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Introduction
The basic function of neurons is to receive, integrate, and trans-

mit signals. To do so, most neurons develop polarity by forming 

a single axon and multiple dendrites (Craig and Banker, 1994; 

Winckler and Mellman, 1999; Da Silva and Dotti, 2002; Horton 

and Ehlers, 2003). Neurons have the remarkable ability to polar-

ize even in symmetrical in vitro environments (Dotti et al., 1988; 

Craig and Banker, 1994). The processes of their polarization have 

been extensively studied using hippocampal neurons. These cells 

fi rst form several immature neurites that are capable of becoming 

either axons or dendrites. One of the neurites then acquires axo-

nal characteristics, whereas the others later become dendrites. 

Hippocampal neurons must use a robust internal mechanism that 

guarantees polarization, as they generate a single axon and multi-

ple dendrites even when polarity is altered by axonal amputation 

(Dotti and Banker, 1987; Goslin and Banker, 1989).

Recent studies have begun to defi ne the signaling path-

ways involved in neuronal polarization. Esch et al. (1999) re-

ported that the extracellular signals laminin and neuron-glia 

cell adhesion molecule can specify which neurite will become 

an axon. As effectors of spatial signals, rearrangements of the 

cytoskeleton are important, as actin fi lament instability (Bradke 

and Dotti, 1999) and tubulin assembly by collapsin response 

mediator protein-2 (Inagaki et al., 2001; Arimura and  Kaibuchi, 

2005) are reported to initiate axon formation. Recent work has 

shown that spatially localized intracellular signaling pathways, 

including phosphoinositide-3-kinase (PI 3-kinase), phosphati-

dylinositol (3,4,5) triphosphate, the mPar3–mPar6–aPKC complex 

(with the exception of some neurons in Drosophila melanogaster; 
Rolls and Doe, 2004), Cdc42, Rap1B, STEF/Tiam1, Rac, Akt, 

adenomatous polyposis coli, and  glycogen synthase kinase-3β, 

are involved in axon specifi cation for neuronal polarity formation 

(Shi et al., 2003, 2004; Menager et al., 2004; Schwamborn 

and Puschel, 2004; Jiang et al., 2005; Nishimura et al., 2005; 

Yoshimura et al., 2005), and PI 3-kinase is implicated as an 

 upstream molecule in these events (Shi et al., 2003; Arimura 

and Kaibuchi, 2005; Wiggin et al., 2005).

In spite of this progress, the mechanism and logic of 

how the polarized distribution of intracellular signals originates 

in the absence of external asymmetric cues remain elusive. 
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eurons have the remarkable ability to polarize 

even in symmetrical in vitro environments. Although 

recent studies have shown that asymmetric intra-

cellular signals can induce neuronal polarization, it re-

mains unclear how these polarized signals are organized 

without asymmetric cues. We describe a novel protein, 

named shootin1, that became up-regulated during polar-

ization of hippocampal neurons and began fl uctuating 

accumulation among multiple neurites. Eventually, shootin1 

accumulated asymmetrically in a single neurite, which 

led to axon induction for polarization. Disturbing the 

asymmetric organization of shootin1 by excess shootin1 

disrupted polarization, whereas repressing shootin1 

 expression inhibited polarization. Overexpression and 

RNA interference data suggest that shootin1 is required 

for spatially localized phosphoinositide-3-kinase  activity. 

Shootin1 was transported anterogradely to the growth 

cones and diffused back to the soma; inhibiting this 

transport prevented its asymmetric accumulation in 

 neurons. We propose that shootin1 is involved in the 

generation of internal asymmetric signals required for 

neuronal polarization.
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 During the polarization of cultured hippocampal neurons, 

 undifferentiated neurites undergo competitive elongation with 

each other. When one of them exceeds the others by a critical 

length, it rapidly elongates to become an axon (Goslin and 

Banker, 1989). This observation led to the proposal that a posi-

tive feedback loop and negative regulation among neurites are 

necessary for neuronal polarization (Goslin and Banker, 1989; 

Andersen and Bi, 2000; Banker, 2003). A locally acting positive 

feedback loop may amplify a small stochastic increase in sig-

nals until it exceeds a threshold to induce an axon, and negative 

regulation may also be important to prevent the formation 

of surplus axons. However, little is known about the molecular 

basis of such regulation.

To approach this problem, we performed proteome analyses 

of cultured hippocampal neurons using highly sensitive large-

gel 2D electrophoresis (2DE), which can detect �11,000 protein 

spots over a dynamic range of 1–105 (Inagaki and Katsuta, 2004). 

We describe a novel brain-specifi c protein, named shootin1. Our 

data suggest that shootin1 organizes its own polarized distribution 

to break neuronal symmetry through the PI 3-kinase pathway.

Results
Identifi cation of shootin1 by double 
proteome screenings
Cultured hippocampal neurons are a well-established system to 

study spontaneous neuronal polarization (Dotti et al., 1988; 

Craig and Banker, 1994). They extend several minor processes 

during the fi rst 12–24 h after plating (stages 1–2). One of these 

processes then begins to elongate continuously to become an 

axon (stage 3). The transition from stage 2 to 3 is the initial step 

of polarization (Fig. 1 A).

To identify proteins involved in neuronal polarization, we 

performed two separate proteome analyses of cultured rat hip-

pocampal neurons using a 93- × 103-cm large-gel 2DE (Inagaki 

and Katsuta, 2004). One was to detect proteins up-regulated 

during neuronal polarization (Fig. 1 A): we screened �6,200 

protein spots on 2DE gels and detected 277 that were consis-

tently up-regulated during the transition from stage 2 to 3 (n ≥ 3). 

The second analysis screened proteins enriched in axons (Fig. 1 B). 

Hippocampi dissected from embryonic day (E) 18 rat embryos 

were cut into �1-mm blocks and cultured on plastic dishes, 

where they formed complicated networks of radial axons in 

2 wk. The explants’ somatodendritic parts were then separated 

from the axon networks, and both were compared by 2DE. By 

screening �5,200 protein spots, we detected 200 spots enriched 

in the axon samples (n ≥ 3).

A total of 23 spots were detected by both screenings. 

Tryptic digestion and mass spectrometry of one of them, lo-

cated at a molecular mass of 60 kD and pI = 5.3 in gels (Fig. 1, 

A and B), identifi ed 10 peptides whose sequences corresponded 

to the human cDNA sequence KIAA1598 encoding a 5′-truncated 

ORF of 446 amino acids. A BLAST search identifi ed four 

 human EST clones (BI598285, BG720033, BE568283, and 

BI457767) and suggested that 10 additional amino acids are 

present in the complete ORF. We then cloned the cDNAs for the 

rat and human ORFs and termed them shootin1.

Rat and human shootin1 encode proteins of 456 amino 

 acids and predicted molecular masses of 52.4 and 52.6 kD, re-

spectively (Fig. 1 C). Domain searching revealed that shootin1 

contains three coiled-coil domains and a single proline-rich region 

(Fig. 1 D). It does not show signifi cant homology to previously 

known polypeptides, however, suggesting that it belongs to a 

novel class of proteins. Database searches also identifi ed a mouse 

orthologue of shootin1 (Fig. 1 C) and partial ORFs in  Macaca 
fascicularis, chick, zebrafi sh, and Fugu rubripes. Invertebrate 

homologues of shootin1 were not found in the databases. 

Thus, shootin1 is probably a late addition to the genome during the 

evolution of animals.

Shootin1 is brain specifi c and highly 
up-regulated during polarization
We raised an antibody against recombinant shootin1. It recog-

nized a 60-kD band, corresponding to the apparent Mr of na-

tive and recombinant shootin1, in immunoblots of rat cultured 

hippocampal neurons (Fig. 1 E, arrowhead). Consistent with 

the 2DE data for the metabolically labeled protein (Fig. 1 A), 

the level of shootin1 expression increased remarkably during 

stage 2/3 transition (14.4-fold increase; n = 4; P < 0.005) 

and remained high until day in vitro (DIV) 14, thereafter re-

turning to a low level by DIV28 when expression of the pre-

synaptic protein synaptophysin increased (Fig. 1 E). Immunoblot 

analysis of various rat tissues detected shootin1 in postnatal 

day (P) 4 and adult brains but not in other tissues,  suggesting 

that shootin1 is a brain-specifi c protein (Fig. 1 F). Expression 

of shootin1 was relatively low on E15, peaked around P4, 

and decreased to a low level in the adult brain (Fig. 1 G). Thus, 

the expression of shootin1 is up-regulated, both in hippocam-

pal neurons and in brain, during the period of axon formation 

and elongation.

Shootin1 accumulates in axonal growth 
cones during the stage 2/3 transition
Next, we examined the localization of shootin1 in cultured hip-

pocampal neurons. Immunocytochemical analysis showed a 

faint and diffuse staining of endogenous shootin1 in early stage 

2 neurons (18–24 h in culture; unpublished data). In late stage 2, 

moderate amounts of shootin1 appeared in some growth 

cones of minor processes (Fig. 1 H). We used a volume marker, 

5-chloromethylfl uorescein diacetate (CMFDA), to measure the 

relative concentration of shootin1: it was calculated by using 

CMFDA as an internal standard (shootin1 immunoreactivity/

CMFDA staining). The relative concentration of shootin1 accu-

mulated in the growth cones of late stage 2 neurons was 2–4 

times higher than that in the cell body (Fig. 1 H, arrowheads). 

In stage 3, shootin1 accumulated strongly in axonal growth cones 

(Fig. 1 I, arrows): 100% of axonal growth cones showed accu-

mulation (n = 19). The relative concentration of shootin1 in the 

axonal growth cones of stage 3 neurons was �10 times higher 

than that in the other regions. Notably, the accumulation seen at 

late stage 2 in minor processes mostly disappeared in stage 3 

(Fig. 1 I, arrowheads), with only 12% of the processes showing 

accumulation (n = 68). Shootin1 concentration in the cell body 

remained low throughout stages 2 and 3 (Fig. 1, H and I,  asterisks). 
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The accumulation of shootin1 in axonal growth cones was 

 observed until stage 5 (unpublished data).

In stage 2, shootin1 shows fl uctuating 
accumulation in multiple growth cones, 
concurrent with neurite elongation
To analyze the localization of shootin1 in living neurons, we 

monitored fl uorescent images of EGFP-shootin1 expressed in 

hippocampal neurons under the cytomegalovirus promoter 

 every 5 min. Although relatively high levels of EGFP-shootin1 

appeared in the soma, indicating that the expression exceeds 

the endogenous levels, its distribution in neurites was virtually 

identical to that of endogenous shootin1 (see the following 

paragraph). Consistent with the immunocytochemical data, we 

observed accumulation of EGFP-shootin1 in the growth cones 

of minor processes in late stage 2 neurons (Fig. 2 A). As re-

ported previously (Goslin and Banker, 1989), minor processes 

showed competitive extension and retraction before  polarization. 

Surprisingly, “hotspots” of EGFP-shootin1 accumulation re-

peatedly appeared and disappeared in the growth cones of 

 individual neurites (n = 11 cells; Fig. 2 A and Video 1, available 

at http://www.jcb.org/cgi/content/full/jcb.200604160/DC1). 

Most of the neurites elongated in conjunction with EGFP-shootin1 

accumulation and, conversely, retracted as EGFP-shootin1 

Figure 1. Identifi cation, structure, expression, and intracellular localization of shootin1. (A) Differential 2DE analysis of proteins in stage 2 (cultured for 
14 h) and stage 3 (cultured for 62 h) hippocampal neurons. The arrows indicate the protein spot of shootin1 enriched in the stage 3 sample (stage 3/2 = 3.2; 
n = 12; P < 0.001). (B) Differential 2DE analysis of proteins in cell body/dendrite and axon samples. The arrows indicate the same protein spot 
shown in A, which is also enriched in the axon samples (axon/somatodendrite = 1.6; n = 7; P < 0.005). (C) Amino acid sequence of rat, human, and 
mouse shootin1. Sequences of the peptides identifi ed by mass spectrometry analysis are underlined. (D) Schematic representation of rat shootin1, showing 
three coiled-coil domains (CC1–3) and a single proline-rich region. (E) Immunoblot analysis of purifi ed recombinant shootin1 and shootin1 in cultured rat 
hippocampal neurons at different stages. Immunoblot data of synaptophysin are also shown. (F) Immunoblot analysis of shootin1 in adult rat tissues and 
P4 brain. (G) Immunoblot analysis of shootin1 in rat brains at various developmental stages. (H and I) Immunofl uorescent localization of shootin1 in late 
stage 2 (H) and stage 3 (I) hippocampal neurons. Neurons were double stained with anti-shootin1 antibody (red) and a volume marker CMFDA (green). 
Quantitative profi les show the relative fl uorescence intensities of shootin1 and CMFDA and relative concentration of shootin1 (shootin1 immunoreactivity/
CMFDA staining). Arrows, arrowheads, and asterisks denote axonal growth cones, minor process growth cones, and cell bodies, respectively. Bars, 20 μm.
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 disappeared (Fig. 2 B). To measure relative concentration of 

EGFP-shootin1 in growth cones, we used the volume marker 

monomeric red fl uorescent protein (mRFP): it was calculated 

by using mRFP as an internal standard (EGFP-shootin1/mRFP). 

By quantifying EGFP-shootin1 and mRFP in growth cones and 

neurite elongation speed, we found a clear dose dependency of 

neurite elongation rate on shootin1 concentration in the growth 

cones of stage 2 neurons (Fig. 2 C).

Shootin1 accumulates asymmetrically 
in a single neurite before polarization
We continued observations until the neurons entered stage 3. 

Because long exposure to UV light damaged the cells, images were 

recorded every 30 min (n = 3; Fig. 2, D–G; and Video 2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200604160/DC1). 

After stage 2, when EGFP-shootin1 accumulation fl uctuated in 

individual neurites (Fig. 2 D), the neurons entered a phase in 

which one of the neurites was 10–15 μm longer than the others 

(Fig. 2, E and G; and Fig. S1). In most cases, this neurite would 

later become an axon (Goslin and Banker, 1989, 1990). In the 

longest neurites, accumulation of EGFP-shootin1 stabilized 

in the growth cone (Fig. 2 E and Fig. S1, neurite 1, arrows). 

 Simultaneously, the level of EGFP-shootin1 in its sibling neurites 

decreased dramatically (neurites 2–5). In this period, the mean 

number of neurites that showed EGFP-shootin1 accumulation 

decreased to 1.13 (n = 30). The longest neurites then underwent 

rapid elongation and the cells entered stage 3 (Fig. 2, F and G; 

and Fig. S1). Consistent with the immunocytochemical data 

(Fig. 1 I), EGFP-shootin1 remained highly concentrated in axonal 

growth cones during stage 3, whereas it disappeared from the 

growth cones of minor processes (Fig. 2, F and G; and Fig. S1). 

The dynamic shift of shootin1 accumulation into the nascent 

axon raises the possibility that it provides an intracellular asym-

metric signal for neuronal polarization.

Excess levels of shootin1 disturb 
its asymmetric distribution and induce 
formation of surplus axons
To examine whether the asymmetric accumulation of shootin1 

in a single neurite is important for neuronal polarization, we 

overexpressed EGFP-shootin1 or myc-tagged shootin1 (myc-

shootin1) in hippocampal neurons under the stronger β-actin 

promoter. A high level of EGFP-shootin1 was detected in the 

soma, with its frequent transport from the soma to growth cones 

(Fig. 3 A, arrowheads; and Video 3, available at http://www.jcb.

org/cgi/content/full/jcb.200604160/DC1). This in turn resulted 

in more continuous accumulation of EGFP-shootin1 in multiple 

growth cones (Fig. 3 A, arrows; compared with the dynamic 

fl uctuation of a lower level of EGFP-shootin1 in Fig. 2, A and B, 

and Video 1) and ectopic accumulation of myc-shootin1 in 

 minor process growth cones in stage 3 neurons (Fig. 3 B, 

 arrowheads). These results suggest that the limited amount 

of shootin1 is essential for its asymmetric accumulation in a 

single neurite.

We further cultured the neurons with overexpressed myc-

shootin1 until DIV7. Remarkably, 47 ± 2.1% (n = 3; 71 neu-

rons examined; P < 0.0001, compared with myc-GST) of the 

neurons bore more than one (two to four) axons that were 

 immunostained by the axon-specifi c markers anti–tau-1 (Fig. 3 C) 

and anti-synaptophysin (Fig. S2 A, available at http://www.

jcb.org/cgi/content/full/jcb.200604160/DC1) antibodies but were 

immunonegative for the dendrite-specifi c marker anti-MAP2 

Figure 2. Dynamic accumulation of EGFP-
shootin1 in growth cones of hippocampal 
 neurons. (A) A stage 2 hippocampal neuron 
expressing EGFP-shootin1 was observed un-
der a time-lapse fl uorescence microscope 
every 5 min. The full video is presented in 
Video 1 (available at http://www.jcb.org/
cgi/content/full/jcb.200604160/DC1). (B) The 
pictures represent a series of enlarged im-
ages of neurite 1 in A taken every 5 min. 
Asterisks indicate the front edge of the neurite. 
(C) Correlation between neurite elongation 
speed and EGFP-shootin1 levels in growth 
cones. Stage 2 hippocampal neurons express-
ing EGFP-shootin1 (green) and mRFP (red) was 
observed under a time-lapse fl uorescence mi-
croscope every 5 min. Relative levels of EGFP-
shootin1 and mRFP in growth cones were 
quantifi ed using Multi Gauge (n = 315). Rela-
tive concentration of EGFP-shootin1 in growth 
cones was calculated by using mRFP as an in-
ternal standard (EGFP-shootin1/mRFP), and 
the neurite elongation speeds during the next 
 5 min were measured. (D–F) A hippocampal 
neuron expressing EGFP-shootin1 was ob-
served by time-lapse fl uorescence microscopy 
every 30 min. The full video is presented in 
Video 2. Arrows indicate EGFP-shootin1 accu-
mulation in the growth cone of the nascent 
axon. (G) Elongation of neurites 1–5 shown in D. The circles denote growth cones with apparent shootin1 accumulation, and the diamonds indicate growth 
cones without the accumulation. The green shade denotes the period when the nascent axon (neurite 1) showed exclusive and continuous accumulation 
 before rapid elongation. Bars, 20 μm.
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antibody (Fig. S2 B). In contrast, only 2.5 ± 1.4% (n = 3; 81 

neurons examined) of control neurons with overexpressed myc-

GST formed supernumerary axons. On DIV4, 32 ± 1.8% of 

neurons overexpressing shootin1 bore multiple axons (n = 3; 

209 neurons examined; P < 0.002, compared with GST) that 

were immunoreactive for tau-1 and anti-synaptophysin antibod-

ies but were immunonegative for anti-MAP2 antibody. On the 

other hand, 10 ± 2.5% of control neurons overexpressing GST 

bore multiple axons (n = 3; 191 neurons examined). At 50 h in 

culture, 21 ± 0.9% of neurons overexpressing shootin1 bore 

multiple axon-like neurites (n = 3; 226 neurons examined; 

P < 0.001, compared with GST) that were immunoreactive for 

tau-1, whereas only 6 ± 1.2% of neurons overexpressing GST 

bore multiple axon-like neurites (n = 3; 173 neurons examined). 

We also quantifi ed the length of the neurites. Neurites labeled 

by axonal markers were markedly longer than dendrites (Fig. 3 D). 

Interestingly, the sum of the length of neurites in neurons over-

expressing shootin1 was similar to that in control neurons on 

DIV7 (Fig. 3 E) and DIV4 (not depicted). Hippocampal neu-

rons elongate axons rapidly (43 μm/d) from stages 3 to 5 (DIV7; 

Dotti et al., 1988). We consider that the limited amount of struc-

tural components produced in cell bodies similarly limits the 

total neurite elongation in shootin1-overexpressing and control 

neurons. A similar limitation of neurite growth in neurons with 

multiple axons was reported previously (Jiang et al., 2005). 

Multiple axons were also induced by nontagged shootin1 co-

transfected with EGFP (43 ± 2.6%; n = 3; 67 neurons  examined; 

P < 0.001, compared with EGFP), whereas a small  population 

(1.6 ± 1.6%; n = 3; 61 neurons examined) of control neurons 

expressing EGFP formed supernumerary axons, thereby ruling 

out the possibility that tagging myc to shootin1 infl uences the 

effects. These results suggest that the asymmetric accumulation 

of shootin1 is involved in neuronal polarization.

Repressing shootin1 expression inhibits 
neuronal polarization
We next suppressed shootin1 expression using a vector-based 

RNAi system that expresses microRNA (miRNA). To ensure a 

high level of expression of miRNA before polarization, hippo-

campal neurons prepared from E18 rat embryo and transfected 

with the expression vector of a miRNA designated against 

shootin1 or a control miRNA were plated on polystyrene plates 

without any coating. After 20 h for the induction of the miRNA 

expression, the cells were collected and cultured on coverslips 

coated with polylysine and laminin. The shootin1 miRNA re-

duced the level of neuronal shootin1 (Fig. 3 F, arrows), in com-

parison to control neurons (arrowheads) and neurons transfected 

with the control miRNA. Repression of shootin1 expression by 

the miRNA led to signifi cant suppression of neuronal polari-

zation at 50 and 70 h in culture, whereas the control miRNA 

had no such effect (Fig. 3 G). On the other hand, 100% of neu-

rons transfected with the shootin1 miRNA (n = 25) became 

 polarized on DIV7. As the 20-h delay in neuronal plating 

might affect time course of neuronal polarization after plating, 

we also performed similar experiments using E17 rat embryo. 

Essentially equivalent data were obtained with E17 rat embryo 

Figure 3. Effects of shootin1 overexpression 
and RNAi on polarization of hippocampal 
 neurons. (A) A neuron overexpressing EGFP-
shootin1 was observed every 5 min under a 
time-lapse fl uorescence microscope. The full 
video is presented in Video 3 (available 
at http://www.jcb.org/cgi/content/full/jcb.
200604160/DC1). Arrows indicate EGFP-
shootin1 accumulated at a high level in growth 
cones. Arrowheads indicate frequent transport 
of shootin1 from the cell body to the growth 
cones. (B) Stage 3 neurons overexpressing 
myc-shootin1 were immunostained by anti-myc 
antibody (red). Arrowheads indicate myc-
 shootin1 aberrantly accumulated in the growth 
cones of minor processes. (C) Hippocampal 
neurons overexpressing myc-shootin1 were 
cultured for 7 d and then double immuno-
stained by anti-myc (green) and anti–tau-1 
(red) antibodies. Arrowheads indicate axons 
labeled by anti–tau-1 antibody. (D) Quantifi ca-
tion of the neurite lengths of the neurons (DIV7) 
with surplus axons. The lengths of the longest 
and secondary axons and dendrites were 
measured in neurons overexpressing myc-
 shootin1 (n = 26) or myc-GST (n = 27). Data 
present neurite length as means ± SE. 
(E) Quantifi cation of the total neurite lengths 
of the neurons (DIV7) overexpressing myc-
 shootin1 or myc-GST. (F) Neurons transfected 

with the miRNA or a control miRNA vector were cultured for 50 h. They were then fi xed and immunostained with anti-shootin1 antibody. The vectors for 
miRNA and control miRNA expressions are designed to coexpress EGFP. (G) Neurons prepared from E18 or E17 embryo and transfected with the miRNA or 
a control miRNA vector were cultured. Data present percentages of neurons bearing axons (stage 3 neurons) as means ± SE (**, P < 0.02; ***, P < 0.002; 
n = 3; a total of 752 neurons were examined). Black dots present percentages of nontransfected neurons bearing axons. (H and I) Quantifi cation of the 
 total neurite lengths of the neurons overexpressing myc-shootin1 or myc-GST (H) or expressing shootin1 miRNA or control miRNA (I). Data present neurite 
length as means ± SE (***, P < 0.0005; n = 3; a total of 761 neurons for H and 568 neurons for I were examined). Bars, 50 μm.
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(Fig. 3 G). The signifi cant suppression of neuronal polarization 

by shootin1 RNAi provides evidence that shootin1 is involved 

in neuronal polarization.

Shootin1 accumulation in growth cones 
stimulates neurite elongation during 
the stage 2/3 transition
As described, shootin1 showed fl uctuating accumulation in 

growth cones concurrent with neurite elongation in stage 2 

 neurons, raising the possibility that shootin1 accumulation in 

growth cones stimulates neurite elongation. During the stage 

2/3 transition, neurites of hippocampal neurons show dynamic 

elongation and retraction without a remarkable increase in total 

neurite length (Goslin and Banker, 1989). In addition, the stage 

2/3 transition is a critical period of neuronal polarization. 

 Therefore, we examined the effect of shootin1 overexpression 

and RNAi during this period (24 and 48 h in culture). In contrast 

to the data of DIV7 (Fig. 3 E) and DIV4, shootin1 overexpres-

sion induced a signifi cant increase in total neurite length during 

this period (Fig. 3 H). Furthermore, repression of its level by 

RNAi resulted in a signifi cant decrease in it (Fig. 3 I). Along 

with the time-lapse data, these results suggest that shootin1 

 accumulation in growth cones stimulates neurite elongation 

during the transition from stage 2 to 3.

Shootin1 is anterogradely transported to 
the growth cones with wave-like structures 
and diffuses back to the soma
We next asked how shootin1 accumulates asymmetrically in 

hippocampal neurons. As already noted (Fig. 3 A, arrowheads), 

the series of time-lapse imaging revealed active transport of 

shootin1 from the cell body to the growth cones in stages 2 and 

3 neurons (Fig. 4 A). The shootin1 transport was observed along 

minor processes and axons. Ruthel and Banker (1998, 1999) 

 reported wave-like anterograde movement of growth cone–like 

structures along minor processes and axons of cultured hippo-

campal neurons. The transport rate of these “waves” was �3 

μm/min, similar to that of slow axonal transport component b, 

which transports actin (Lasek, et al., 1984; Brown, 2003). In 

addition, waves were enriched in F-actin and their movement 

was reversibly blocked by the actin-disrupting agent cytochalasin. 

Therefore, Ruthel and Banker (1998, 1999) suggested that 

actin and other cytoskeletal components are transported as 

waves from the cell body to neurite tips via an actin-dependent 

mechanism. Shootin1 traveled as discrete boluses with growth 

cone–like structures at a mean rate of 1.0 ± 0.1 μm/min (n = 12), 

which is similar to the speed of wave transport. We occasion-

ally observed transient retrograde transport of GFP-shootin1. 

However, as in the case of the wave, retrograde transport 

was rare and short-lived, quickly reverting to anterograde move-

ment. In addition, the boluses of shootin1 were enriched for 

F- actin (Fig. 4 B) and the transport was arrested by the actin-

 disrupting agent cytochalasin D within 5 min (Fig. S3 A, available 

at http://www.jcb.org/cgi/content/full/jcb.200604160/DC1), as 

reported for the waves. Blebbistatin, an inhibitor of myosin II 

(Straight et al., 2003), also stopped shootin1 transport (Fig. 

4 C). These re sults suggest that shootin1 is anterogradely trans-

ported with the wave-like structure by an actin- and myosin-

 dependent mechanism.

Within 2 h of the cessation of the transport by blebbistatin 

or cytochalasin D, shootin1 accumulation in the axonal growth 

cones of stage 3 neurons disappeared (Fig. 4 D and Fig. S3 B, 

arrows) and a relatively high level of shootin1 was observed in 

the soma, axonal shaft, and minor processes (arrowheads). To 

examine whether shootin1 returned back from the axonal growth 

cones to the cell bodies by diffusion or was locally degraded in 

the growth cones and newly synthesized in the cell body, we 

used the photoconvertible reporter Kaede (Ando et al., 2002) 

to distinguish old shootin1 from newly synthesized shootin1. 

Figure 4. Shootin1 is anterogradely transported to the growth cones with 
wave-like structures and diffuses back to the soma. (A) Distal movements 
of EGFP-shootin1 within neurite shafts from the cell body to a growth 
cone. The arrows indicate boluses of EGFP-shootin1. (B) A stage 3 hippo-
campal neuron double stained with anti-shootin1 antibody and Rhodamine 
phalloidin. Shootin1- and F-actin–enriched wave is indicated by arrowheads. 
(C) Serial time-lapse images showing the effect of 50 μM blebbistatin on 
 anterograde transport of EGFP-shootin1. Blebbistatin was applied to the 
medium for between 35 and 40 min. EGFP-shootin1 in the neurite shaft is 
indicated by arrowheads. (D) Disturbance of shootin1 transport by bleb-
bistatin inhibits its accumulation in axonal growth cones. Stage 3 hippo-
campal neurons (cultured for 48 h) were incubated with 50 μM blebbistatin 
for 1 h and stained with anti-shootin1 antibody. (E) Shootin1 diffuses from 
the axonal growth cone to the cell body. Kaede-shootin1 expressed in 
stage 3 hippocampal neurons was converted from green to red using UV 
light. 1 h after the cessation of shootin1 transport by 50 μM blebbistatin, 
distributions of red Kaede-shootin1 and newly synthesized green Kaede-
shootin1 were examined. Bars: (A and B) 20 μm; (C–E) 50 μm. 
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Kaede-shootin1 expressed in stage 3 hippocampal neurons was 

converted from green to red using UV light, and shootin1 trans-

port was blocked by blebbistatin (Fig. 4 E). 1 h after the cessa-

tion of shootin1 transport, the accumulation of the red 

Kaede-shootin1 in the axonal growth cones decreased (Fig. 4 E, 

yellow arrows), whereas the red fl uorescence of Kaede-shootin1 

increased in the soma and shaft (yellow arrowheads). On the 

other hand, we could not detect new synthesis of green Kaede-

shootin1 in the soma (Fig. 4 E, blue arrowhead). These data 

suggest that shootin1 passively diffuses back from the growth 

cones to the cell bodies.

Inhibition of shootin1 transport prevents 
its asymmetric accumulation in neurons
We next asked whether the anterograde transport of shootin1 is 

involved in its asymmetric accumulation in hippocampal neu-

rons. As shown in Fig. 5 A and Fig. S3 C, cessation of shootin1 

transport in stage 2 neurons by blebbistatin or cytochalasin D 

prevented accumulation of shootin1 in multiple growth cones. 

Stage 2 neurons were cultured for 36 h in the presence of bleb-

bistatin or cytochalasin D. As described, in control neurons, 

shootin1 accumulates asymmetrically in growth cones of na-

scent axons during this period. On the other hand, shootin1 did 

not accumulate in single neurites in the presence of these drugs 

(Fig. 5 B and Fig. S3 D). Cessation of shootin1 transport in al-

ready polarized stage 3 neurons also prevented accumulation of 

shootin1 in axonal growth cones, as described (Fig. 4 D and Fig. 

S3 B). These data indicate that the actin- and myosin-dependent 

anterograde transport of shootin1 is necessary for its asymmet-

ric accumulation in single growth cones.

Shootin1 regulates the localization of 
PI 3-kinase activity in hippocampal neurons
Recent studies indicate that PI 3-kinase is located at a critical 

upstream position in signaling pathways for neuronal polariza-

tion (Arimura and Kaibuchi, 2005; Wiggin et al., 2005). We fi -

nally examined whether shootin1 interacts with the PI 3-kinase 

pathway. The physiological association of shootin1 and PI 3-

 kinase was examined by coimmunoprecipitation assay. When 

shootin1 was immunoprecipitated from P5 rat brain lysates, 

 coimmunoprecipitation of the p85 subunit of PI 3-kinase was 

detected (Fig. 6 A). Shootin1 was also reciprocally coimmuno-

precipitated with p85, indicating that it associates with p85 in 

vivo. PI 3-kinase activity, indirectly visualized by the phosphor-

ylation of Akt at Ser473 (P-Akt), was enriched in the axonal 

growth cones of stage 3 neurons (Fig. 6 B, arrows) as reported 

(Shi et al., 2003) and preferentially colocalized there with 

shootin1 (Fig. 6 B, insets). We exogenously coexpressed 

shootin1 and p85 in HEK293T cells but could not detect co-

immunoprecipitation between shootin1 and p85 (not depicted). 

Thus, shootin1 may interact with PI 3-kinase through unidenti-

fi ed neuronal proteins. As shown recently (Yoshimura et al., 

2006), overexpression of constitutively active PI 3-kinase 

(Myr-PI 3-K p110) induced formation of multiple axons (Fig. 6 H 

and Fig. S4 B, available at http://www.jcb.org/cgi/content/full/

jcb.200604160/DC1), as in the case of shootin1 overexpression. 

Jiang et al. (2005) also reported that overexpression of constitu-

tively active Akt (Myr-Akt), a downstream kinase of PI 3-K, in-

duced formation of multiple axons. On the other hand, inhibition 

of PI 3-kinase activity by 20 μM LY294002, a specifi c inhibitor 

of PI 3-kinase, delayed neuronal polarization (Fig. 6 C), as re-

ported previously (Menager et al., 2004) and as in the case of 

shootin1 RNAi. These results suggest that shootin1 interacts 

with PI 3-kinase and is involved in a similar pathway mediating 

neuronal polarity.

Next, we examined whether shootin1 functions upstream 

of PI 3-kinase or vice versa. Shootin1 RNAi decreased its level 

in axonal growth cones, which in turn inhibited accumulation of 

PI 3-kinase activity there (Fig. 6 D, arrows), suggesting that 

shootin1 in axonal growth cones is required for accumulation of 

PI 3-kinase activity there. Conversely, myc-shootin1 over-

expression induced its ectopic accumulation in the growth cones 

of minor processes, which in turn resulted in ectopic accumula-

tion there of P-Akt (Fig. 6 E, arrowheads), thereby suggesting 

that accumulation of shootin1 can recruit PI 3-kinase activity. 

On the other hand, inhibition of PI 3-kinase activity by 

LY294002 did not affect the accumulation of shootin1 in axonal 

growth cones (Fig. 6 F, arrows). Shootin1 overexpression or 

RNAi did not change the activity of PI 3-kinase in hippocampal 

Figure 5. Inhibition of shootin1 transport prevents its asymmetric accu-
mulation in hippocampal neurons. (A) Stage 2 hippocampal neurons 
treated with 50 μM blebbistatin for 1 h were double stained with anti-
 shootin1 antibody (red) and a volume marker CMFDA (green). Quantitative 
profi les show the relative fl uorescence intensities of shootin1 and CMFDA 
and the relative concentration of shootin1 (shootin1 immunoreactivity/ 
CMFDA staining) in neurites 1–4. The arrowheads and asterisks denote the 
minor processes and cell body, respectively. (B) Hippocampal neurons were 
treated with 50 μM blebbistatin at 14 h in vitro, further cultured for 36 h, 
and double stained with anti-shootin1 antibody (red) and CMFDA (green). 
Quantitative profi les show the relative fl uorescence intensities of shootin1 
and CMFDA and the relative concentration of shootin1 in neurites 1–6. 
The asterisks denote the cell body. Bars, 50 μm.
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neurons (Fig. 6 G), ruling out the possibility that the expression 

level of shootin1 changes the total activity of PI 3-kinase in 

neurons. These results suggest that shootin1 regulates  subcellular 

localization of PI 3-kinase activity in hippocampal neurons.

We further examined the functions of shootin1 and PI 3-

kinase within the cell polarity pathways. Inhibition of PI 3-kinase 

activity by LY294002 led to a reduction in the percentage of 

neurons with multiple axons induced by shootin1 overexpression 

(Fig. 6 H and Fig. S4 A). On the other hand, multiple axon 

formation by overexpression of constitutively active PI 3-kinase 

was not inhibited by shootin1 RNAi (Figs. 6 H and Fig. S4 B). 

Collectively, these results provide evidence that shootin1 func-

tions upstream of PI 3-kinase and is required for spatially 

 localized PI 3-kinase activity, which is essential for neuronal 

polarization (Shi et al., 2003).

Discussion
We have identifi ed a novel brain-specifi c protein, shootin1, 

 using highly sensitive 2DE-based proteomics. The spatiotemporal 

localization of shootin1 in hippocampal neurons changed dy-

namically during polarization: it became up-regulated, began 

fl uctuating accumulation among multiple neurites, and eventu-

ally accumulated asymmetrically in a single neurite, which led 

to axon induction for polarization. Disturbing the asymmetric 

organization of shootin1 by excess shootin1 induced formation 

of multiple axons, whereas repressing shootin1 expression 

 inhibited polarization. These results suggest that shootin1 plays 

a critical role in neuronal polarization.

Shootin1 in generation of an asymmetric 
signal for neuronal polarization
How does the symmetric localization of shootin1 shift to 

 asymmetric localization before polarization? Does shootin1 

spontaneously organize its own polarized distribution without 

asymmetric cues? Two types of regulation have been postulated 

for a mechanism that accounts for spontaneous neuronal polar-

ization (Craig and Banker, 1994; Andersen and Bi, 2000). One 

is a positive feedback loop acting locally in neurites, where a 

stochastic increase in signals is enhanced until their level ex-

ceeds a threshold to induce an axon. If accumulation of a partic-

ular molecule in growth cones stimulates neurite elongation and 

if its accumulation increases in proportion to neurite length, 

such a molecule can constitute the positive feedback loop to en-

hance its own signal for axon formation (Goslin and Banker, 

1990; Craig and Banker, 1994). Our data suggest that shootin1 

accumulation in growth cones stimulates neurite elongation 

during the stage 2/3 transition. In addition, shootin1 may accu-

mulate in growth cones in a neurite length–dependent manner, 

as it is actively transported from the cell body to growth cones 

and its retrograde diffusion to the cell body should vary  inversely 

with neurite length (Goslin and Banker, 1989). Consistent with 

this notion, inhibiting the anterograde transport of shootin1 dis-

turbed its asymmetric accumulation in neurons. Thus, shootin1 

Figure 6. Shootin1 regulates the localization 
of PI 3-kinase activity in hippocampal neurons. 
(A) Brain lysates from P5 rat brain were incu-
bated with anti-shootin1 antibody, anti-p85 
antibody, or control IgG. The immunoprecipi-
tates were analyzed by immunoblotting with 
anti-shootin1 and anti-p85 antibodies as indi-
cated. (B) Stage 3 hippocampal neurons were 
incubated with DMSO as control for 10 h and 
double stained with anti-shootin1 antibody 
and anti–P-Akt (Ser473) antibody. Arrows indi-
cate an axonal growth cone. Note that PI 3-
 kinase activity was preferentially colocalized 
with shootin1 in the axonal growth cone (insets). 
(C) Neurons were cultured in the normal 
 medium or in the presence of 20 μM LY294002 
or DMSO. Data present percentages of neu-
rons bearing axons (stage 3 neurons) as means 
± SE (**, P < 0.005; ***, P < 0.002; n = 3; 
a total of 699 neurons were examined). 
(D) Stage 3 neurons transfected with the miRNA 
against shootin1 were double stained with 
anti-shootin1 antibody (blue) and anti–P-Akt 
antibody (red). The vector for the miRNA 
 expressions is designed to coexpress EGFP 
(green). Arrows indicate a shootin1-immuno-
negative axonal growth cone without remark-
able accumulation of P-Akt. (E) Shootin1 
overexpressed in stage 3 neurons accumulated 
ectopically in minor processes together with P-Akt (arrowheads). (F) Stage 3 hippocampal neurons were incubated with 20 μM LY294002 for 10 h and 
double stained with anti-shootin1 antibody and anti–P-Akt antibody. Arrows indicate a P-Akt–immunonegative axonal growth cone with remarkable 
 shootin1 accumulation. (G) Primary cultured hippocampal neurons were transfected by pCAGGS-myc-shootin1 or pCAGGS-myc-GST (control; left) or were 
transfected with the miRNA against shootin1 or a control miRNA (right) using Nucleofector. The effi ciency of transfection was >80%. After 36 h in culture, 
cell lysates were collected and immunoblotted by anti–P-Akt antibody to monitor PI 3-kinase activity. (H) Hippocampal neurons overexpressing myc-shootin 1 
were cultured for 7 d in the presence of 20 μM LY294002 or DMSO (n = 3; 198 neurons examined). Neurons transfected with pCAGGS–Myr–PI 3- kinase 
p110 plus the miRNA against shootin1 or pCAGGS–Myr–PI 3-kinase p110 plus a control-miRNA were also cultured for 7 d (n = 3; 225 neurons 
 examined). Data present percentages of neurons with multiple axons as means ± SE. **, P < 0.001. Bars, 20 μm.
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is a good candidate molecule for the requisite positive feedback 

loop for axon induction (Fig. 7 A).

The second component is negative regulation to prevent the 

formation of surplus axons (Craig and Banker, 1994; Andersen 

and Bi, 2000). Because the concentration of shootin1 in the cell 

body is very low and limited throughout stages 2 and 3, the afore-

mentioned positive feedback loop may elicit competition among 

neurites for a limited amount of shootin1: an increase in shootin1 

in one growth cone may lead to a decrease in sibling growth 

cones (Fig. 7 B). Indeed, sustained accumulation of shootin1 in 

one growth cone reduced levels in its sibling neurites. Further-

more, excess levels of shootin1 prevented its redistribution and 

induced the formation of surplus axons. Thus, the negative regu-

lation to prevent formation of surplus axons may be achieved by 

competition among neurites for a limited amount of shootin1.

Fig. 7 C shows our current model in which shootin1 gen-

erates an asymmetric signal for neuronal polarization. In this 

model, shootin1 up-regulation triggers the aforementioned pos-

itive and negative regulation, which shifts the symmetry of neu-

rons from a stable to an unstable state. Eventually, shootin1 

accumulates asymmetrically in a single neurite, through ampli-

fi cation of its stochastic signals and competitive accumulation 

among neurites, thereby leading to neuronal polarization.

Shootin1 and previously described 
mechanisms for neuronal polarization
Recent papers indicate that PI 3-kinase is located at an upstream 

position in signaling pathways for neuronal polarization involv-

ing many molecules, such as phosphatidylinositol (3,4,5) tri-

phosphate, the mPar3–mPar6–aPKC complex, Cdc42, Rap1B, 

STEF/Tiam1, Rac, Akt, adenomatous polyposis coli, glycogen 

synthase kinase-3β, and collapsin response mediator protein-2 

(Shi et al., 2003; Arimura and Kaibuchi, 2005; Wiggin et al., 

2005). We found that shootin1 interacts with PI 3-kinase and is 

required for spatially localized PI 3-kinase activity in hippo-

campal neurons. Furthermore, a series of overexpression and 

loss of function studies suggested that shootin1 functions up-

stream of PI 3-kinase in regulating neuronal polarity. Thus, 

shootin1 may be involved in the organization of polarized PI 3-

kinase activity (Fig. 7 C), which is essential for neuronal polar-

ization (Shi et al., 2003).

Recently, Jacobson et al. (2006) showed time-lapse imag-

ing of the motor domain of kinesin-1 in cultured hippocampal 

neurons. As in the case of shootin1, the kinesin-1 motor domain 

transiently accumulated in different minor processes of stage 2 

neurons and selectively and continuously accumulated in the 

nascent axon during the stage 2/3 transition, thereby indicating 

that it serves as a very early marker for the symmetry breaking 

event. The present data showed that shootin1 accumulation in 

growth cones was induced by the actin- and myosin-dependent 

wave-like transport and stimulated neurite elongation. On the 

other hand, the accumulation of the kinesin-1 motor domain 

may be dependent on microtubule and was not related to neurite 

elongation. It is intriguing to analyze how these molecules inter-

act during polarization.

In addition to internal signals for polarization, additional 

external cues are likely to adjust the orientation of an axon and 

dendrites in situ. Although the identities of such cues in the 

brain are not yet clear, Esch et al. (1999) reported that the spa-

tially asymmetric extracellular signals of laminin and neuron-glia 

cell adhesion molecule can specify which neurite will become 

an axon under experimental conditions. The present study does 

not rule out the possibility that shootin1 is modifi ed by other 

molecules. By regulating the activity of shootin1, additional 

molecules might further adjust the orientation of an axon and 

dendrites in situ.

In conclusion, we have identifi ed shootin1, a novel protein 

involved in neuronal polarization. Based on the present fi nd-

ings, we proposed a model in which shootin1 expression trig-

gers the positive and negative regulation required for neuronal 

symmetry breaking. Although we cannot rule out the involve-

ment of other potential mechanisms, our data provide an insight 

into how internal asymmetric signals are generated during neu-

ronal polarization.

Materials and methods
Cultures and metabolic labeling
Hippocampal neurons prepared from E18 rat embryos were cultured as 
described previously (Inagaki et al., 2001). For hippocampal explant cul-
ture, the hippocampi dissected from E18 rat embryos were cut into blocks 
(�1 mm), carefully washed to remove dissociated cells, and cultured on 
polylysine- and laminin-coated plastic dishes. The explants started to ex-
tend radial axons on the dishes within 12 h. On DIV14, the radial axons 
formed complicated networks around the explants. The axonal networks 
were usually devoid of cell bodies, dendrites, and nonneuronal cells (Fig. 
1 B), although we occasionally observed migration of neurons from blocks 
onto axonal networks. Such cells were rigorously removed under a micro-
scope using pipette tips. Explants containing somatodendritic parts were 
separated from radial axons by applying streams of medium to the explants 
with a pipette, and the explants were then collected in microcentrifuge tubes. 

Figure 7. A model for the involvement of shootin1 in generation 
of an asymmetric signal for neuronal polarization. (A) A positive 
feedback loop between shootin1 accumulation in growth cone 
and shootin1-induced neurite elongation. (B) Competition among 
neurites for a limited amount of shootin1. (C) Shootin1 up-regulation 
triggers local positive feedback loops (red arrows) and negative 
regulations (blue arrows). Eventually, shootin1 will be asymmetri-
cally accumulated in a single neurite and recruit PI 3-kinase activity 
there, thereby leading to neuronal polarization.
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Removal of the explants and dissociated cells from axon networks was veri-
fi ed by microscopy.

For quantitative 2DE, stages 2 and 3 neurons were metabolically la-
beled with the culture medium containing 13% of the normal levels of me-
thionine and cysteine plus Pro-mix L-[35S] in vitro cell labeling mix (containing 
�70% L-[35S]methionine and �30% L-[35S]cysteine; GE Healthcare) for 4 h. 
Hippocampal explants were labeled with the same medium for 24 h.

Highly sensitive gel 2DE and protein identifi cation by mass spectrometry
2DE was performed as reported previously (Oguri et al., 2002), using a 
93- × 103-cm large-gel system (Inagaki and Katsuta, 2004). For differen-
tial 2DE, neurons or explants were metabolically labeled and protein spots 
separated by 2DE gels were visualized by autoradiography. For protein 
identifi cation, unlabeled protein samples from 2-wk-old rat brains were 
separated by the 2DE gel and visualized by silver staining. The protein 
spots corresponding to the radio-labeled ones were then excised from gels 
and in-gel digested as described previously (Nomura et al., 2004). Matrix-
assisted laser desorption/ionization mass spectrometry was performed using 
a Voyager Elite equipped with delayed extraction (Applied Biosystems). 
Database searches were conducted using the Mascot program (Matrix 
 Science) and National Center for Biotechnology Information databases.

Cloning of shootin1
cDNA encoding KIAA1598 was provided by T. Nagase and O. Ohara 
(Kazusa DNA Research Institute, Chiba, Japan). Full-length cDNA of hu-
man shootin1 was obtained by PCR of KIAA1598 with the primers 5′-G C-
G G A T C C A T G A A C A G C T C G G A C G A A G A G A A G C A G C T G C A G C T C A T T A C C A G-
T C T G A A G  and 5′-G C G G A T C C C T A C T G G G A G G C C A G T A T T C . cDNA en-
coding rat shootin1 was amplifi ed by PCR from a rat brain cDNA library 
(CLONTECH Laboratories, Inc.) with the primers 5′-C C G C T C G A G A T G A A-
C A G C T C G G A C G A G G A G A A G  and 5′-C C G C T C G A G T T A C T G G G A G G-
C C A G G A T T C C C T T C A G . The cDNAs were then subcloned into pCMV 
(Stratagene), pCAGGS with a β-actin promoter (provided by J. Miyazaki, 
Osaka University, Osaka, Japan; Niwa et al., 1991), pEGFP (CLONTECH 
Laboratories, Inc.), pGEX (GE Healthcare), and pKaede-MC1 (MBL Inter-
national Corporation) vectors.

Protein and antibody preparation
Recombinant shootin1 was expressed in Escherichia coli as a GST fusion 
protein and purifi ed on a glutathione–Sepharose column (GE Healthcare), 
after which GST was removed from shootin1 by PreScission protease (GE 
Healthcare). Rabbit polyclonal anti-shootin1 antibody was raised against 
the recombinant shootin1 and affi nity purifi ed before use.

Immunocytochemistry, immunoblot, and immunoprecipitation
Immunocytochemistry, CMFDA staining, Rhodamine phalloidin staining, 
and immunoblot were performed as described previously (Inagaki et al., 
2001). For immunoprecipitation, P4 or P5 rat brains were extracted by 
 addition of lysis buffer (50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 150 mM NaCl, 
1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, 2 mM phenyl-
methylsulfonyl fl uoride, 5 μg/ml leupeptin, 10 mM NaF, 1 mM Na3VO4, 
and 10 mM β-glycerophosphate) and centrifuged at 100,000 g for 30 min 
at 4°C. The supernatants were incubated with antibodies overnight at 4°C, 
and immunocomplexes were then precipitated with protein G–Sepharose 
4B (GE Healthcare). After washing out beads with RIPA buffer, immuno-
complexes were analyzed by immunoblot.

Microscopy
Fluorescent and phase-contrast images of neurons were acquired at room 
temperature using a fl uorescent microscope (Axioplan 2; Carl Zeiss Micro-
Imaging, Inc.) equipped with a Plan-NEOFLUAR 40×, 0.75 NA, or 20×, 
0.50 NA, objective, a charge-coupled device camera (AxioCam MRm; Carl 
Zeiss MicroImaging, Inc.), and imaging software (AxioVision 3; Carl Zeiss 
MicroImaging, Inc.). Time-lapse microscopy was performed at 37°C using 
a fl uorescent microscope (Axiovert S100; Carl Zeiss MicroImaging, Inc.) 
equipped with a Plan-NEOFLUAR 40×, 1.3 NA oil iris objective, CSNAP, 
and Deltavision 2 (Applied Precision) software or Axiovert 200M (Carl Zeiss 
MicroImaging, Inc.) equipped with a Plan-NEOFLUAR 40×, 0.75 NA ob-
jective, LSM 510 scan module (Carl Zeiss MicroImaging, Inc.), and LSM 
510 META software (Carl Zeiss MicroImaging, Inc.). The acquired images 
were analyzed with Multi Gauge (Fujifi lm) or LSM510 META software.

Transfection and RNAi
Neurons or HEK293T cells were transfected with cDNA or RNA by the cal-
cium phosphate method (Inagaki et al., 2001), Nucleofector (Amaxa), or 

Lipofectamine 2000 (Invitrogen) before or after plating. For vector-based 
RNAi analysis, we used BLOCK-iT Pol II miR RNAi expression vector kit 
 (Invitrogen). The targeting mRNA sequence T G A A G C T G T T A A G A A A C T G G A  
corresponds to nucleotides 138–158 in the coding region of rat shootin1, 
whereas the control vector pcDNA 6.2-GW/EmGFP-miR-neg encodes an 
mRNA not to target any known vertebrate gene.

Materials
Antibodies against myc, tau-1, synaptophysin, MAP-2, α-tubulin, the p85 
subunit of PI 3-kinase, and monoclonal (587F11) phospho-Akt (Ser473) 
were obtained from MBL International Corporation, Boehringer, Progen, 
Sigma-Aldrich, Sigma-Aldrich, Upstate Biotechnology, and Cell Signaling 
Technology, respectively. CMFDA, Rhodamine phalloidin, blebbistatin, 
 cytochalasin D, and LY294002 were obtained from Invitrogen, Invitrogen, 
BIOMOL Research Laboratories, Inc., Calbiochem, and Calbiochem, re-
spectively. cDNA encoding Myr-PI 3-K p110 was obtained from Upstate 
Biotechnology. mRFP was provided by R. Tsien (University of California, 
San Diego, La Jolla, CA).

Online supplemental material
Fig. S1 shows serial time-lapse images of EGFP-shootin1 accumulation in 
neurites 1 and 2 of Fig. 2 (D–G). Fig. S2 shows DIV7 hippocampal neu-
rons overexpressing myc-shootin1, which are immunostained by anti-
 synaptophysin or anti–MAP-2 antibody. Fig. S3 shows the effects of 
cytochalasin D on shootin1 distribution in hippocampal neurons. Fig. S4 
shows that inhibition of PI 3-kinase activity suppresses formation of 
shootin1-induced multiple axons, but repression of shootin1 expression by 
RNAi does not inhibit formation of PI 3-kinase–induced multiple axons. 
Video 1 is a time-lapse video of a stage 2 hippocampal neuron expressing 
EGFP-shootin1 as described in Fig. 2 A. Video 2 is a time-lapse video of a 
hippocampal neuron expressing EGFP-shootin1 taken from stages 2 to 3 
as described in Fig. 2 (D–G). Video 3 is a time-lapse video of a hippocam-
pal neuron overexpressing EGFP-shootin1 as described in Fig. 3 A. Online 
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.200604160/DC1.
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