover, many regeneration-associated signaling pathways,
such as cAMP/PKA,DLK/JNK, are continually being uncovered
(Neumann et al., 2002; Larhammar et al., 2017). However, with
the development of transcriptomics, mounting studies suggest
that non-coding RNAs, especially lncRNA, miRNA, and circRNA,
exert their function as regulators in multiple biological programs.
More importantly, they are widely found to be differentially
expressed in the central nervous system after an injury (Yao et al.,
2015), which indicates that they have the potential to become
clinical strategies for axon regeneration after nerve injury.

Classification and Biogenesis of
Non-coding RNAs
There are two types of non-coding RNAs. The first type,
constitutive non-coding RNAs, include transfer RNA (tRNA),
ribosomal RNA (rRNA), small nuclear RNA (snRNA), small
nucleolar RNA (snoRNA), and small cytoplasmic RNA (scRNA).
Their abundance is constant, and they play an important role
in maintaining the normal physiological function of species.
The second type, regulatory non-coding RNAs, include lncRNA,
miRNA, circRNA, siRNA, and piRNA. Their abundance changes
with the external environment and cell characteristics, which play
an important role in regulating gene expression. In this review, we
focus on three members of the non-coding RNA family–lncRNA,
microRNA, and circRNA–and describe their functions in nerve
regeneration as well as their combined effects.

lncRNAs are a cluster of non-coding RNAs of more than
200 nucleotides in length (Paraskevopoulou and Hatzigeorgiou,
2016). These non-coding RNAs are poorly conserved and
play a significant role at different levels, including chromatin
remodeling, transcriptional control, and post-transcriptional
processing. Such variable regulatory patterns suggest that
lncRNA might have both complex biological and pathological
functions. microRNAs are 20∼25 nucleotides in length, and they
often regulate gene expression at the post-transcription level.
Mature miRNA functions by binding to the complementary
sequences in the 3′ untranslated regions of the target messenger
RNA (mRNA). As a result, the miRNA silences the gene through
mRNA degradation or transcriptional repression (Butz et al.,
2012). circRNAs are a novel class of non-coding RNAs discovered
in 2012. Unlike traditional linear non-coding RNAs with 5′ cap
and 3′ tail structures, circRNAs are characterized by a closed-
loop structure, which is more stable (Wu et al., 2019). These
RNA molecules are rich in binding sites for miRNAs and serve
as miRNA sponges in cells (Hansen et al., 2013). By binding to
different miRNAs, they remove miRNA inhibition to the target
mRNA, and expression of the mRNA increases as a result. This
type of RNA is called competing endogenous RNA (ceRNA). By
working with miRNAs, circRNAs play a crucial role in biological
and pathological processes (Figure 1).

Non-coding RNAs in Central Nerve
Regeneration
Spinal Cord Injury
SCI is a devastating traumatic event that damages sensory,
motor, or autonomic functions and, therefore, affects quality of
life (Fehlings et al., 2017). Every year, up to a million people
experience spinal cord injury. More than half of them suffer from
complete injury, losing function completely in the area controlled
by the lesioned nerves. The others only recover part of their body
function (Holmes, 2017). The management of acute SCI requires
long-term, high-level care resources, and it brings substantial
financial burden at both individual and societal levels (Fehlings
et al., 2017). As a result, quite a lot of attention has been paid to
the mechanisms of SCI to seek better repairing strategies.

As far as we are concerned, the pathophysiology of SCI
temporally changes, consisting of two injury phases. The primary
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FIGURE 1 | Mechanism scheme of ceRNA network. The mature miRNA regulates the gene expression by forming a RISC (RNA-induced silencing complex) and
binding to the complementary sequences in their 3′ untranslated regions of the target mRNA. As a result, the miRNA silences the gene through mRNA degradation
or transcriptional repression. Both lncRNAs and circRNAs are rich in binding sites for miRNAs and serve as miRNA sponges in cells. They compete with mRNA for
opportunities to bind with miRNAs. In this way, lncRNAs and circRNAs remove the miRNA’s inhibition to the target mRNA, and the expression of the mRNA
increases as a consequence. This mechanism is called competing endogenous RNA (ceRNA).

mechanical injury phase damages the axons, blood vessels, and
cell membranes. Within hours or days after the injury, it enters
the secondary injury phase with ischemia, edema, inflammation,
and vascular changes (Rowland et al., 2008; Rouanet et al., 2017).
The pathophysiological changes of SCI are so complicated that a
curable strategy remains a big challenge. Despite the fact that a
few repair studies are making some progress in animal models,
to date, clinical translation to patients has not been convincing
(Dietz, 2016). Mounting evidence has shown that multiple non-
coding RNAs are differentially expressed after injury. Changes
in lncRNA, miRNA, and circRNA are so evident that much
attention has been focused on them (Chen Y. et al., 2016; Zhou
et al., 2018; Wu et al., 2019). The non-coding RNAs are strongly
connected to the various pathophysiological processes of SCI,
such as inflammation, apoptosis, axon regeneration, oxidative
stress, and astrocyte proliferation and activation (Li et al., 2016;
Gu et al., 2017; Xia et al., 2018; Yao and Yu, 2019). Moreover, they
have been found to play a potential role in SCI complications,
including neuropathic pain (Wang F. et al., 2019). Here, we
review recent studies on non-coding RNAs and their mechanisms
of axon regeneration after spinal cord injury.

Accumulated evidence suggests that miRNAs are strongly
related to the regulation process after SCI. Bioinformatics analysis
demonstrated expression changes of a cluster of miRNAs in vivo,
concluding that miRNAs may take part in promoting self-repair
in SCI (Liu et al., 2016; Wang W. et al., 2019). In previous
studies, micro-125b showed a significant decrease in expression

level after SCI, and overexpression of microRNA-125b promotes
axon regeneration following spinal cord injury by regulating
the JAK/STAT pathway. Furthermore, micro-125b displays a
positive neuronal protective effect by reducing apoptosis and
inflammatory response in neurons (Dai et al., 2018). microRNA-
155 deletion has been shown to reduce inflammatory signaling
in macrophages, which enhances axon regeneration dynamics.
In addition, microRNA-155 knockout neurons in adults also
show independent enhanced axon growth (Gaudet et al.,
2016). Moreover, some researchers point out that, regulated
by TGF-β1, microRNA-21-5p mediates the expression of
fibrosis-related genes. microRNA-21-5p knockdown attenuates
the formation of fibrotic scars, which are thought to be
the main physical obstacle for axonal regeneration following
SCI (Wang W. et al., 2018). These results demonstrate that
microRNAs might be a novel target for axon regeneration
in SCI patients.

lncRNAs have been shown to have significant effects on the
development of the brain (Goff et al., 2015), nervous systems
(Zhang et al., 2019), and a variety of neurological diseases,
such as brain tumors (Voce et al., 2019), neurodegenerative
diseases (Chanda et al., 2018; Cao et al., 2019), and ischemic
strokes (Hu et al., 2020). Moreover, lncRNAs also serve
as a crucial regulator in SCI, affecting its initiation and
progression. Several studies have demonstrated that they mostly
perform functions via cell autophagy and apoptosis (Salah
et al., 2020). However, some evidence tells us that lncRNAs
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TABLE 1 | Differentiated expression of non-coding RNAs in different CNS injuries.

Injury model In vitro/in vivo Tissue/cell Non-coding RNA Expression patterns Target Function References

Spinal cord
injury

C5 spinal blunt
contusion (mouse)

In vivo Spinal cord microRNA-125b Upregulation JAK/STAT pathway Reduce apoptosis and
inflammatory response in
neurons

Dai et al., 2018

Spinal cord dorsal
peripheral conditioning
lesion/column crush Injury
(mouse)

In vivo Spinal cord microRNA-155 Downregulation Unclear Reduce inflammatory
signaling in macrophages

Gaudet et al., 2016

Spinal cord
contusion (mouse)

In vivo Epicenter spinal cord microRNA-21-5p Downregulation Unclear Attenuate the
formation of fibrotic
scars

Wang W. et al., 2018

− In vitro Neurons-spinal cord lncRNA-Map2k4 Upregulation MicroRNA-199a
/FGF1 axis

Regulate neuron
proliferation

Xia et al., 2018

Spinal cord contusion
(rat)

In vivo Spinal cord circRNA_07079/
circRNA_01282

Upregulation miR-351-5p (predicted) Unclear Zhou et al., 2019

Allen’s weight-drop
model (mouse)

In vivo Epicenter spinal cord miR-21-5p Upregulation lncRNA33755/
circRNA6370

Unclear Wang W. et al., 2019

Optic nerve
injury

Optic nerve crush
(mouse and human)

In vitro/in vivo RGC miR-19a Upregulation PTEN Control cell growth by
regulating protein
translation initiation

Park et al., 2008; Mak
et al., 2020

Optic nerve crush (rat) In vivo RGC microRNA-30b Upregulation Sema3A/p-p38MAPK
and caspase-3

Reduce growth cone
collapse and RGC
apoptosis

Han et al., 2015

Optic nerve crush (rat) In vitro/in vivo Optic nerve/astrocyte miR-21 Downregulation EGFR receptor pathway Attenuate excessive
astrocyte activation and
glial scar formation

Li et al., 2018

Optic nerve
crush (mouse)

In vitro/in vivo SH-SY5Y cell/RGC/
cortex/hippocampus

miR-135s Upregulation KLF4 Facilitate RGC axon
regeneration

van Battum et al., 2018

Optic nerve
crush (mouse)

In vivo RGC/optic nerve let7-miRNAs Downregulation Unclear Induce optic nerve
regeneration

Wang X.W. et al., 2018
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probably also play a role in regulating axonal regrowth following
SCI. Some previous studies have suggested that lncRNAs
are of vital importance to neurite outgrowth, which is an
early step in neuronal regeneration. It has been shown that
lncRNA Malat1 plays a crucial role in neurite outgrowth in
N2a cells by activating the MAPK/ERK signaling pathway.
The MAPK family is thought to take part in a variety
of biological processes such as development and apoptosis.
Furthermore, the data show that elevated expression of lncRNA
Malat1 promotes the average neurite length and thus enhances
neuronal differentiation (Chen L. et al., 2016). Moreover,
lncRNA-Map2k4 was found to have a high expression level
and decline in SCI pathology. Data shows that lncRNA-
Map2k4 regulates neuron proliferation through the microRNA-
199a/FGF1 axis. Knockdown of lncRNA-Map2k4 inhibited
FGF1 expression by upregulating microRNA-199a (Lv, 2017).
As is known, FGF1 is a neurotrophic factor with a potent
neuroregenerative ability in the nervous system (Ding et al.,
2016), so this finding may provide some new ideas for the
treatment of SCI.

In recent decades, more investigations into circRNAs have
taken place, and circRNAs have been found to have a variety of
functions in various disorders, such as cancers, cardiovascular
diseases, diabetes, and ischemic strokes (Siede et al., 2017;
Bai et al., 2018; Li et al., 2019; Abbaszadeh-Goudarzi et al.,
2020). A number of studies using bioinformatics analysis
have revealed that circRNAs are differentially expressed in
central nerve injuries. One study explored the implication of
circRNA expression profiles in spinal cord injury in rats at
the immediate phase. Using microarray analysis, researchers
found that 1,101 circRNAs were upregulated and 897 circRNAs
were downregulated in SCI rats at the immediate phase
compared with sham control rats. Additionally, enrichment
analysis displayed that dysregulated circRNAs were enriched in
many biological processes, such as spinal cord development and
synapse assembly. They were also enriched in signaling pathways
related to neuronal signal transduction and inflammation,
such as the MAPK signaling pathway and axon guidance
(Liu et al., 2020). In another study, 150 circRNAs were
differentially expressed in spinal cords from an SCI group
compared with the sham-injured control group. Among these, 99
circRNAs were upregulated, and 51 were downregulated. Further
analysis disclosed that circRNA_07079 and circRNA_01282,
two of the dysregulated circRNAs, were associated with
SCI and might play a role in the pathophysiology of SCI
(Zhou et al., 2019).

Optic Nerve Regeneration
Like the spinal cord, the optic nerve is also a part of the CNS,
which has little ability to regenerate after it has been injured.
As a result, optic nerve injuries and some degenerative diseases,
such as traffic trauma, ischemic injury, and glaucoma, have
become leading causes of irreversible blindness worldwide. Up
to now, there are still no satisfactory treatments for this type
of visual impairment, which is primarily due to the complex
mechanisms underlying the pathological process (Li et al., 2017).
Retina ganglion cells (RGCs) make up the innermost layer of

neurons in the retina, of which the axons extend out to form
the optic nerve. It has been reported that the irreversible loss
of vision is attributed to RGCs losing the ability to regenerate
axons (Mak et al., 2020). Therefore, axon regeneration becomes
critical to recovering function after optic nerve impairment.
While many transcription factors and proteins have had their
functions related to axon regeneration after optic nerve injury
uncovered, some mechanisms still remain elusive (Park et al.,
2008; Duan et al., 2015; Li et al., 2015). Subsequently, researchers
found that non-coding RNAs, especially microRNAs (miRs),
are differentially expressed during RGC development and affect
axon regeneration.

One previous study found that the developmental decline
of axon regenerative ability in RGCs is in accordance with the
expression levels of the miR-17-92 family members. Their data
also showed that the developmental downregulation of miR-
19a, one of the family members, is related to the upregulated
expression of phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) in RGCs. It is believed that miR-19a
promotes axon regeneration in both mature rodent RGCs and
human adult RGCs by suppressing PTEN, a negative regulator
of the mammalian target of the rapamycin (mTOR) pathway,
which controls cell growth by regulating cap-dependent protein
translation initiation (Park et al., 2008). In addition, with the
development of RGCs, miR-19a expression is drastically reduced,
which contributes to the decline of axon regenerative capacity
(Mak et al., 2020). In another study, microRNA-30b (miR-30b)
was found to inhibit Semaphorin3A (Sema3A) expression in
RGCs by bonding to its 3′ UTR. Sema3A is a very potent
repulsive molecule and an important inhibitory factor involved
in CNS repair following damage. miR-30b can promote axon
regeneration by reducing the binding ability of Sema3A to
NRP1/PlexA1, both of which are receptors, in order to transmit a
signal of growth cone collapse. Moreover, miR-30b also reduces
RGC apoptosis by inhibiting the expression of p-p38MAPK
and active caspase 3 (Han et al., 2015). Some findings have
demonstrated that inhibition of miR-21 attenuates excessive
astrocyte activation and glial scar formation by regulating the
epidermal growth factor receptor (EGFR) pathway, thereby
promoting axon regeneration in RGCs and function recovery in
flash visual evoked potential (F-VEP) in the rat model of optic
nerve injury (Li et al., 2018). Apart from these results, miR-135s
has also been proven to facilitate RGC axon regeneration after
optic nerve injury in adult mice, in part by repressing Krüppel-
like factor 4 (KLF4), which is a well-known intrinsic inhibitor
of axon regeneration (van Battum et al., 2018). In addition,
another study suggests that let7-miRNAs act downstream of
Lin28a/b and serve as negative regulators of axon regeneration.
Overexpression of Lin28a can induce robust and sustainable optic
nerve regeneration without affecting the survival rate of RGCs
(Wang W. et al., 2018). All the above highlight the potential
of microRNAs to serve as a new tool in the treatment of optic
nerve impairments.

Many circRNAs are expressed in different stages in the retina.
One study pointed out that silencing circTulp4 would lead to
a thin outer nuclear layer and defective retinal function. In
addition, they found that circRNAs were dysregulated at a much
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earlier time point than disease onset in a retinal degeneration
model (Chen et al., 2020). These results provide some clues
for investigating the underlying mechanisms and potential
repairing targets of CNS injuries. However, the functions of
circRNAs in axon regeneration are still elusive and require
further investigation.

Networks of Non-coding RNAs
With the development of high-throughput sequencing
technology, we can obtain a lot of complete transcriptome
information at one time. Through bioinformatics analysis,
interestingly, researchers found that, apart from the separate
functions of the non-coding RNAs in central nerve regeneration,
they can also interact with each other to produce a marked
effect. Recently, miRNA has been verified to be affected by the
presence of miRNA sponge transcripts, the so-called competing
endogenous RNAs (Hansen et al., 2013). Either lncRNA or
circRNA can be miRNA sponges and thus affect the expression
of target mRNAs, which is true of interactive networks among
the two non-coding RNAs.

Using microarray analysis, Liu et al. (2020) constructed a
circRNA-miRNA network of 10 candidate circRNAs in a spinal

cord injury rat model using miRanda and found that most of
the dysregulated circRNAs have a number of target miRNAs. In
another study, results showed that retinal circRNAs could act as
miRNA sponges. They also discovered that circTulp4 functioned
as a ceRNA by acting as a sponge for miR-204-5p and miR-
26a-5p to regulate retina development (Chen et al., 2020). Wang
et al. found that lncRNA33755 and circRNA6370 were targets of
miR-21-5p after SCI and displayed an lncRNA/circRNA-miRNA-
mRNA axis (Wang W. et al., 2019), which implies the possibility
of an analogous axis in central nerve regeneration. One research
team suggested that lncRNA-Map2k4 was the target gene of miR-
199a. Finally, they regulated FGF1 expression, which is essential
to axon regeneration, as we discussed above (Lv, 2017).

DISCUSSION

In this review, we summarized the extrinsic and intrinsic
mechanisms for central nerve regeneration, especially non-
coding RNAs. After central nerve injury, a quantity of non-
coding RNAs perform differential expression, which implies their
potential functions in repairing the nervous system. Table 1

FIGURE 2 | The regulation of non-coding RNAs to central nerve regeneration.
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lists recent studies with an overall profile of their roles in axon
regeneration after CNS injuries, such as SCI and optic nerve
injury. We not only elaborate on the separate functions of
lncRNA, microRNA, and circRNA, but also reveal interactive
networks among the non-coding RNAs (see Figure 2).

From this review, we can see that most of the research in this
field begins with bioinformatics analysis, using microarray and
RNA-seq. In this way, we can discover potential regulated non-
coding RNAs and predict interactive networks as well as signaling
pathways. Quantitative real-time PCR (qRT-PCR) is performed
to verify the expression, and lncRNAs/circRNAs-miRNA-gene
regulated networks are constructed to identify target genes of
certain lncRNAs/circRNAs (Yao and Yu, 2019).

Although there has been mounting evidence to show that
dysregulated non-coding RNAs have a strong relationship with
axon regeneration in the CNS, there is still a long way to go
before we understand the precise mechanisms and methods of
translational medicine.

There are some issues to be addressed in a future investigation:
¬ apart from SCI and optic nerve injury, there is still a lack of
research into axonal regeneration-associated non-coding RNAs
in other types of CNS injuries, such as traumatic brain injury
(TBI). A few studies have reported that non-coding RNAs
could promote neurite regeneration after TBI by attenuating
inflammatory responses (Pan et al., 2017; Huang et al., 2018),
but the specific mechanisms of axon regeneration are still
elusive.  Some previous studies only proved that circRNAs
were differentially expressed after CNS injuries and their specific
mechanism of axon regeneration remains to be further studied
in the future. ® We still know little about the upstream factors
of the non-coding RNAs involved in regeneration. ¯ How
can we bring non-coding RNAs into clinical application? Some
scientists have pointed out that fully differentiated cells can be
dedifferentiated by some reprogramming transcription factors
(SOX2, Lin28, KLF4, Nanog) and revert into pluripotent stem
cells (iPSC). Moreover, differentiated non-neural cells can also
be reprogrammed directly into neurons without going through
the stem cell phase (Qian and Zhou, 2020). One previous
study showed that increased expression of the miR-200 family
promotes neuronal differentiation, while decreased expression
of the miR-200 family promotes neuronal proliferation by
targeting SOX2 and KLF4 (Pandey et al., 2015). Perhaps more
investigations should be done to clarify if non-coding RNAs
can be a class of bridges to connect the reprogramming process

with CNS nerve regeneration. Thus, patient-derived soma cells
could be reprogrammed into neurons for future drug discovery
or a source of neural grafts (Faravelli and Corti, 2018). In a
series of studies, extracellular vesicle localized miRNAs have been
shown to improve neurological function and promote neural
health, which offers a potential therapeutic strategy for our topic
(Blandford et al., 2018). Furthermore, non-invasive therapeutic
approaches for delivering non-coding RNAs, such as miRNA
agomir/mimics or miRNA hairpin inhibitor/antagomir by oral or
intravenous injection, are more available and safer. In addition,
exosomes are probably also ideal vesicles as they provide a new
method for the transportation of non-coding RNAs (Schorey
and Bhatnagar, 2008). We still need to verify the consistency
of results in animal models and human patients. In addition,
much attention should be paid to safety and ethical issues when
applied to patients.

In a word, non-coding RNAs provide us with further clues
to understanding the underlying mechanisms of CNS nerve
regeneration, and more efforts are needed to promote the
application of non-coding RNAs to become therapeutic targets
after CNS injuries.
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