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Recent functional neuroimaging studies suggest that the brain networks responsible

for time processing are involved during other cognitive processes, leading to a

hypothesis that time-related processing is needed to perform a range of tasks across

various cognitive functions. To examine this hypothesis, we analyze whether, in healthy

subjects, the brain structures activated or deactivated during performance of timing

and oddball-detection type tasks coincide. To this end, we conducted two independent

signed differential mapping (SDM) meta-analyses of functional magnetic resonance

imaging (fMRI) studies assessing the cerebral generators of the responses elicited

by tasks based on timing and oddball-detection paradigms. Finally, we undertook a

multimodal meta-analysis to detect brain regions common to the findings of the two

previous meta-analyses. We found that healthy subjects showed significant activation

in cortical areas related to timing and salience networks. The patterns of activation and

deactivation corresponding to each task type partially coincided. We hypothesize that

there exists a time and change-detection network that serves as a common underlying

resource used in a broad range of cognitive processes.

Keywords: timing, oddball, saliency network, cognitive control, fMRI, SDM-PSI meta-analysis

INTRODUCTION

The notion that the ability of the human mind to perceive changes in the environment depends
on perception of time can be traced right back to the ancient philosopher Aristotle (1). We now
distinguish two aspects to the perception of time, and, in modern terminology, the word timing
refers to two subjective experiences: the impression of passage of time and the impression of
how much time has passed, for example, the perceived duration of an event (2). As temporality
is related to change, timing might be expected to be related to saliency processing, that is, to
the detection of change, for example, detection of a stimulus that deviates from the norm (3).
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It is well-documented that in humans, both timing and saliency
processing are gradually acquired during normal development
(4–6). Impairment in either ability has been associated with
psychiatric and neurologic disease, such as schizophrenia (SZ)
(3, 7–9). Other than the above correlations between timing and
saliency processing, there are also a few studies that suggest the
connection in a more direct manner (10–12). Both functions
share neuroanatomical bases, and the way cognitive resources are
allocated to each is joined (13).

The specific set of brain regions that constitute the neural
substrate for timing have been elucidated by means of two meta-
analysis studies of neuroimaging research (14, 15) and other
relevant studies (16, 17). This infrastructure comprises cortical
and subcortical regions: the supplementary motor area (SMA),
the insula, the left inferior frontal region, the middle frontal
gyrus, the left inferior parietal region, the left superior temporal
gyrus, the right thalamus, the cerebellum, and the left putamen.

Timing clearly affects other cognitive functions, and this is
reflected in the well-known Scalar Expectancy Theory (SET),
for example, where timing is central to the model, which
comprises a clock, working memory, and executive function
(18, 19). It has been established that the cognitive domains
for attention, working memory and executive functions require
participation of functional aspects of timing and neuro-
anatomical components of timing regions (20–22). A meta-
analysis of functional neuroimaging studies (23) indicated that
timing and other cognitive processes demanding cognitive
control become interlinked when there is an increase in the level
of difficulty or effort required.

For saliency processing, brain regions found to participate
are the temporal parietal junction (TPJ), the anterior insula, the
anterior middle frontal gyrus, the bilateral anterior cingulate
cortex (ACC), and the SMA. The brain deals with saliency
at two levels: there is a primitive level which operates before
attention is invoked and at which change is simply detected,
and there is a higher-order level which involves attention and
links change with its implications such as goal-oriented responses
(3). One of the main experimental designs used to examine
the mechanisms of salience or novelty detection is the oddball
paradigm (24, 25). This technique consists in repeating an
auditory or visual stimulus, referred to as the standard stimulus,
and occasionally including a different stimulus, known as the
deviant or oddball stimulus. Electroencephalographically, there
are two distinct event-related potentials (ERPs) observed during
saliency detection. One of these is the so-called P300 wave, which
is generated infrequently in response to a stimulus that has
cognitive relevance (i.e., a target stimulus); the other ERP is the
mismatch negativity (MMN) potential, which is generated when
something changes (an oddball stimulus) in a repeated sequence
of pre-attentional stimuli (26).

Oddball detection tasks can be used to assess a person’s
performance at change detection. Might timing tasks be used
for the same end? Underlying this question or hypothesis is
the idea, introduced in the first paragraph, that temporality
is related to change, and so timing might be expected to be
related to saliency processing. To try to answer the question, we
might determine whether the Salience Network (SN) overlaps

neuro-anatomically with the timing network, that is, attempt to
identify the functional regions active during salience processing
and timing in isolation of each other. Furthermore, it is also
of interest to analyze the interrelationship between these two
theoretically-separate cognitive functions: Are there any brain
regions involved simultaneously by both?

We hypothesize that change detection paradigms such
as oddball, context change deviants, and salience paradigms
are actually alluding to a basic underlying function of
time processing, specifically, time discrimination. To test this
hypothesis, we sought to determine whether the neural networks
activated in oddball studies and those activated in time
discrimination studies are the same. The main goal of this study
was to identify any structures activated during both timing
and oddball tasks. To this end, we carried out two Seed-based
d-mapping (SDM-PSI) meta-analyses of neuroimaging studies
assessing the brain response to temporal discrimination and
oddball tasks. After this, we undertook a multimodal meta-
analysis to identify any possible common features in the findings
of the two previous task-specific SDM-PSI meta-analyses.

MATERIALS AND METHODS

Study Selection
Two independent systematic, comprehensive literature
searches were conducted for functional magnetic resonance
imaging (fMRI) studies in healthy volunteers using temporal
discrimination and oddball tasks. The literature searches
were conducted by means of the PubMed search engine from
publications up to July 2021. A MeSH terms search strategy was
adopted and filters for age and publication type were applied.

The search string for the timing studies search was:
((“Magnetic Resonance Imaging”[Mesh]) AND “Time
Perception/physiology∗”[Mesh] NOT “Mental Disorders/
diagnosis”[Mesh]) NOT “Neurologic Manifestations/
5diagnosis”[Mesh].

Two 132 papers were identified through a database search.
Additionally, references form previous meta-analyses (14, 15, 27,
28) about time perception were reviewed for inclusion.

In the second search, for oddball studies, the
search string (with corresponding keywords) used was:
((“Magnetic Resonance Imaging”[Mesh]) AND (“Event-
Related”) AND ((“oddball”) OR (“target detection”))
NOT “Mental Disorders/diagnosis”[Mesh]) NOT
“Neurologic Manifestations/diagnosis”[Mesh].

One 186 papers with oddball tasks were identified through
database search and reviewed.

The studies that met the following inclusion criteria had been
included in the analyses:

(a) studies using functional magnetic resonance imaging
(fMRI) (any other neuroimaging technique were excluded, i.e.,
PET, SPECT); (b) studies using samples of healthy volunteers
(studies that included both healthy and non-healthy subjects
were excluded); (c) studies including more than five participants;
(d) for the temporal domain, studies including a temporal
discrimination perceptual supra-second task with at least one
contrast of timing task (not contrast-rest); (e) for the saliency
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domain, studies including oddball task with standard vs.
target contrast (not standard-novel or target novel); (f) studies
performed a whole-brain analyses (i.e., articles that performed
only region of interest (ROI) or small volume correction (SVM)
analysis have been excluded); (g) studies that provide peak
coordinates and statistical parametric maps in the publication;
(h) studies that use a constant statistical threshold for all regions
of the brain; (i) studies that are peer-reviewed articles reporting
novel data on temporal or saliency processing (qualitative studies,
case reports, reviews, or meta-analyses, were excluded).

Systematic Review
We applied the PRISMA (Preferred Reporting Items
for Systematic reviews and Meta-Analyses) guidelines
(29) for the literature screening and final selection. The
procedure flow diagrams are available within the files:
“Supplementary Material 1.1” (for temporal discrimination and
oddball). Two independent researchers conducted the PubMed
searches. Initially, the title and abstract of the studies were
screened for keywords, if the study was eligible, the full text was
analyzed. When decisions about inclusion or exclusion criteria
differed between reviewers’, the final decision was resolved by a
consensus between the two reviewers.

The Meta-Analyses
The current study followed the most recent guidelines for
the meta-analysis (30). We conducted two independent
SDM-PSI meta-analyses of fMRI studies that assessed brain
response during temporal discrimination and oddball tasks in
healthy subjects. For the statistical process of meta-analysis, we
used version 6.21 of Seed-based d Mapping software (SDM-PSI;
Voxel-based meta-analysis via permutation of subject images
(PSI): Theory and implementation for SDM, http://www.
sdmproject.com) (31–34).

SDM-PSI is a statistical technique for meta-analysis of
neuroimaging studies (fMRI, PET, VBM, or DTI) concerned
with brain activity or structure. SDM-PSI improves on older
meta-analysis methods [ALE or Kendel Density Analysis (KDA)]
by including statistical approaches to deal with between-
study heterogeneity, missing information (multiple imputation
techniques), and p-value correction (standard permutation tests);
in addition, SDM-PSI makes it possible to do meta-regression
and multimodal meta-analysis (23, 34).

Based on the MetaNSUE algorithm, SDM-PSI first imputes
datasets from each study’s peak coordinates and statistical
maps, which we obtained from the published papers (35).
Next, each imputed dataset is meta-analyzed using standard
random-effects models. The results for the multiple imputed
datasets are then combined (using Rubin’s rules). Finally, SDM-
PSI applies standard permutations testing to obtain values of
statistical significance. In this study, the thresholds applied to
the results were the default values proposed by the software
(p < 0.005 for the uncorrected p-values and p < 0.05 for
Threshold Free Cluster Enhancement (TFCE) corrected p-values
of main analyses).

Multimodal Meta-Analysis for Timing and
Oddball Studies
The results of the above two independent timing and oddball
detection meta-analyses were subjected to multimodal meta-
analysis with a view to identifying any regions that became
activated or deactivated during both tasks. In order to achieve
this, the two BOLD maps, corresponding to the response to
timing and the response to oddball detection, were effectively
laid on top of each other and compared. The software, however,
does not generate a map simply by calculating the most probable
overlap; it takes into account the estimates of error in p-values in
each separate meta-analysis (36).

RESULTS

Studies Included and Their Characteristics
Of the several 100 studies returned by PubMed, only 29 met
the inclusion criteria. Of these, 11 examined timing (a total of
174 healthy subjects), and the other 18 studied oddball detection
(225 healthy subjects), as shown in Tables 1, 2. From the oddball
studies three studies were discarded due to some concerns in the
reported coordinates and the lack of response from the authors
after having contacted them for clarification. Therefore, only 26
studies were included (11 for timing and 15 for oddball). Please
see Supplementary Material 1.2 for a report of the excluded
studies and associated reasons for exclusion.

Meta-Analysis Results for Timing Studies
There was significant activation in the right inferior frontal
gyrus, triangular part (BA 45), and right middle frontal
gyrus (BA 46), as shown in Table 3 and Figure 1. Please
see Supplementary Material 2.1 for breakdown analysis. No
hypoactivations were found. In a supplementary analysis
applying p < 0.025 for the uncorrected p-values of the main
analyses and p < 0.05 TFCE after the FWE correction,
Supplementary Motor Area (SMA) (BA 6) activation was shown.

Meta-Analysis Results for Oddball Studies
There was increased activation in the right and left insula (BA
48), right median cingulate/ paracingulate gyri, and left anterior
thalamic projections as shown in Table 4 and Figure 2. Please
see Supplementary Material 2.2 for breakdown analysis. No
hypoactivations were found.

Multimodal Meta-Analysis Results for
Combined Timing and Oddball Studies
At TFCE corrected p < 0.05 level of statistical significance,
areas with overlapping of activation were right inferior frontal
gyrus, opercular part (BA 48), and right middle frontal
gyrus (BA 46), as shown in Table 5 and Figure 3. Please
see Supplementary Material 2.3 for breakdown analysis. No
hypoactivations were found.

DISCUSSION

The main finding of the current study, that there was common
engagement of certain neural regions when healthy subjects were
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TABLE 1 | Studies of timing in HC included in our SDM-PSI meta-analysis.

References Sample Task Included contrast

Coull et al. (37) 12 HC A visual time attention task (temporal discrimination) Increase in attention to time and increase attention to color

Coull et al. (38) 14 HC A visual temporal discrimination task Time vs. color and color vs. time

Coull et al. (39) 16 HC A visual temporal discrimination Time vs. color

Lewis and Miall (40) Exp. B 8 HC Temporal discrimination task Time vs. length

Livesey et al. (41) Exp. A 10 HC A visual temporal discrimination task Time vs. color

Morillon et al. (42) 17 HC A visual temporal estimation task Duration vs. color and color vs. duration

Pfeuty et al. (43) 29 HC A visual temporal estimation task Duration vs. color and color vs. duration

Pouthas et al. (44) 6 HC A visual temporal estimation task Long vs. short duration

Rao et al. (45) 17 HC An auditory temporal discrimination task Time vs. control

Smith et al. (46) 20 HC A visual temporal discrimination task Temporal vs. order and order vs. discrimination

Wiener et al. (47) 25 HC A visual temporal discrimination task Time vs. color and color vs. time

HC, healthy controls.

TABLE 2 | Studies of oddball in HC included in our SDM-PSI meta-analysis.

References Sample Task Included contrast

Eichele et al. (48) 15 HC An auditory oddball task Target vs. standard

Fajkus et al. (49) 34 HC A visual 3-stimulus oddball task Target (infrequent) vs. baseline (frequent)

Friedman et al. (50) 15 HC Auditory oddball task Target vs. baseline

Gur et al. (51) 36 HC A visual 3-stimulus oddball task Target vs. standard

Horovitz et al. (52) 7 HC An auditory oddball task Target vs. baseline

Huettel et al. (53) 14 HC A visual oddball task Target vs. frequent

Linden et al. (54) 5 HC An auditory oddball task Target vs. non-target

Mantini et al. (55) 13 HC A visual oddball task Rare vs. frequent

Menon et al. (56) 11 HC An auditory oddball task Target vs. frequent

Mulert et al. (57) 9 HC An auditory oddball task Target vs. non-target

Müller et al. (58) 16 HC An auditory oddball task Target vs. standard

Petit et al. (59) 8 HC An auditory oddball task Attended deviant tones compared to standard tones

Sabri et al. (60) 17 HC An auditory oddball task Main effect of deviance vs. standards

Stevens et al. (61) 10 HC An auditory oddball task Standard and target

Warbrick et al. (62) 15 HC A visual hybrid two choice reaction time–oddball task Target vs. standard

HC, healthy controls.

TABLE 3 | Brain regions engaged during timing tasks.

Location Peak

MNI Z P Voxels

Right inferior frontal gyrus, triangular part, BA 45 52, 28, 4 5.545 0.000999987 1,487

Right middle frontal gyrus, BA 46 26, 42, 30 4.668 0.000999987 678

Threshold: voxel P < 0.0500, peak SDM-Z > 1.000, cluster extent size ≥10 voxels. Breakdown regions with <10 voxels are not reported.

doing timing and oddball tasks, provides evidence that timing
and salience processing are connected, as long as a cognitive
effort is involved.

Our interest in the idea that timing is connected with
detection of change originated with the observation that the
timing activation-deactivation pattern changes with the level
of cognitive effort required by the task, which led on to the

suggestion that there might be a temporal-cognitive control
network (63). As salience processing is characterized by change
detection, we hypothesized that timing regions overlap with
salience processing regions.

Timing is a function implicated in multiple and diverse
cognitive, affective, and regulatory processes. Previous studies
have shown that the relationship between time perception and
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FIGURE 1 | Brain regions engaged during temporal discrimination tasks.

TABLE 4 | Brain regions engaged during oddball detection tasks.

Location Peak

MNI Z P Voxels

Right insula, BA 48 40, −8, 12 6.095 0.000999987 19,652

Left insula, BA 48 −34, −8, 10 8.248 ∼0 13,842

Right median cingulate/ paracingulate gyri 12, 4, 42 6.779 0.000999987 5,347

Left anterior thalamic projections −10, 4, 12 4.619 0.007000029 1,193

Threshold: voxel P < 0.0500, peak SDM-Z > 1.000, cluster extent size ≥10 voxels. Breakdown regions with <10 voxels are not reported.

a range of cognitive functions is mediated by the increase of
cognitive effort demanded by the task (64). Performing any
cognitive task requires constant modulation of the level of effort
to cope with changes occurring around us (65). In previous
studies (9, 63, 66), we looked into the recruitment of temporal
circuits in a wide range of cognitive processes involving cognitive
control in healthy subjects finding a functional link and overlap
between regions whenever a change in the level of cognitive effort
occurred. Thus, it seems that appropriate cognitive functioning
across different levels of difficulty requires the participation of
functional and anatomical components of time perception (64).
These previous findings of our team are consistent with the
study of Livesey et al. (41), who reported that an increase in the
difficulty of non-temporal tasks invoked the participation of the
timing network. This reinforces the point that timing and change
detection are interrelated. Thus, any mental process that involves
change detection or that is activated by detection of change needs

to use timing processing, which, we hypothesize, is provided by
an underlying temporal-salience network.

In a previous SDM meta-analysis study, we addressed
the question of whether a dysfunctional timing/change
detection network underlies the cognitive impairment
observed in SZ. We found a partial coincidence of dysfunction
(hypoactivation in cortical and subcortical areas) during
timing and change-detection tasks in SZ compared to
healthy subjects (9). The study also suggested that there
existed a group of brain regions that engaged both during
timing and oddball tasks in normal cognition, and it was
in order to investigate this further, that we performed the
current study. More precisely, the objective of the current
meta-analysis is to examine whether traditional taxonomies
of timing (perceptual and supra-second) and salience
functions purporting discrete modular cognitive domains
are supported by a superordinate cognitive control system that
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FIGURE 2 | Brain regions engaged during oddball tasks.

TABLE 5 | Brain regions engaged during timing and oddball detection tasks.

Location Peak

MNI Voxels

Right inferior frontal gyrus, opercular part, BA 48 48, 16, 4 1,012

Right middle frontal gyrus, BA 46 40, 42, 22 271

Threshold: voxel P < 0.0500, peak SDM-Z > 1.000, cluster extent size ≥10 voxels.

Breakdown regions with <10 voxels are not reported.

is engaged during the performance of a range of timing and
oddball tasks.

For timing tasks, our results, based on a larger number of
published fMRI data sets than our previous meta-analysis (15),
which was also carried out to explore the neuroanatomical basis
of timing, further confirm the participation of regions of the
temporality circuit. These regions include the right middle (BA
46) and inferior frontal gyrus, triangular part (BA 45).

In contrast to our previous meta-analysis, the current
one did not detect the cerebellum, parietal, temporal, and
subcortical regions. An interpretation for this failure is that
unlike the first, the present meta-analysis included only studies
with perceptual and suprasecond temporal discrimination tasks
(requires participants to compare two-time intervals). Our
findings are also in agreement with those shown by Wiener et al.
(14), Nani et al. (27), and Cona et al. (28). For example, the
mentioned frontal (BA45, BA46) is involved in their analysis
of supra-second perceptual timing tasks. In contrast the absent
regions in our analysis (cerebellum, parietal, temporal, and
subcortical) are showed in their analysis of sub-second or
motor timing data dimensions: stimulus duration (sub- vs.

supra-second) and the nature of response (motor vs. perceptual).
Therefore, differences regarding the participation of regions
congruent with the temporality circuit between our findings
and those reported by previous meta-analyses may be due to
the inclusion of studies that address different modalities of
timing tasks.

Our analysis of temporal discrimination tasks yielded no
significant activation of the SMA at the level of p < 0.005
uncorrected p-values and TFCE p < 0.05 corrected p-values,
failing to replicate the results of numerous meta-analyses (14,
27, 28). However, SMA activation was shown at the level of
p < 0.025 uncorrected p-values and TFCE p < 0.05 corrected
p-values. A possible explanation for this discrepancy could be
found in the test of spatial convergence used to estimate the
statistical significance of the results by most of the available
CBMA methodologies. As recently shown, this test of spatial
convergence may rely on assumptions commonly not meet
by real data. The violation of such assumptions has been
proven to make the results of this permutation test either
conservative or liberal, depending on which assumption was
not met (34). Moreover, the statistical significance of the results
estimated by the test has been proven to be sensitive to the
number of effects present in the brain: the more effects present,
the lower the significance estimated (34). We apply a new
algorithm (SDM-PSI) that includes standard permutations of
subject images, accurate control of the few, and the usage of
Threshold-free Cluster Enhancement (TFCE) (67). Thus, SDM-
PSI overcomes the drawbacks by the standard permutations
test in order to estimate the statistical significance p-values,
increasing sensibility, and power.

There was a pattern of activation in several superior, middle
and lower frontal regions, in regions of the parietal and occipital
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FIGURE 3 | Overlap between brain regions engaged during timing and oddball tasks (magenta). Brain regions in neurological convention showing areas with

statistically signification activation only during timing tasks (green) and during oddball tasks (red).

lobes and insula with oddball tasks. These areas correspond with
the areas that mediate the salience circuit (such as the anterior
cingulate cortex, anterior insula, and sub-lenticular extended
amygdala) (68).

The meta-analyses for just timing tasks and for just oddball
tasks, indicate that oddball style tasks engage some regions
associated with timing. The multimodal meta-analysis for
combined timing and oddball studies confirms this observation:
subjects showed significant (p < 0.05) activation in timing-
related areas (particularly, the middle and inferior frontal gyrus)
and at the local peak level of the insula. Not all neural regions of
both the timing and salience processing circuits were detected as
being activated; however, the degree of overlapping of activation
patterns recorded during timing and oddball tasks supports the
hypothesis that an integral timing and salience/change processing
circuit exists.

The existence of an integral time and change processing circuit
leads to the idea that such a circuit can be used by and underlies
other kinds of cognitive task: any task involving change detection.
Because cognitive control depends on the detection of change in
the level of cognitive effort demanded, we suggest that cognitive
control, too, must invoke the time and change processing circuit,
and this idea leads on further to a putative temporal-salience-
cognitive control network.

Our findings show region similarities with three of the
six differentiated neural circuits suggested by Williams (68)
(“Default Mode,” “Salience,” “Threat,” “Reward,” “Attention,” and

“Cognitive Control”), specifically with Salience, Attention and
Cognitive Control networks. An implication of this is that tasks
that make use of the Salience, Attention, and Cognitive Control
networks involve aspects of temporality and/or change.

The observation that the processing of timing and the
processing of change detection uses the same set of brain regions
can be explained by supposing that both types of processing
depend on the same or similar set of cognitive abilities; both
require, for example, working memory and attention, and
both involve executive functions. Our results, to some degree,
support such an explanation. We found that brain regions (such
as frontal) that are classically thought of as being cognitive-
related were active during timing tasks, and regions (such as
frontal regions and insula) that are regarded as being principally
concerned with timing were busy during oddball tasks. Both
groups of regions are partially subsumed within the circuit for
attention, which includes regions in the medial superior frontal
cortices, anterior insula, anterior inferior parietal lobule and
precuneus (68).

Matthews andMeck (69) proposed a framework that connects
time perception with other cognitive domains by suggesting a
processing principle that outlines some of the links between
them. Even though they claim that non-temporal variables
affect subjective estimation of time, they do not rule out
the possibility that subjective estimation of duration may
affect perceptual saliency of stimuli and information extraction,
as is implied to be the case under our hypothesis that
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the time and change circuit modulates other non-temporal
cognitive functions.

Karmakar and Buenomano (70) examine an alternative to
a clock-based timing mechanism for mental processing. They
propose that the neural circuits responsible for timing, as well
as intrinsically representing time, primarily process other non-
temporal information such as stimulus features. Regarding this
view, Muller and Nobre (71) suggest that a dedicated timing
mechanism may be embedded in the processing of other stimuli
attributes; therefore, timing processes take place in time, without
necessarily coding time per se. Gell (72) postulates that perception
is intrinsically time-perception, as time is an inextricable feature
of any perceptual process. Previously, Fraisse (73) proposed that
time perception resides in the detection of change through the
integration of stimuli.

Salience Network
Regarding the relationship between the salience network and
cognitive effort, Lamichhane et al. (74) showed that SN activity
is linked to task difficulty, as sensory integration of a salient
stimulus to the task requires a higher level of effort and network
engagement. Our results concur. Lamichhane et al. (74) found
evidence of a relationship between an increase in activity in the
anterior insula (AI) along with in the dorsal anterior cingulate
cortex (dACC) and an increase in task difficulty, suggesting
a central role of the AI in the integration of sensory inputs
and cognition. The information processing described not only
depends on the AI alone; it is supported by the AI’s frontal,
parietal, and temporal efferent and afferent projections and by its
functional connectivity with other networks (74–76).

The human insula is implicated in multiple brain functions
(77). Nieuwenhuys (78) described around 20 different insular
functions. The AI is a structural member of the SN, responsible
for target detection (79). Within saliency functions, the AI
is involved in bottom-up novelty detection, modulation of
autonomic reactivity to salient stimuli, and accessibility to
attentional working memory resources during saliency detection
(79). Additionally, the AI coordinates activity changes across
networks, an aspect of cognitive control to which the SN
contributes (80).

Note that our results found activation of the left insula without
specification of subdivisions; the left insula includes both anterior
and posterior components (81).

Cognitive Control
The activation pattern for cognitive control overlaps and extends
beyond regions that are expected for a “multiple-demand system”
operative for attentional activity (82). This suggests there is
some other common process that is even more widely demanded
than attention.

Several studies (64, 83, 84) suggest the existence of a
superordinate cognitive control network that involves DLPFC,
medial frontal cortex (including the anterior cingulate cortex
[ACC]), parietal cortex, motor areas, and cerebellum) that
support a broad range of high-level cognitive functions (that is,
the executive functions). Our team’s previous studies provided
evidence of the existence of the aforementioned network and

indicated it included additional regions [medial frontal (SMA),
temporal insula, and basal ganglia]. We proposed that the
network was essentially a temporal-cognitive control circuit
rather than a circuit specifically controlling executive functions
(63, 64). This idea of a temporal-cognitive control network
derived from the observations that there was participation of
various cognitive processes during time perception tasks and that
there was an engagement of temporal processing during non-
temporal cognitive tasks when those tasks switched in level of
difficulty (64).

Some researchers regard the various areas that comprise the
multiple demand network (frontal and parietal) as part of a
single dedicated network. There is, however, evidence that these
regions also participate in partially separate control networks:
the cingulo-opercular (CO), frontoparietal (FP) (85), salience
(86), and dorsal and ventral attention networks (87). On the
basis of findings in transcranial magnetic stimulation studies
(88), it is reasonable to suggest that these networks dynamically
interact and integrate into certain contexts when task complexity
increases. This interaction may be required for the coordination,
updating, and maintenance of information relevant to the task as
well as for execution of the task (89). Of the above-mentioned
networks, the SN may be involved in regulating changes in
functional connectivity between other networks throughout the
brain (79). Gratton et al. (90) discuss how network interactions
occur and whether some particular regions are critical for this
interaction; the authors propose that there are specific hubs that
act as mediators of interaction and that play a role in information
transfer between networks.

We propose that the timing network implied by our results be
regarded as one more of the partially separate control networks
discussed above. Under this view, and with respect to executive
cognitive functions, the timing network interacts with other brain
networks to deal with changes in task difficulty. In our results,
not all of the structures of the overarching cognitive control
network were activated. So we suggest that those structures that
were activated and that overlapped with structures in the saliency
network be provisionally regarded as the hubs of the timing
network because they are the structures that appear to participate
in the timing network’s different interactions with other regions.

Implications for Schizophrenia
Schizophrenia is associated with deficits in multiple
cognitive processes. Previous meta-analyses have shown an
interrelationship between temporal, cognitive control (63) and
saliency processing in SZ (9). From these findings, we proposed
the existence of a temporal-cognitive control network and a
temporal-change detection network. Furthermore, exploring if a
relationship between these networks is also present in normality
allowed us to strengthen the hypothesis that timing is a primary
cognitive domain that underlies and influences other cognitive
processes. Moreover, timing structures overlap and contribute to
other networks, and proper interaction is necessary for normal
cognitive functioning. Therefore, assessing timing deficits as a
potential biomarker for SZ may have a clinical implication in the
pathology’s diagnosis and treatment course.
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Additional Considerations
The study of timing is challenging due to the marked
individual differences as well as to the liability across changes in
experimental tasks (91). To address this heterogeneity in research
and study, new integrative approaches are emerging. Researchers
are increasingly supplementing the traditional approaches
and simultaneously applying behavioral, neuroimaging,
pharmacological, and genetic techniques. Individual differences
could be linked to time perception through the study of genetic
variation as human cognitive performance is highly variable
and under strong genetic control, as well brain synchronism in
time perception has shown genetic influence (92). Studies of
different disorders related to cognitive impairment (Alzheimer’s,
schizophrenia, and muscular dystrophy) have shown that animal
models are suitable for studying several dimensions of genetic,
behavioral, and neural pathways underlying the expression of
psychopathology (93–95). The integration of methods will allow
a better understanding of neurotypical and psychopathological
time processing.

In summary, our findings support the hypothesis that there
exists a time and change-detection network that overlaps with
other cognitive networks and is used during cognitive tasks in
general for timing and detection of change and is also evoked
whenever a variation of task difficulty occurs. Furthermore, we
believe that this framework can provide an account of timing
in neurotypical adults and may provide novel insights into the
neural basis of disorders of timing, as a primary cognitive domain
that underlies or broadly influences other cognitive processes.

Limitations
Meta-analysis as a technique has various limitations. The data
is less accurate for coming from various independent studies.
Results tend to be less precise, especially with peak-based meta-
analysis, because results are based on published coordinates
as opposed to raw statistical brain maps. With a voxel-wise
approach, as used in this study, the technique errs toward a
failure to detect a region rather than to give false positives (34).
There was only a small number of publications appropriate
for inclusion in our meta-analysis, and therefore the results
need to be regarded with circumspection until confirmed by
further study.

Another important consideration when interpreting our
results is that while fMRI techniques allow us to detect
regions involved in cognitive functions from which we infer
relationships, we cannot establish functional interconnectivity in
a sense defined by graph theory.

The present study focuses on the relationship between
temporal discrimination and attentional change detection, but
it would also be interesting to study the relationship between
temporal discrimination and the neurophysiological paradigms
of evoked potentials such as MMN. Unfortunately, we were
unable to include MMN studies in our meta-analysis because we
found only three papers that complied with the inclusion criteria.

CONCLUSIONS

By conducting two independent paradigm-specificmeta-analyses
and a multimodal conjunct analysis, the current study explores

the relationship between the brain networks involved during
oddball and time discrimination tasks in healthy subjects. We
propose that timing circuits underlie any cognitive task as long as
it involves change detection. Our results from this and previous
studies suggest that timing is related to cognitive control and
salience detection as both implicate change: in cognitive effort
and in perceptual content, respectively. These findings support
the hypothesis that a wider time and change-detection network
that serves as a common underlying resource for other cognitive
domains exists. However, our results are preliminary, and further
studies are required to assess the specific role of timing in
healthy and altered cognition. To verify our hypothesis and
to enable application of graph theory, neuroimaging studies
into concurrent execution of oddball and time discrimination
tasks are required. Meanwhile, the hypothesis that there
exists a time and change-detection network might be useful
to initiatives focussing on improving our knowledge of
the connectome in both health (i.e., functional Human
Connectome) and disease [i.e., The Research Domain Criteria
(RdoC)] (96).

Common models of human cognition have been proposed
as candidates for the large-scale brain functional architecture.
These models can be used for reproducing human-like
artificial intelligence for research and clinical purposes
(97). By identifying the cognitive primary domains that
subserve the functionality of higher cognition, it is possible to
refine neuroarchitecture models and establish a framework
to further understand cognitive impairment in several
psychopathologies. Unraveling the building blocks of cognition,
as we proposed in the current study with the change-detection
network, would contribute to expand our comprehension
of cognitive neuroscience and find new approaches for
clinical intervention.
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