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How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fas-
cinating phenomenon. Despite extensive research activity in this field, the mechanisms
underlying fetal tolerance are still not well understood. However, there are growing evi-
dences that immune–immune interactions as well as immune–endocrine interactions build
up a complex network of immune regulation that ensures fetal survival within the maternal
uterus. In the present review, we aim to summarize emerging research data from our and
other laboratories on immune modulating properties of pregnancy hormones with a spe-
cial focus on progesterone, estradiol, and human chorionic gonadotropin.These pregnancy
hormones are critically involved in the successful establishment, maintenance, and termi-
nation of pregnancy. They suppress detrimental maternal alloresponses while promoting
tolerance pathways.This includes the reduction of the antigen-presenting capacity of den-
dritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer
cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy sup-
porting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatoryT (Treg)
cells. Furthermore, they are involved in the recruitment of mast cells andTreg cells into the
fetal–maternal interface contributing to a local accumulation of pregnancy-protective cells.
These findings highlight the importance of endocrine factors for the tolerance induction
during pregnancy and encourage further research in the field.

Keywords: progesterone, estradiol, human chorionic gonadotropin, luteinizing hormone, alpha-fetoprotein,
immune regulation, pregnancy

INTRODUCTION
It is said that mammalian pregnancy defies the immunologi-
cal rules because a semi-allogeneic conceptus is tolerated rather
than rejected. It is therefore, a fascinating phenomenon and target
of many immunological studies. Pregnancy is however a natural
phenomenon that ensures the survival of species and exists since
millions of years. By contrast transplantation, where empirical
observations led to the definition of the immunological rules,
is an artificial process that was first described in 1905. Thus,
understanding how natural tolerance operates may help creating
novel strategies to ensure tolerance in other models. Especially
because of the fact that initial allorecognition of foreign fetal
antigens by the maternal immune system is advantageous for a
successful pregnancy, the mechanisms behind gestational toler-
ance are of interest for other disciplines. Local suppression of
alloreactive immune responses to paternal antigens is a prerequi-
site for fetal acceptance. Steroid hormones like progesterone (P4)
and estradiol (E2) as well as gonadotropins such as the human
chorionic gonadotropin (hCG) are fundamentally involved in the
regulation of the menstrual cycle and in the establishment and
maintenance of pregnancy (1, 2). Through binding their spe-
cific receptors expressed by immune cells and/or by acting via
mediators these hormones support fetal tolerance by inhibiting
destructive immune responses and inducing tolerance pathways.

This review highlights the effects of pregnancy-associated hor-
mones on different immune cell types with a special focus on P4,
E2, and hCG.

PROGESTERONE
P4 is a member of the steroid hormone family and has been
described as the “pregnancy hormone” due to its indispensable
role for pregnancy maintenance (3). During the menstrual cycle,
P4 levels are relatively low during the preovulatory phase, rise after
ovulation, and are elevated during the luteal phase (4). If preg-
nancy occurs, hCG initially maintains P4 levels by inducing its
production by the corpus luteum. After the luteal–placental shift,
the placenta takes over P4 production (5). P4 prepares the uterus
for implantation as it induces differentiation of stromal cells into
decidual cells (decidualization) and decreases the contractility of
uterine smooth muscle cells (6, 7). Additionally, P4 withdrawal
is associated with the initiation of labor (8). P4 has been shown
to affect immunity, mainly at pregnancy concentrations. These
effects are primarily mediated via the intracellular P4 receptors
(PR), PR-A and PR-B, which act as transcription factors, although
non-genomic effects of PR activation have been reported (9). In
addition, P4 mediates its immune regulatory function via media-
tors such as the progesterone-induced blocking factor (PIBF) and
glycodelin A (10, 11).
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ESTRADIOL
Like progesterone, estrogens belong to the steroid hormones.
Three major naturally occurring estrogens have been described
in women, namely estrone (E1), estradiol (E2), and estriol (E3).
Within those, E2 is the predominant estrogen produced during
the reproductive years. High levels of E2 are produced by the
ovary, while smaller amounts are also produced by the adrenal
cortex and from E2 precursors in fatty tissues (12). In the nor-
mal menstrual cycle, E2 levels rise with follicular development,
drop briefly at ovulation, and rise again during the luteal phase
for a second peak. At the end of the luteal phase, E2 levels drop
to their menstrual levels unless there is a pregnancy (13). Dur-
ing pregnancy, E2 levels increase continuously until term due
to the production by the growing placenta (14). Several impor-
tant functions have been described for E2. During the menstrual
cycle, E2 triggers the luteinizing hormone (LH) surge resulting
in ovulation. After ovulation, in the luteal phase, E2, in con-
junction with P4 prepares the endometrium for implantation.
Upon pregnancy, E2 is shown to promote uterine blood flow,
myometrial growth, stimulate breast growth and at term, pro-
mote cervical softening and expression of myometrial receptors.
Besides, E2 was suggested to affect different immune cell popu-
lations in their number and function and thereby contributes to
fetal tolerance. These effects are mediated via binding of E2 to
its intracellular receptors, estrogen receptor alpha (ERα) and beta
(ERβ), which in turn modulate the expression of many genes (15).
Both receptors are expressed in various lymphoid tissue cells as
well as in lymphocytes, macrophages, and dendritic cells (DCs)
(16, 17).

HUMAN CHORIONIC GONADOTROPIN
Human chorionic gonadotropin is a primate-specific het-
erodimeric placental glycoprotein. Four different hCG variants,
namely total hCG, hyperglycosylated hCG (hCG-H), free β-
subunit, and pituitary hCG, have been reported, each produced
by different cells with separate biological functions (18). In
humans, after pregnancy onset, total hCG increases rapidly dur-
ing the first trimester, peaks between the 9th and 12th week
of pregnancy and then declines, until the woman gives birth,
although remaining higher than in a non-pregnant woman (19).
hCG is produced by differentiated syncytiotrophoblasts and its
main function is to stimulate P4 production by the corpus
luteum (20). Moreover, hCG supports pregnancy by facilitat-
ing trophoblast invasion (21–23), promoting angiogenesis, and
ensuring nourishment of the fetus (24–26). In rodents, similar
functions are mediated by the highly homologous LH. Dur-
ing the last years, there is growing evidence that hCG and
LH are involved in immune tolerance mechanisms leading to
fetal survival. Both gonadotropins were shown to affect immune
cells by binding to the LH/CG receptor expressed by several
immune cell types. Moreover, hCG also acts through the mannose
receptor.

ALPHA-FETOPROTEIN
Alpha-fetoprotein (AFP) is a glycoprotein that is produced by the
yolk sac and fetal liver during pregnancy (27). It is the most abun-
dant plasma protein found in the human fetus, acting as a fetal

transport protein. AFP levels increase in the 4-week-old fetus,
peak between the 12th and 16th week and remain low after birth.
Although several studies provide evidence for an immune regu-
latory potential of AFP (28–32), it is still not explored whether
AFP contributes to pregnancy success by modulating immune
responses.

HORMONAL INFLUENCE ON IMMUNE CELLS DURING
PREGNANCY
EFFECT OF PREGNANCY HORMONES ON MACROPHAGES
Monocytes and macrophages are major representatives of the
innate immune system in the cycling and pregnant mammalian
uterus. Several studies provide evidence that monocyte recruit-
ment, differentiation into macrophages, and function in the repro-
ductive tract is modulated by pregnancy-associated hormones
(33). Hormonal influence may be achieved by directly binding
to the appropriate hormone receptors expressed on human and
murine macrophages (16, 34, 35) or indirectly by modulating
the levels of cytokines and growth factors that target the resi-
dent macrophages and influence their secretory profile. Hunt and
colleagues reported that P4 reduced macrophage migration into
the murine uterus (36), while Kitzmiller and colleagues showed
that E2, P4, and hCG did not affect macrophage migration in
guinea pigs (37). Differentiation of monocytes into macrophages
was hindered by glycodelin A, a P4 mediator, by induction of
apoptosis in human monocytes. However, after differentiation gly-
codelin A was not able to alter phagocytic capacity of macrophages
(11). Macrophages are important regulators of trophoblast activ-
ity that promote tissue remodeling and angiogenesis (38). In this
regard, E2, hCG, and LH have been demonstrated to enhance
the production of the vascular endothelial growth factor (VEGF)
in human macrophages (39, 40), supporting vessel formation in
the placenta. In addition, P4 impairs the ability of human and
murine macrophages to produce potent effector molecules such
as nitric oxide and IL-1 proven to be detrimental for successful
pregnancy outcome (36, 41, 42). Moreover, P4 suppresses toll-like
receptor-triggered activation of murine macrophages by regu-
lating miR-155 expression (43). Menzies and colleagues recently
suggested an involvement of P4 in the regulation of genes associ-
ated with alternative macrophage activation (44). By contrast, hCG
treatment of human and murine IFN-γ-primed macrophages
resulted in increased production of nitric oxide, reactive oxy-
gen species, IL-6 and IL-12p40, and enhanced phagocytosis of
apoptotic cells (45, 46). However, hCG treatment of murine IFN-
γ-primed macrophages did not affect the induction of allogeneic T
cell proliferation (45). Interestingly, macrophages regulate excess
of hCG known to be teratogenic to fetal tissues. Here, human
macrophages are proposed to incorporate and degrade hCG in
a time-dependent manner that protect fetal gonadogenesis from
excess hCG (47, 48). More precisely, Katabuchi and colleagues
recently demonstrated that hCG induces transient vacuole forma-
tion in human monocytes, morphologically mimicking Hofbauer
cells. The authors suggest that Hofbauer cells and especially their
vacuoles are involved in the protection of fetal tissue from high
amounts of maternal hCG (49). Besides an effect of steroid hor-
mones and gonadotropins on monocytes and macrophages, AFP
is suggested to have an influence on both innate immune cell
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Schumacher et al. Immunregulation by pregnancy hormones

FIGURE 1 | Hypothetical scenario presenting the influence of
pregnancy-associated hormones on innate immunity. The scenario
suggests several mechanisms by which E2, P4, and hCG influence innate
immune cells and thereby support pregnancy success. ER, estrogen receptor;

GR, glucocorticoid receptor; IDO, indoleamine 2,3-dioxygenase; IL-1,
interleukin-1; IL-10, interleukin-10; LH/CG-R, luteinizing hormone/chorionic
gonadotropin receptor; NO, nitric oxide; PIBF, progesterone-induced blocking
factor; PR, progesterone receptor; VEGF, vascular endothelial growth factor.

types. It has been demonstrated that AFP significantly suppresses
the production of TNFα and IL-1β and induces a rapid down-
regulation of surface MHC class II expression in a stimulated
human monocyte cell line (29, 31). Moreover, Lu and colleagues
showed that AFP inhibits the cell surface expression of Ia anti-
gens on macrophages but does not affect macrophage viabil-
ity (50). Hormonal effects on macrophages are summarized in
Figure 1.

EFFECT OF PREGNANCY HORMONES ON NATURAL KILLER CELLS
NK cells and, in particular, uterine NK (uNK) cells are of special
interest when analyzing mechanisms underlying normal preg-
nancy. This becomes obvious when taking into account that
uNK cells are the predominant lymphocyte population in the
late secretory phase of the menstrual cycle and in the early preg-
nant uterus representing circa 70% of all leukocytes in decidual
tissue. uNK cells differ from peripheral NK cells in the expres-
sion of their receptor repertoire and in the expression of some
genes induced by the hormonal environment. The main function
of uNK cells is to regulate maternal uterine vasculature remod-
eling (51). Therefore, it has been demonstrated in the murine
system that uNK cells produce proangiogenic factors such as
VEGF and growth factors and provide local IFN-γ for initia-
tion of spiral artery formation (52–54). Their origin or expansion

remains a matter of discussion. They may migrate from the periph-
ery, differentiating from NK cell progenitors under the control
of different factors, including steroid hormones (55), and/or by
recruitment of peripheral NK cells into the uterus (56–58) or
expand in situ after pregnancy was established (59). Qu and col-
leagues demonstrated a P4-dependent osteopontin expression in
human decidual stroma cells and human uNK cells and pro-
posed a role for osteopontin in uNK cell accumulation in uterine
tissue (60). Moreover, human uNK cell recruitment from the
peripheral blood into the uterus seems to be favored by ris-
ing E2 and LH levels and restricted by increasing amounts of
P4 (61). Interestingly, mature human and rodent uNK cells do
not express steroid receptors (55, 62–64). Thus, it is suggested
that, at least for P4, effects are mediated through the glucocor-
ticoid receptor (GR), proven to be expressed on murine uNK
cells (65). In addition to the lack of steroid receptors, uNKs
also miss the classical LH/CG receptor. Thus, hCG was suggested
to induce human uNK cell proliferation through the mannose
receptor (66). Regarding the function of uNK cells, they have
been shown to contain high amounts of perforin but only dis-
play low cytotoxic activity. Several studies indicated that P4 and
its mediator PIBF inhibit human NK cell activity via a block
of degranulation (67–70). In agreement, E2 increased human
and murine NK cell number but reduced their cytotoxicity (71,
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FIGURE 2 | Hypothetical scenario presenting the influence of hormonal
changes taking place during the reproductive cycle on the distribution
of innate and adaptive immune cell populations in the uterus. The
upper part of the scenario displays the accumulation of different immune
cell populations in uterine tissue correlated with the different phases of the
human menstrual cycle and the murine estrus cycle. The lower part of the
scenario displays hormonal changes taking place during the reproductive
cycles, both in humans and mice.

72). By contrast Kitaya and colleagues as well as Kurashige and
colleagues revealed that neither P4 nor E2 had significant effects
on the proliferation, cytolytic activity, and cytokine secretion
of human endometrial NK cells (73, 74). This was also true
for AFP (73). In contrast to these results, it was shown that
hCG and LH applied to virgin mice resulted in an enhanced
NK cell activity (75, 76) suggesting that pregnancy hormones
differently regulate NK cell function. Moreover, contradictory
results between humans and mice regarding an influence of preg-
nancy hormones on different immune cell populations depict
the limitations of animal models in understanding mechanisms
unique to human pregnancy. Finally, hCG not only influences
NK cells but is also produced and secreted by them during

pregnancy (77). Hormonal effects on NK cells are summarized in
Figures 1 and 2.

EFFECT OF PREGNANCY HORMONES ON MAST CELLS
Mast cells (MCs) are best known for their effector function in aller-
gic diseases. After binding of allergen-specific IgE to its receptor
(FcεRI), preformed and newly synthesized mediators stored within
the MCs are released to induce inflammatory immune responses
(78). Beside this well-documented function of MCs, recent data
suggest MCs as critical regulators of adaptive immune responses
(79). Additionally, we recently uncovered a critical role for MCs
in pregnancy success. To study the importance of MCs in murine
pregnancy, we took advantage of a MC-deficient mouse model. We
found uterine MCs (uMCs) to have a unique phenotype. uMCs
increase in number every time a female becomes receptive and
rapidly expand after pregnancy occurs. In the absence of MCs
implantation is severely impaired and spiral artery remodeling
has shown to be insufficient. This is suggested to result in fetuses
that are growth-retarded (80). We also proposed a role for uMCs in
trophoblast survival, placentation, and fetal growth. MC salutary
role in murine pregnancy is mediated at least in part by Galectin-1
(80). Oscillations in the number of uMCs during the reproductive
cycle in humans (81) and mice (82) seem to be, at least partially,
hormone regulated. Several studies demonstrated that P4 and E2
influence rat and mouse MC density in different tissues, including
mammary glands and uterine tissue (82–85). We additionally sug-
gested a function for both hormones in the recruitment of murine
MCs from the periphery into the uterus as well as an impact on
MC activity (86). In agreement, several studies confirmed a major
effect of P4 and E2 on rat, mouse, and human MC activation (83,
87–90). By contrast, two other studies did not observe alterations
in the number of granulated or degranulated rat and mouse MCs
after P4 or E2 treatment (91, 92). Hunt and colleagues revealed
that E2 influences the expression of iNOS and TNF-α in murine
uMC (93). It can be assumed that the observed effects of P4 and E2
on MCs are in part of direct nature as MCs from different species
have been proven to express P4 and E2 receptors (85–87, 89, 94).
Studies analyzing the impact of hCG on MCs are rare to find in the
literature. One study investigated the histamine content in MCs in
a model of ovarian hyperstimulation induced in rabbits. However,
hCG application seemed not to change the histamine content in
MCs (95). Hormonal effects on MCs are summarized in Figures 1
and 2.

EFFECT OF PREGNANCY HORMONES ON DENDRITIC CELLS
As professional antigen-presenting cells, DCs are at the inter-
phase between the innate and the adaptive immune system; hence
their activation and modulation is critical for the outcome of
the immune response. Dependent on their activation status, DCs
either secrete pro- or anti-inflammatory cytokines, thereby induc-
ing immune responses or suppressing them, respectively. During
normal pregnancy, the majority of human and murine decidual
DCs presents an immature (tolerogenic) phenotype and mainly
produce IL-10, thus contributing to a fetus-friendly local envi-
ronment (96, 97). In line with this, spontaneous abortions in
humans and mice are associated with an increased number of
mature, IL-12-producing DCs (98, 99). Moreover, the importance
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of DCs for a proper decidualization and implantation has been
nicely shown by Plaks and colleagues in a mouse model (100).
Data regarding the influence of pregnancy-associated hormones
on DC function are widespread and inconsistent. DCs derived
from bone-marrow precursors or monocytes as well as DCs
from spleen or decidua have been shown to react differentially
to hormonal stimulation. This may offer a possible explanation
how the endocrine system supports the pregnant immune sys-
tem in tolerating the semi-allogeneic fetus while at the same
time being aware of pathogens; these cells being pleiotropic and
it should not come as a surprise that they have the machin-
ery to respond differently depending on the situation. DCs are
highly susceptible to hormonal stimulation by expressing recep-
tors for P4, E2, hCG, and LH (101–103). Hormonal stimulation
of activated bone-marrow derived DCs (BMDCs) resulted in the
majority of studies in an impaired up-regulation of MHCII mol-
ecules and co-stimulatory molecules associated with a reduced
capability to secrete pro-inflammatory cytokines (101, 104). This
would imply that upon hormonal stimulation they acquire a
rather pregnancy-friendly phenotype. The concrete impact of
P4 on IL-10 secretion by activated rat and mouse BMDCs was
differentially discussed and has to be further evaluated (101,
104, 105). In line with the hormonal-mediated induction of a
tolerogenic phenotype in activated BMDCs, their T-cell stimu-
latory capacity was reduced. This suggests that hormone-treated
DCs have a pregnancy-protective effect by suppressing alloreac-
tive T cell responses (101, 104, 105). However, results obtained
after the addition of P4, E2, and hCG to monocyte-derived DCs
(moDCs) from human peripheral blood are different from the
results obtained after hormonal stimulation of BMDCs. Here,
two studies showed that combinations of P4, E2, and hCG did
not change the expression of maturation markers of moDCs or
their T cell stimulatory capacity (106, 107). Segerer and colleagues
demonstrated, at least for hCG, a pregnancy-positive effect on
HLA-DR expression associated with a significant reduction in the
ability to stimulate T cells (108). Of great interest is the fact
that most of the published studies observed a significant up-
regulation of IL-10 production by human DCs after treatment
with pregnancy hormones (106, 107, 109). Uemura and colleagues
additionally proposed an induction of T cell differentiation into
Th2 (107), a phenotype that is reportedly pregnancy-friendly.
Analysis of hormonal effects on splenic DCs has been performed
in several mouse models, including models of autoimmune dis-
eases and pregnancy. In a murine model for multiple sclerosis,
namely experimental autoimmune encephalomyelitis (EAE), E2
treatment has shown to be protective. Here, E2 did not affect the
expression of activation markers and co-stimulatory molecules
of DCs but inhibit their ability to stimulate T cell proliferation
and secretion of Th1 and Th2 cytokines. The reduced T cell
stimulatory capacity was suggested to be due to an increased
expression of indoleamine 2,3-dioxygenase (IDO) in DCs after
E2 treatment (110, 111). Accordingly, hCG was also proven to
up-regulate IDO in DCs in a murine model of autoimmune dia-
betes (112). As for E2, it was reported that P4 seems to affect
the ratio of Th1-promoting DEC-205+ DCs and Th2-promoting
33D1+ DCs during pregnancy, favoring the dominance of 33D1+

DCs. The need of 33D1+ DCs for pregnancy success results from

the observation that depletion of this specific DC subset dur-
ing the perinatal period in mice caused substantial fetal loss
probably mediated through Th1 up-regulation via transient IL-
12 secretion (113). We have recently investigated the influence
of hCG and LH on the number and phenotype of peripheral
and local DCs in a murine model of disturbed tolerance to
the semi-allogeneic fetus. We found that the in vivo application
of both hormones prevented fetal rejection and this was asso-
ciated with a reduced number of total and mature DCs both
in the periphery and in decidua. Furthermore, we proved that
hCG-treated decidual DCs had an elevated capacity to induce
regulatory T (Treg) cells (103). This confirms the pregnancy-
protective impact of both gonadotropins via modulation of adap-
tive immune responses. Effects of AFP on different DC subsets
during pregnancy are almost unknown. Evidence for an AFP-
mediated induction of tolerogenic DCs came from a tumor model
where AFP has been demonstrated to induce tolerogenic DC capa-
ble of suppressing tumor-specific CD8+ cytotoxic T lymphocytes
within the tumor (114). Hormonal effects on DCs are summarized
in Figures 1 and 2.

EFFECT OF PREGNANCY HORMONES ON B CELLS
B lymphocytes are allocated to the adaptive immune system and
they are best known for their capability to secrete antibodies.
However, B cells do more than producing antibodies. They effi-
ciently present antigens and modulate the function of T cells
and DCs by producing cytokines (115, 116). During pregnancy,
various B cell subsets are proposed to differently affect preg-
nancy outcome [reviewed in Ref. (117)]. Basically, B cells can
be divided in two main populations, namely B1 and B2 B cells.
These two populations differ in their developmental origin, sur-
face marker expression and function (118). B1 B cells are then
further subdivided in B1a and B1b B cells based on the expres-
sion of the surface marker CD5 (119). Interestingly, B1a B cells
produce a specific type of antibody, the so-called natural anti-
bodies (120). Due to their poly-reactive nature, natural antibodies
are suggested to induce autoreactivity and thus are involved in
the onset of autoimmune diseases (121). Even during pregnancy,
B1a B cells producing natural antibodies are proposed to have
detrimental effects on pregnancy outcome. We recently showed
that the number of B1a B cells significantly decrease in the third
trimester of normal pregnant women while remain elevated in pre-
eclamptic patients (122). As patients suffering from pre-eclampsia
have augmented serum hCG levels compared to normal preg-
nant women, we assumed that hCG may be responsible for the
increased B1a B cell number. This assumption is further under-
lined by the fact that almost all B1a B cells express the LH/CG
receptor and expand in vitro upon hCG stimulation (122). It
was however shown that hCG inhibited antibody formation of
murine B cells (123, 124). However, these two mentioned studies
did not focus their analysis on B1a B cells but in total B cells. It
is tempting to speculate that hCG may influence cell phenotype
and antibody production differently in different B cell subsets. In
contrast to the detrimental effect proposed for natural antibod-
ies on pregnancy outcome, asymmetric antibodies (AABs), due
to their structural anomaly, favor pregnancy success by reduc-
ing alloreactive immune responses (125). AABs increase during
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FIGURE 3 | Hypothetical scenario presenting the influence of
pregnancy-associated hormones on adaptive immunity. The scenario
suggests several mechanisms by which E2, P4, and hCG influence adaptive
immune cells and thereby support pregnancy success. AABs, asymmetric

antibodies; ER, estrogen receptor; IDO, indoleamine 2,3-dioxygenase; IL-10,
interleukin-10; LH/CG-R, luteinizing hormone/chorionic gonadotropin
receptor; PIBF, progesterone-induced blocking factor; PR, progesterone
receptor.

pregnancy and their lack is associated with pregnancy failure in
humans (126, 127). Secretion of AABs seems to be, at least partially,
hormone regulated. P4 but not E2 provoke AAB secretion (128).
Hereby, P4 mediates its function via induction of PIBF (129).
Beside an influence on antibody formation and secretion, preg-
nancy hormones also regulate B cell development and cytokine
secretion. Administration of E2 alone, or in combination with
P4, preferentially suppressed IL-7 responding cells and their prog-
eny in bone-marrow (130). In contrast to P4 and E2, human B
cell stimulation by hCG seems to be highly dependent on hCG
doses and purity of hCG preparations (131–133). Recently, we
proposed another pregnancy-protective effect of hCG, namely its
capacity of increasing the regulatory function of human regulatory
B cells (Breg or B10) shown to contribute to fetal survival. Breg
express the LH/CG receptor and increase their IL-10 production
in response to hCG treatment (134). Hormonal effects on B cells
are summarized in Figure 3.

EFFECT OF PREGNANCY HORMONES ON T CELLS
T cells are key regulators of both the antibody and the cell-
mediated arms of the adaptive immune system and can be divided
into two subcategories, CD4 expressing T helper cells and cyto-
toxic T cells expressing CD8. According to their cytokine secretion
pattern, they are usually further subdivided in Th1, Th2, and Th3
cells although it is well known that this classification is oversimpli-
fied as further subsets as Th9 and Th17 has been described. T cells
mediate their function either by direct cell–cell contact or indi-
rectly by the secretion of cytokines defining the local environment
as a pro-inflammatory or anti-inflammatory one. Normal preg-
nancy is associated with a pro-inflammatory Th1 profile at early
and late pregnancy stages being important for a proper blastocyst
implantation and initiation of labor, respectively. At midgestation,
an anti-inflammatory Th2 profile guarantees tolerance of the for-
eign fetal antigens. Imbalances in cytokine profiles were associated
with human pregnancy complications (135), suggesting a major
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part for T cells in fetal tolerance by regulating the local cytokine
milieu. Steroid hormones are reportedly involved in modulat-
ing cytokine secretion by different T cell subsets. P4 and E2 are
proposed to influence the Th1/Th2 balance favoring a Th2 pre-
dominance at the fetal–maternal interface in humans and mice
(136–144). Hormonal effects are mainly mediated via their classi-
cal receptors expressed by human and murine T cells (16, 103, 143,
145, 146). However, Chien and colleagues provide evidence that P4
may act through non-classical steroid receptors to cause immune
modulation and suppression of T cell activation during pregnancy
(147). In addition to regulate the cytokine secretion of T cells,
steroid hormones and their mediators (e.g., glycodelin A) induce
apoptosis of effector T cells (148–150) and increase the expression
of pregnancy-protective molecules such as the leukemia inhibitory
factor (LIF) known to modulate immune responses during early
human and murine pregnancy (151, 152). In line with this, hCG
is proposed to support fetal survival by modulating murine T cell
activity and function (153, 154). More precisely, Khil and col-
leagues demonstrated that hCG prevented the development of the
disease in a murine model of autoimmune diabetes. Here, hCG
treatment efficiently suppressed IFN-γ production, but increased
IL-10 and TGF-β production in splenocytes. hCG application also
suppressed TNF-α production (155). In contrast, AFP apparently
has no direct effect on T lymphocytes. T cells stimulated with AFP
retain their full capacity to respond in mixed lymphocytes culture
(MLC) and cell-mediated lympholysis. However, AFP provokes
major changes in the functional status of monocyte-enriched,
MLC-stimulating cell population. This monocyte-enriched popu-
lation induces T suppressor cells while at the same time, suppresses
generation of cytotoxic T cells (156–158).

Pregnancy-associated hormones not only affect conventional
T cells but have also been shown to support the generation and
function of Treg cells. Treg cells represent a specialized subset
within the T cell compartment with unique properties. During
pregnancy, they are fundamentally involved in the suppression of
alloreactive immune responses and, thus their absence results in
worse pregnancy outcome both in humans (159) and mice (160).
The presence of Treg cells in the uterus before pregnancy seems
to be very relevant as well. A diminished endometrial expression
of their major transcription factor Foxp3 is associated with infer-
tility in women (161) while depletion of Treg cells in a murine
model derived in a hostile uterine microenvironment hindered
the implantation of the embryo (162). During the reproductive
cycle, Treg cells fluctuate (162–164) and this was suggested to be
hormone-driven (165). This could be interpreted as hormones
preparing the mother and particularly the tissue for pregnancy.
Already in the 80s hCG was assumed to induce human and murine
suppressor T lymphocytes (166–168). Nowadays, steroid hor-
mones and gonadotropins are proposed to regulate several aspects
of Treg cell biology, including generation, expansion, migration,
and suppressive function both in humans and mice (103, 145,
169–176). However, some studies provide evidence that P4 and
E2 induce a reduction of Treg cells or did not provoke changes
in the number of Treg cells (177–179). Thus, these contradictory
findings may depend on the markers used to define Treg cells, the
time point of analysis and the model used. Hence, more research
is needed to understand at which time point and through, which

mechanisms pregnancy hormones influence Treg cell function.
Hormonal effects on T cells are summarized in Figures 2 and 3.

THERAPEUTIC POTENTIAL OF PREGNANCY-ASSOCIATED
HORMONES IN ASSISTED REPRODUCTIVE TECHNIQUES
Immunological disorders have been suggested as one of the
major reasons for unexplained infertility, implantation failures,
and recurrent pregnancy loss. It has been discussed that alter-
ation in the number and function of immune cell populations
during the reproductive cycle and in early pregnancy stages may
result in the inability to become pregnant and in worse pregnancy
outcome. Women undergoing assisted reproductive techniques
(ART) often present recurrent implantation failures after in vitro
fertilization (IVF) and embryo transfer (ET). Hormonal treat-
ment with steroid hormones and gonadotropins before and after
ART was shown to support successful implantation and thereby
improve pregnancy rates (26, 180–182). Based on the data dis-
cussed here, it can be speculated that hormonal treatment in ART
counteract immunological disorders and may therefore, at least
partially explain improved pregnancy rates. By affecting immune
cell populations and their products, hormones are suggested to
influence the local environment and thereby support an opti-
mal implantation of the embryo (3). Lukassen and colleagues
showed that hormonal stimulation for IVF treatment positively
affected the CD56bright/CD56dim ratio in the endometrium by a
relative decrease in the cytotoxic CD56dim CD16+ NK cell num-
ber. Moreover, the same authors observed an increase in B cells and
macrophages and these effects were restricted to the endometrium
and could not be observed in peripheral blood (183). By doing so,
hormones may contribute to tissue remodeling and angiogenesis
resulting in a proper placentation and fetal nourishment. The pos-
itive effect of hCG on ART is underlined by a study of Mansour and
colleagues who showed that intrauterine injection of hCG before
ET in patients undergoing IVF significantly improved implanta-
tion and pregnancy rates (180). Unfortunately, the authors did not
analyze the number and activity of Treg cells although augmented
pregnancy rates after IVF have been associated with elevated Treg
cell numbers in peripheral blood (184). Interestingly, based on our
observation that hCG efficiently attracts Treg cells to trophoblasts
(145), the Egyptian IVF-ET Center conducted a clinical trial inves-
tigating the effect of intrauterine injection of hCG on endometrial
Treg cells. Upcoming results will prove whether hCG treatment
around implantation time may increase endogenous endometrial
Treg cell levels and thereby favor the implantation process.

CONCLUSION
Altogether, an exhaustive analysis of the literature indicates a
crucial role for sex hormones on a variety of immune cell popula-
tions building up a complex network of interactions between the
endocrine and the immune system. Irritations in this fine regulated
balance may result in implantation failure and undesired preg-
nancy outcome. Thus, further investigations on the immune mod-
ulating functions of pregnancy-associated hormones will improve
our understanding of endocrine–immune interactions before and
during pregnancy and may help to develop selective strategies in
the treatment of infertility and pregnancy complications.
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