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Abstract

RNA binding proteins (RBPs) are critical for the post-transcriptional control of RNAs and play vital roles in a myriad of biological
processes, such as RNA localization and gene regulation. Therefore, computational methods that are capable of accurately identifying
RBPs are highly desirable and have important implications for biomedical and biotechnological applications. Here, we propose a two-
stage deep transfer learning-based framework, termed RBP-TSTL, for accurate prediction of RBPs. In the first stage, the knowledge from
the self-supervised pre-trained model was extracted as feature embeddings and used to represent the protein sequences, while in the
second stage, a customized deep learning model was initialized based on an annotated pre-training RBPs dataset before being fine-
tuned on each corresponding target species dataset. This two-stage transfer learning framework can enable the RBP-TSTL model to be
effectively trained to learn and improve the prediction performance. Extensive performance benchmarking of the RBP-TSTL models
trained using the features generated by the self-supervised pre-trained model and other models trained using hand-crafting encoding
features demonstrated the effectiveness of the proposed two-stage knowledge transfer strategy based on the self-supervised pre-
trained models. Using the best-performing RBP-TSTL models, we further conducted genome-scale RBP predictions for Homo sapiens,
Arabidopsis thaliana, Escherichia coli, and Salmonella and established a computational compendium containing all the predicted putative
RBPs candidates. We anticipate that the proposed RBP-TSTL approach will be explored as a useful tool for the characterization of RNA-
binding proteins and exploration of their sequence–structure–function relationships.
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Introduction
RNA-binding proteins (RBPs) form ribonucleoprotein
complexes when binding with RNAs. They play crucial
roles in the post-transcriptional regulation of RNAs and
are potential biological markers for the cancer diagnosis
[1–5]. The wet-lab experimental methods, such as RNA

Interactome Capture (RIC) [6], can accurately identify
RBPs. However, these approaches are time-consuming
and cost-intensive, which are not suitable for high-
throughput identification of RBPs [7]. In addition, RIC
can only work on RBPs with functional poly(A) tails
on transcripts and efficient incorporation of crosslink-
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enhancing artificial nucleotides [8], thereby limiting
its application to RBPs in prokaryotes. In this context,
computational approaches for in silico high-throughput
prediction of RBPs can help guide hypothesis-driven
experimental studies of RBPs. To date, a variety of
computational methods have been developed for this
purpose. These methods can be generally classified
into two major groups: template-based and machine
learning-based.

The first group of methods identifies RBPs by cal-
culating the similarity score between a query protein
and the template RBPs or RNA-binding domains (RBDs).
Methods in this category include SPalign [9], SPOT-stru
[10], SPOT-seq [10], SPOT-Seq-RNA [11], and APRICOT
[12]. The similarity score is typically calculated based
on the amino acid substitution matrix combined with
sequence-derived features, such as dipeptides, tripep-
tides, and physicochemical properties. However, on one
hand, the predefined RBDs cannot be found in almost
half of the experimentally identified RBPs [13, 14]. On
the other hand, proteins with the presence of the RBDs
may not necessarily correspond to RBPs [15]. In these two
cases, the template-based methods would be ineffective.

The second group of methods applies machine
learning techniques to train models using annotated
training datasets containing both RBPs and non-RBPs.
These machine learning-based models rely on the
representation of useful features and the construction
of prediction models based on the given positive and
negative samples. Different types of features and
machine learning methods have been explored [16–37].
Machine learning methods have gained popularity
in recent years due to their attractive advantage in
effectively dealing with the high-dimensional features
derived from sequences or structures and modeling
the sequence–structure–function relationship of RBPs.
Among these methods, NAbind [30], BindUP [22], and
NucleicNet [38] are three representative methods that
leverage the prior 3D structure information to improve
the predictive performance. In contrast, the majority
of the existing methods rely on the use of sequence
information to train the prediction model, which is
more accessible compared with 3D structure data.
A summary of currently available computational meth-
ods is provided in Table 1.

Despite the outstanding performance achieved by
these machine learning methods, it comes at the high
cost of time-consuming calculation and extraction of
features such as the position-specific scoring matrix
(PSSM) generated by the PSI-BLAST [39] search. Further-
more, in some cases, physicochemical features cannot
thoroughly represent the specific properties of proteins.
For example, the two sequences ‘HLTHAQSTLDAK’ and
‘KHLTHAQSTLDA’ have the same amino acid composi-
tions but represent different functionalities. In addition,
for the methods that use the 3D structure information
as the input, there only exists a small portion of samples
that have available 3D structure data, which will limit

their further application. Therefore, methods that can
utilize the sequence information to accurately identify
RBPs are highly desirable.

More recently, the transformer model and its variants
[40] pre-trained on a massive amount of proteins
sequences using self-supervision approaches have
demonstrated a significant potential for harnessing
the power of big data. Existing studies showed that
the pre-trained models could substantially improve
the predictive performance on various tasks [41–47];
however, this has not been systematically examined on
the task of RBPs prediction. In this study, we develop
a new approach called RBP-TSTL by integrating the
feature embeddings generated by a self-supervised pre-
trained model with the knowledge transferred from
the annotated pre-training RBPs dataset. Benchmark
experiments on the independent test datasets and
additional validation datasets illustrate that RBP-TSTL
models outperform state-of-the-art methods across four
different species including Homo sapiens, Arabidopsis
thaliana, Escherichia coli, and Salmonella. Moreover, we
further perform genome-scale prediction of species-
specific RBPs by applying the optimized model and
accordingly provide the results as a computational
compendium, which are publicly available at https://
github.com/Xinxinatg/RBP-TSTL/.

Materials and methods
Datasets
Benchmark and annotated pre-training datasets

In this study, the benchmark and annotated pre-training
datasets were taken from [36], which encompassed four
species-specific datasets of RBPs, including H. sapiens,
A. thaliana, E. coli, and Salmonella, as well as those in all
other species available in the Swiss-Prot [48] as the anno-
tated pre-training dataset. The positive samples were
retrieved using the QuickGO API [49] from UniProtKB
[50], while the negative ones were collected by remov-
ing annotated nucleotide-binding proteins and proteins
containing any annotated or potential RBD identified
in Pfam database [51]. The ratio of positive samples
to negative samples was approximately 1:10. Notably,
each dataset contains a training set, a validation set,
and an independent test set with the percentage of 81,
9, and 10%, respectively. The training set was used to
train and fine-tune the prediction model, the validation
set to optimize the model, and the independent test
set to evaluate and compare the performance of our
method and other existing methods. To avoid potential
bias and performance overestimation, the redundancy of
the sequences in the training, validation, and those in the
independent test datasets of each species was removed
at the similarity identity threshold of 25% [21, 36] using
CD-HIT [52]. Finally, we obtained 51 334, 12 103, 7907,
3951, and 1631 proteins in the annotated pre-training,
H. sapiens, A. thaliana, E. coli, and Salmonella datasets,
respectively.

https://github.com/Xinxinatg/RBP-TSTL/
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Table 1. A list of the reviewed methods for RNA-binding proteins prediction

Predictor category Method Means of
classification

Properties Dataset for training

Structure-based predictors NAbind [30] SVM–Gist Electrostatic properties 76 RBPs, and 246 non-RBPs across
species

BindUP [22] SVM–Gist The same as NAbind 90 DNA-binding, 60 RNA-binding, and
300 non-NA-binding chains across
species

Sequence-based predictors SPOT-seq-RNA [11] Template-based Sequence-structure match
and binding affinity

1052 RNA-binding domains and chains
and 5766 non-RNA-binding chains
across species

RNApred [28] SVM–SVM light Amino acid composition,
predicted binding residues
from prior knowledge

377 RBPs and 377 non-RBPs across
species

RBPPred [21] SVM Evolutionary information,
amino acid composition
and physicochemical
properties

2780 RBPs and 7093 non-RBPs across
species

Deep-RBPPred [20] CNN Amino acid composition
and physicochemical
properties

Same as RBPPred

TriPepSVM [19] string kernel SVM Tri-peptide frequency 1812 known RBPs for H. sapiens, 306 for
Salmonella and 512 for E. coli,
12,038 non-RNA-binding proteins for H.
sapiens, 1415 for Salmonella, and 3783
non-RNA-binders for E. coli

ProNA2020 [18] SVM, Random Forests
(RF), and Neural
Networks (NN)

Evolutionary information
and embeddings from
Word2Vec model

263 RBPs and 555 non-RBPs across
species

RBPro [17] RF Amino acid composition
and evolutionary
information

2780 RBPs and 7093 non-RBPs across
species

IDRBP-PPCT [16] RF Evolutionary information 2945 RBPs and 4175 non-RBPs across
species

AIRBP [34] an ensemble-based
machine learning
model

Evolutionary information,
physicochemical
properties, and disordered
properties

Same as RBPPred

PreRBP-TL [36] Motif CNN Evolutionary information 2982 RBPs and 48,352 non-RBPs for
general pre-training dataset across
species, 1296 RBPs and 9427 non-RBPs
for H. sapiens, 480 RBPs and 6269
non-RBPs for A. thaliana, 389 RBPs and
3132 non-RBPs for E. coli, and 228 RBPs
and 1230 non-RBPs for Salmonella

Note: Only the available approaches are listed in the Table.

Recent studies [19, 36] have shown that RBPs have
species-specific characteristics, which are against the
presumption that the properties of RNA-binding proteins
are purely molecular-based and shared across all
different species. For example, the tripeptides critical
to the identification of RBPs are often present in H.
sapiens but not in Salmonella and E. coli [19]. Furthermore,
glutamate, serine, and proline are more abundant in
the sequences of H. sapiens RBP, which is in contrast to
the prevalence of alanine and arginine residues in the
sequences of E. coli RBPs [36]. Due to these reasons, it is
necessary to use species-specific datasets to capture the
characteristics of RBPs.

Additional validation sets of experimentally identified RBPs

The additional validation sets were retrieved from the
PreRBP-TL repository. According to the previous work

of TriPepSVM [19], the additional validation sets were
generated by removing sequences on which RBP-TSTL
was trained from all the experimentally identified RBPs.
In the current work, the RBPs collected from surveys for
additional validation in TriPepSVM and PreRBP-TL were
discarded as these RBPs were determined by the exis-
tence of the RBDs [14, 51]. As aforementioned in Introduc-
tion section, predefined RNA-binding-related homology
domains are not present in almost half of the identified
RBPs. Finally, the additional validation sets contained 110
proteins (denoted as ‘Set1’) collected from the study of
Castello, Horos [53], and 108 proteins (denoted as ‘Set2’)
from the study of Van Nostrand et al. [14], respectively.

Framework of RBP-TSTL
Inspired by the recent progress of transfer learning
to address protein-nucleotide interaction problems

NAbind
BindUP
SPOT-seq-RNA
RNApred
RBPPred
Deep-RBPPred
RBPro
IDRBP-PPCT
AIRBP
PreRBP-TL
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Figure 1. The model architecture of RBP-TSTL to predict RBPs. The RBP-TSTL model combined the ProtT5-XL model, a six-layer GRU, and a linear network
section as the major architecture. The input of the model is protein sequences of arbitrary length composed of 20 standard amino acids. ProtT5-XL
extracted sequence embeddings for first stage knowledge transfer, while GRU layers and discriminator generated the final classification result during
the second stage knowledge transfer.

[36, 54–56], in this study, we developed a two-stage trans-
fer learning strategy for the genome-scale prediction
of RBPs. The first stage of RBP-TSTL involved use of
the knowledge transferred from a self-supervised pre-
trained model named ProtT5-XL [43]. At the second
stage, the knowledge in the annotated pre-training
dataset for the RBPs prediction was transferred to each
of the four target species. More specifically, the sequence
embeddings were generated by the self-supervised pre-
trained model ProtT5-XL [43] for both the annotated
pre-training RBPs dataset and species-specific datasets.
Subsequently, the embeddings for the annotated pre-
training RBPs dataset were used to initialize our deep
learning model prior to being fine-tuned on each species-
specific dataset. In this way, the knowledge from the self-
supervised pre-trained model and the annotated pre-
training RBPs dataset could be transferred to address
the RBPs prediction task for the target species. The
methodological details of our RBP-TSTL method are
illustrated in Fig. 1.

Model training
Components of the deep learning model used in RBP-TSTL

The deep learning model at the second stage of transfer
learning comprised six layers of Gated Recurrent Unit
(GRU) [57] and a discriminator which was implemented
using a linear network with the batch-normalization
layer [58] and the Leaky ReLU [59] as the activation
function.

GRU is a gating mechanism that uses each recurrent
unit to capture the dependencies of different time scales
adaptively. GRU has two gates, namely the update gate
(zt) and reset gate (rt), as well as one state ht. Each layer
in the GRU implements the following computation:

zt = σ
(
Wz • [ht−1, xt] + bz

)
(1)

rt = σ
(
Wr • [ht−1, xt] + br

)
(2)

∼
ht = tanh

(
W • [ht−1, rt] + b

)
(3)
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h = (1 − zt) • ht−1 + zt •
∼
ht, (4)

where Wz, Wr, and W denote the weights of GRU, bz, and
br, respectively, and b are the bias vectors.

Weighted binary cross-entropy

The weighted binary cross-entropy was adopted to
counter the imbalance of the datasets. The loss function
is formulated as follows:

J = − 1
N

N∑
i=1

[
w × yilog

(
pi

) + w × (
1 − yi

)
log

(
1 − pi

)]
(5)

w = 1 − pos_ratio
pos_ratio

, (6)

where yi is the label of the ith protein, pi is the logit output
from the discriminator layer for the ith protein being RBP,
while pos_ratio represents the percentage of RBPs in the
analyzed dataset.

Experimental settings

RBP-TSTL was implemented using PyTorch (version
1.7.1), an open-source machine learning framework
[60]. The procedures for training the neural networks
are briefly described as follows: we used optimization-
ADAM [61] which is an SGD-based algorithm as the
optimizer and set the number of GRU layers to 6. To avoid
overfitting, we adopted the early-stop strategy based
on the performance of the validation sets and used the
ReduceLROnPlateau scheduler [62] to adaptively reduce
the learning rate when the metric was not improving.
A detailed description of the tuned hyperparameter
values can be found in Supplementary Table S1 (see Sup-
plementary Data available online at https://academic.
oup.com/bib).

Performance assessment
Four major performance evaluation metrics were adopted
to gauge the performance of different methods according
to the previous study of the PreRBP-TL [36]. These
included the balanced accuracy (BACC), Matthew cor-
relation coefficient (MCC), the area under the receiver-
operating characteristic (ROC) curve (AUC), and the area
under the precision-recall (PR) curve (AUPRC). BACC
is a variant measure of accuracy, which is tailored
for assessing the performance of a predictor on an
imbalanced dataset [63]. MCC is an optimal metric for
performance evaluation on the imbalanced dataset [64–
66]. It measures the correlation coefficient between the
actual labels and the predicted ones by considering the
numbers of true positives, true negatives, false positives,
and false negatives. BACC and MCC can be calculated as
follows:

BACC = 1
2

(
TP

TP + FN
+ TN

TN + FP

)
(7)

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

, (8)

where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives, and false nega-
tives, respectively. The ROC curve plots the true positive
rate (TPR) as the y-axis value and the false positive rate
as the x-axis value. The PR curve plots precision on the
y-axis and recall on the x-axis, describing the dynamic
precision and recall changes in accordance with the pre-
diction cutoff threshold. The values of AUC and AUPRC
are positively related to the performance of predictors
[67]. Because the datasets used in this study are highly
imbalanced, the AUPRC metric was employed as the
primary performance measure to select the optimized
model based on the predictive performance evaluated on
the validation sets [68].

Results and discussion
Validation of the framework design
In this section, we examined and validated the effec-
tiveness of the designed RBP-TSTL in RBPs prediction
by looking into the loss convergence during the model
training process (Performance of the models on the
annotated pre-training and species-specific datasets
section). We assessed the RBPs prediction performance
of different self-supervised pre-trained models. These
models were used for generating the feature embeddings
in Performance comparison of various self-supervised
pre-trained models section. Next, we conducted the
ablation study of the deep learning models in Ablation
study section. All experiments in Validation of the frame-
work design section were implemented on the training
and validation sets, while the performance comparison
in Sections Performance comparison of various self-
supervised pre-trained models and Ablation study was
performed on the validation sets and evaluated in terms
of the AUPRC metric.

Performance of the models on the annotated pre-training
and species-specific datasets

Transfer learning can effectively circumvent the scarcity
of high-quality–labeled datasets [69]. It can improve the
performance of target learners on target domains by
transferring the knowledge from different but related
source domains [70]. In deep transfer learning, a base
network is first trained before its first n layers are copied
to the corresponding layers of the target network. Next,
the remaining layers of the target network are tuned
for a target problem. There are two main strategies for
training the target network: The first strategy is to back-
propagate the loss in the entire target network to fine-
tune it to the new problem, while the second one is
to keep the transferred feature layers frozen, while the
remaining layers are tuned to adapt to the target domain.
Choosing whether to freeze the first n layers of the target
network depends on the size of the target dataset and
the distance between the source and target domains. If
the dataset and distance between the source and target
domains are small, tuning all layers may lead to over-
fitting, and thus, the base layers should be kept frozen.

https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 2. The average training loss and AUPRC of the base network trained
on annotated pre-training RBPs dataset.

On the other hand, if the target dataset is large and
the distance between the source and target domains
is considerably large, the over-fitting issue should not
be a concern, and the base layers should be fine-tuned
accordingly [71].

Here, we adopted the second strategy to implement
transfer learning in view of the domain mismatch
between the annotated pre-training and species-specific
datasets. First, the base network was trained on the
annotated pre-training RBPs dataset. Next, each species
base network was tuned on the RBPs dataset to generate
a species-specific model. We evaluated and compared
the predictive performance of base and species-specific
networks in this section. We contrasted the species-
specific predictors with current state-of-the-art methods
in Performance comparison between RBP-TSTL and other
state-of-the-art methods section.

Figure 2 shows the changes in the average training loss
and AUPRC, and Supplementary Fig. S1 (see Supplemen-
tary Data available online at https://academic.oup.com/
bib) shows the changes in the average training accuracy
and AUC for the baseline network trained on the anno-
tated pre-training dataset over the consecutive training
epochs. As can be seen, the training and validation loss of
the network converged after about 60 epochs simultane-
ously, and the performance metrics for the validation set
converged to a reasonably high value (i.e. ∼0.8 for AUPRC,
0.95 for accuracy, and 0.95 for AUC, respectively, after
about 60 epochs), while the performance metrics for the
training set could approach one indefinitely. The results
indicate that the base networks provided a high-quality
non-species-specific prediction of RBPs and proved a
strong foundation for the transfer learning of the species-
specific predictors.

Performance comparison of various self-supervised
pre-trained models

The effectiveness of the embeddings generated by the
self-supervised pre-trained models can be attributed to
two main factors: (i) language model (LM) architecture

and (ii) the number of proteins used for pre-training
(Table 2). The detailed introduction of various LMs can
be found in the Supplementary Material. We chose
ProtVec [18, 72], SeqVec [41], ProSE [73], ProtBert [43]
and ProtT5-XL [43] as the representations of the three
mainstream LM architecture, Word2Vec [74], Long-Short
Term Memory (LSTM) [75], and Transformer [76]. To
conduct the performance comparison, the embeddings
generated by these LMs were inputted to the same deep
learning model as used in RBP-TSTL. The performance
of these models on validations sets was summarized
in Table 3. We can see that ProtT5-XL achieved better
performance than ProtBert on four validation sets, which
indicates that LMs performance on RBPs prediction task
is positively related to the size of the dataset that the LMs
were trained on and the number of the model parame-
ters. Additionally, ProSE performed better than SeqVec
in spite of the similar model architecture. This suggests
that the dataset with protein structural information on
which the LM was trained is also helpful for boosting
the model performance. With respect to the difference
between the transformer-based and LSTM-based LMs,
the self-attention mechanism used in the transformer-
based models has proven to be more effective for
capturing the long-range dependency [77]. In contrast,
the model design of word2vec-based LMs can only map
one word with its short-range context, as detailed in
the Supplementary Material. In addition to the intrinsic
feature of various LMs, the ProtT5-XL model has the most
parameters and is pre-trained on the largest dataset,
and the scalability of its performance in accordance
with model size has been discussed in various empirical
studies [78, 79]. As such, the embeddings generated by
ProtT5-XL are more informative for predicting RBPs.
Overall, ProtT5-XL, used in the RBP-TSTL for embeddings
generation, achieved the best performance on the RBPs
validation sets.

Ablation study

To investigate the impact of different components of
the deep learning model used in the RBP-TSTL on
the performance, an ablation study was conducted by
modulating the number of GRU layers from 10 to 8, 6, 4,
2, and 0, respectively, and freezing the GRU layers during
the fine-tuning process for six-layer-GRU network. The
performance was evaluated on the validation sets. When
the number of GRU layers equals zero, the network is
reduced to a pure linear network. The more the number
of GRU layers is, the more complex the network becomes.
As shown in Table 4, RBP-TSTL achieved the most
balanced performance on the annotated pre-training and
four species-specific datasets, with the exception of the E.
coli dataset where the zero-layer-GRU network achieved
slightly better performance and on the pre-training
dataset where the two-layer-GRU network achieved
better performance. In addition, considering that larger
deep learning models tend to favorably avoid under-
fitting when a large pre-training dataset is involved [80],

https://academic.oup.com/bib
https://academic.oup.com/bib
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Table 2. Performance comparison of different self-supervised pre-trained models

Name Model Pre-trained proteins Parameters Dimensions

ProtVec [18, 66] Word2Vec 530 K <50 M 512
SeqVec [40] LSTM 33 M 93 M 1280
ProSE [67] LSTM 76 M unsupervised

+28 K with structure
information

∼100 M 6165

ProtBert [42] Transformer 216 M 420 M 1024
ProtT5-XL [42] Transformer 261 M 3 B 1024

Table 3. Performance comparison of different models trained using different embeddings generated by protein LMs on the validation
datasets

Lanugage model Pre-training RBPs
dataset

H. sapiens A. thaliana E. coli Salmonella

ProtVec 0.24 0.43 0.35 0.53 0.74
SeqVec 0.53 0.75 0.62 0.81 0.97
ProSE 0.65 0.76 0.73 0.87 0.98
ProtBert 0.68 0.72 0.61 0.77 0.84
ProtT5-XL 0.79 0.80 0.85 0.97 1

Note: RBP-TSTL used ProtT5-XL for embeddings generation.

Table 4. Performance comparison of variant models with different numbers of GRU layers on the validation sets

Number of GRU
layers

Pre-training RBPs
dataset

H. sapiens A. thaliana E. coli Salmonella

0 0.78 0.80 0.80 0.98 1
2 0.80 0.80 0.80 0.94 1
4 0.78 0.79 0.84 0.96 1
6 0.79 0.80 0.85 0.97 1
6 with freezing GRU
layers

N/A 0.80 0.83 0.97 1

8 0.78 0.78 0.82 0.98 1
10 0.79 0.78 0.83 0.96 1

Note: RBP-TSTL used six layers of the GRU units.

the results of the ablation study provide a reasonable
justification for the use of a six-layer-GRU network to
build the species-specific RBPs prediction models.

Impact of different transfer learning strategies on
the model performance
We performed experiments to investigate the impact
of different transfer learning strategies on model per-
formance. The strategies examined include knowledge
transfer across different species, either from the species
in the annotated pre-training datasets to each of the four
target species in the species-specific datasets detailed in
Performance comparison of direct training, supervised
pre-training, and general model with RBP-TSTL section
or from a species to the other species within the four
target species in Cross-species prediction of RBPs section.
The performance evaluation in the experiments of this
section was conducted on the independent test datasets.

Performance comparison of direct training, supervised
pre-training, and general model with RBP-TSTL

In this section, we conducted the performance compari-
son of several training and knowledge transfer strategies,

including direct training (DT), supervised pre-training
(SP), and general model (GM) with the RBP-TSTL training
strategy. The DT models have only trained on each of
the four respective target species-specific datasets, the
SP models have trained on the annotated pre-training
RBPs dataset, whereas the GM models were trained on
the combined pre-training RBPs datasets and each of
the species-specific datasets without the fine-tuning pro-
cess. For the RBP-TSTL training strategy, the SP mod-
els were fine-tuned with each of the species-specific
datasets. All these models are used as input the embed-
dings generated by the ProtT5-XL model in the same
way as RBP-TSTL. The performance comparison results
of these three models with RBP-TSTL are displayed in
Fig. 3.

The results show that the RBP-TSTL models outper-
formed all other models for the RNA-binding protein
prediction for all the four species in terms of the major
performance metrics, e.g. AUC, AUPRC, and MCC (Fig. 3).
The superior performance of RBP-TSTL indicates that its
second-stage knowledge transfer could somehow help
circumvent the issue of having limited annotated RBPs
data. On the other hand, although the GM and RBP-TSTL



8 | Peng et al.

Figure 3. Performance comparison of various models on the four species-specific test sets. DT model was trained on four target species-specific datasets,
SP model trained on the annotated RBPs dataset where four target species were excluded, and GM model trained on the mixture of all available datasets.

models were trained on the same dataset, the domain
clash between the annotated pre-training dataset and
target datasets could introduce more noise into the mod-
els, thereby resulting in a reduced model performance
of the GM models. In comparison, the RBP-TSTL models,
which were further fine-tuned using the supervised pre-
training based on each of the target species datasets,
could effectively transfer the knowledge from the anno-
tated pre-training RBPs dataset to the target species and
avoid the domain clash between different species. As
such, the RBP-TSTL model achieved a better performance
than the other models.

Cross-species prediction of RBPs

In this section, the cross-species prediction of RBPs
was conducted to explore the evolutionary distance
between different species. Figure 4 shows that the
predictors trained on the H. sapiens dataset achieved
similar performance on A. thaliana when being used
as the species-specific predictor for A. thaliana and
also vice versa. In contrast, the predictor trained on
the E. coli dataset performed better on the Salmonella

dataset in contrast to the species-specific predictor
for Salmonella. Similarly, the predictor trained on the
Salmonella dataset performed almost the same when
being used as the species-specific predictor for E.
coli. These are presumably because the numbers of
sequences in the H. sapiens and A. thaliana datasets are
similar, and these two species are evolutionarily close to
each other. The results suggest that the RBPs predictors
trained on the training datasets of H. sapiens and A.
thaliana have nearly equivalent amount of knowledge
with each other. In contrast, there are more sequences
in the E. coli dataset than the Salmonella dataset and
these two species are evolutionarily close. Therefore, the
predictor trained on the E. coli dataset could potentially
have more knowledge than the species-specific RBPs
predictor trained on Salmonella. The results indicate that
the sequences in the H. sapiens and A. thaliana datasets
share high evolutionary similarities as is the same case
for the E. coli and Salmonella datasets.

We also note that the results are in line with the
fact that H. sapiens and A. thaliana are both eukaryotic
organisms, while E. coli and Salmonella are prokaryotic
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Figure 4. The results of cross-species prediction. The x-axis and y-axis represent the species of the RBPs for training and testing the predictor, respectively.
The results of species-specific models are used as the baselines, and the heat maps show the increments of the cross-species model.

organisms. In contrast to the cross-species prediction
results in two previous works TriPepSVM [19] and PreRBP-
TL [36], which suggested that the species-specific models
performed overwhelmingly better than the cross-species
ones, the performance of some cross-species models was
found to be on par with that of the species-specific ones
in the current study. This might be attributed to the fact
that the embeddings generated by the self-supervised
pre-trained model are not species-exclusive, and as such,
the models trained on other species can potentially
retain the predictive capability for the target species.

Performance comparison between RBP-TSTL
and other state-of-the-art methods
In this section, we conducted a comprehensive perfor-
mance comparison between RBP-TSTL and the other
state-of-the-art methods. Specifically, nine different
sequence-based RBPs predictors were compared with
RBP-TSTL on the independent test datasets. Afterward,
we further compared three of the methods with RBP-
TSTL on the additional validation datasets. Finally, three
state-of-the-art feature encoding schemes were used to

replace ProtT5-XL for generating the embeddings in the
RBP-TSTL framework prior to the performance compar-
ison with RBP-TSTL on the independent test datasets.
The results are discussed in detail in the following
subsections.

Performance comparison with nine state-of-the-art
methods

We conducted the performance comparison between
RBP-TSTL and nine sequence-based state-of-the-art
methods on independent test datasets. As shown in
Table 5, RBP-TSTL outperformed all other methods
across the four species. This again illustrates the
superiority of the two-stage transfer learning strategy
for predicting the RBPs in both situations where the
annotated data are relatively abundant (as in the case
of H. sapiens and A. thaliana) or scarce (as in the case
of E. coli and Salmonella). In addition, it is worth noting
that the knowledge could also be transferred from the
annotated pre-training RBPs datasets to each of the
four target species in the PreRBP-TL [36]. However, a
major difference between the two approaches is that the
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Table 5. Performance comparison of RBP-TSTL with nine existing methods on the independent test datasets of four species

Methoda H. sapiens A. thaliana E. coli Salmonella

BACC MCC AUC AUPRC BACC MCC AUC AUPRC BACC MCC AUC AUPRC BACC MCC AUC AUPRC

RNApred 0.66 0.22 0.72 0.27 0.73 0.36 0.86 0.35 0.65 0.20 0.75 0.37 0.72 0.35 0.79 0.46
SPOT-Seq-RNA 0.59 0.22 N/A N/A 0.71 0.52 N/A N/A 0.67 0.56 N/A N/A 0.64 0.50 N/A N/A
RBPPred 0.70 0.27 0.70 0.22 0.76 0.37 0.82 0.26 0.73 0.37 0.77 0.41 0.74 0.43 0.81 0.54
Deep-RBPPredb 0.63 0.19 0.70 0.28 0.67 0.18 0.75 0.22 0.70 0.26 0.72 0.27 0.68 0.28 0.69 0.27
Deep-RBPPredc 0.66 0.22 0.70 0.32 0.69 0.20 0.75 0.22 0.62 0.16 0.68 0.23 0.64 0.21 0.69 0.31
AIRBP 0.58 0.13 N/A N/A 0.64 0.15 N/A N/A 0.62 0.19 N/A N/A 0.62 0.22 N/A N/A
TriPepSVMd 0.69 0.36 0.79 0.41 0.72 0.36 0.82 0.28 0.73 0.37 0.83 0.47 0.71 0.38 0.79 0.50
TriPepSVMe 0.71 0.34 0.79 0.41 0.72 0.28 0.80 0.27 0.75 0.35 0.80 0.41 0.72 0.33 0.79 0.46
RBPro-RFd 0.71 0.32 0.79 0.37 0.75 0.28 0.82 0.33 0.71 0.33 0.76 0.32 0.76 0.43 0.81 0.60
RBPro-RFe 0.68 0.25 0.77 0.35 0.69 0.20 0.78 0.27 0.68 0.36 0.79 0.32 0.75 0.40 0.79 0.53
IDRBP-PPCTd 0.75 0.54 0.85 0.61 0.65 0.45 0.87 0.48 0.77 0.62 0.85 0.65 0.76 0.50 0.84 0.69
IDRBP-PPCTe 0.78 0.56 0.86 0.64 0.78 0.54 0.91 0.63 0.77 0.58 0.86 0.60 0.77 0.60 0.87 0.73
PreRBP-TL 0.80 0.61 0.89 0.72 0.86 0.71 0.95 0.80 0.86 0.72 0.93 0.81 0.87 0.72 0.95 0.86
RBP-TSTL 0.87 0.69 0.94 0.82 0.91 0.75 0.96 0.86 0.90 0.82 0.95 0.87 0.87 0.82 0.96 0.90

The highest values for each performance metric are bold. aAll results other than the one from RBP-TSTL were retrieved from [36]. The results of RNApred, SPOT-
Seq-RNA, RBPPred, Deep-RBPPred, and AIRBP were calculated using their respective online web servers or stand-along packages. An in-house implementation
generated the results of TriPepSVM, RBPro-RF, and IDRBP-PPCT. bThe results were calculated by using the stand-along package of Deep-RBPPred with a balanced
model. cThe results were calculated by using the stand-along package of Deep-RBPPred with an imbalanced model. dThe results of the corresponding methods
were calculated by the models trained with species-specific training data. eThe results of the corresponding methods were calculated by the models trained
with the combination of pre-training data and species-specific training data.

protein sequences were encoded by the PSSM features
in PreRBP-TL. In summary, the superior performance
of the proposed RBP-TSTL approach arises from two
main factors: one is the highly informative embeddings
generated by the self-supervised pre-trained LM and
the other is the useful knowledge transferred from
annotated pre-training RBPs dataset to the target species.

Altogether, the results indicate that the self-supervised
pre-trained model can be explored as a useful strategy for
improving the performance of RBPs prediction.

Performance evaluation on the additional validation
datasets

To evaluate the performance of RBP-TSTL in the practi-
cal scenario, we further tested the performance of RBP-
TSTL on the additional validation datasets of experi-
mentally validated H. sapiens RBPs. Here, we emphasized
the TPRs as the primary performance measure as the
additional validation datasets only include the positive
samples. Accordingly, methods that have relatively lower
performance but could present high sensitivity were not
considered in the analysis. Therefore, it is of particular
interest to compare the performance of RBP-TSTL with
three other methods, i.e. TriPepSVM, IDRBP-PPCT, and
PreRBP-TL on the additional validation sets. As shown in
Table 6, RBP-TSTL was able to retrieve more RBPs than
the other three methods in both set 1 and set 2. The
results highlight the potential of RBP-TSTL for accurate
prediction of RBPs.

Performance comparison of RBP-TSTL and the models
trained with the same architecture but hand-crafted
features

To further examine the performance of RBP-TSTL
and better understand the impact of the embeddings

Table 6. Performance comparison of RBP-TSTL and three
existing method in terms of the TPRs for predicting H. sapiens
RBPs on the additional validation datasets

Method Validation Set 1 Validation Set 2

TriPepSVM∗ 75.45% 71.30%
IDRBP-PPCT∗ 69.09% 83.33%
PreRBP-TL 75.45% 92.59%
RBP-TSTL 81.82% 96.30%

All the results except for RBP-TSTL were retrieved from [36]. aThe results
were obtained using the corresponding in-house methods with a pre-
training and species-specific training set.

generated by ProtT5-XL LM with respect to the knowledge
transferred from the annotated pre-training dataset, we
conducted the performance comparison between RBP-
TSTL and models, for the latter of which, the state-
of-the-art protein sequence encoding schemes were
used to replace ProtT5-XL LM. Three types of encoding
schemes were examined, including protein evolutionary
features, physicochemical properties, and amino acid
compositions. For the evolutionary features, we used
PSI-BLAST [39] to search against the non-redundant
(nr) database NRDB90 [81] to generate the PSSMs with
three iteration and an e-value of 0.001. For those proteins
whose PSSMs could not be generated by PSI-BLAST, the
BLOSUM62 [36, 82] was used instead according to the
previous study [83]. For the convenience of evolutionary
information analysis, we converted the L × 20 (L is the
number of amino acids in the query protein sequence)
PSSM profile generated from the previous procedure
into a fixed dimensional vector. First, for each column,
the values belonging to the same amino acid in all
rows were summed to form a 20-dimensional vector.
Then, the matrix was flattened to create a 20 × 20 = 400-
dimensional vector [28].
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For physicochemical information, the global com-
position feature encoding method (i.e. composition,
transition, and distribution, C-T-D) [84–86] was utilized
to encode the hydrophobicity, polarity, normalized van
der Waals volume, polarizability, predicted secondary
structure, and solvent accessibility. Additionally, the
conjoint triad encoding method [87] was used to capture
the charge and polarity information of the side chain in
protein-RNA interaction. For the amino acid composition
and sequence-order information, pseudo amino acid
composition encoding mothed [88] was used. In this
study, we used the iFeature package [89] to extract C-T-D,
conjoin triad, and PACC features from primary protein
sequences.

Three feature combinations were generated in accor-
dance with the previous studies in recent years [17, 20,
21]. They included the PSSM-400 feature plus C-T-D plus
conjoint triad, which followed the encoding methods
in the RBPPred [21], C-T-D plus conjoint triad, which
followed Deep-RBPPred [20], and PSSM-400 feature plus
C-T-D plus PACC, which followed RBPro-RP [17]. These
three encoding methods covered the major strategies
to extract the hand-crafted features from the protein
sequence by and large. Thus, we compared with RBP-
TSTL the performance of these models trained with
these features to further investigate the effectiveness
of embeddings generated by LMs. As shown in Fig. 5,
RBP-TSTL outperformed all the other models by a
large margin across all the four species. The results
highlight the value and importance of leveraging the
self-supervised pre-trained model to further enhance
the performance compared with the traditional encoding
schemes.

Genome-scale species-specific prediction of RBPs
In this section, we performed genome-scale species-
specific prediction of putative RBPs of four target species
by applying the best-performing RBP-TSTL model. The
protein sequences of each species were downloaded
from UniProt [50] using their corresponding taxonomy
ID. In addition, protein sequences that appeared in
previous training datasets were removed before the
genome-wide screening. Protein sequences with more
than 6000 amino acids in length were truncated due
to the limitation of computational resources. At the
final step, the calibration method [90] was employed
to modulate the output logits to reflect the confidence
level of the prediction. Finally, 17 935 protein sequences
were predicted as the putative RBPs in H. sapiens with
a confidence level of higher than 50%, 20 174 RBPs in
A. thaliana, 144 686 RBPs in E. coli, and 222 192 RBPs
in Salmonella, respectively. A statistical summary of the
predicted RBPs with various confidence level in the four
species is provided in Table 7. The genome-scale RBPs
prediction results with different confidential levels are
publicly available at https://github.com/Xinxinatg/RBP-
TSTL, as a computational compendium for the wider
research community to use.

Figure 5. ROC and Precision-Recall curves of different methods on the
independent test sets of four target species. RBPPred-alike, DeepRBPPred-
alike, and RBPro-alike refer to the models built on the same encoding
method as RBPPred, DeepRBPPred, and RBPro, respectively.

Conclusion and future work
In this study, we have designed and developed a new
computational approach based on the pre-trained
protein LM, termed RBP-TSTL, for high-performance,
species-specific prediction of RNA-binding proteins at
the genome-scale. Benchmarking experiments show that
the proposed method outperformed several existing
state-of-the-art methods in terms of the major per-
formance metrics such as the AUC, AUPRC, and MCC.
We conducted an extensive comparative analysis of

https://github.com/Xinxinatg/RBP-TSTL
https://github.com/Xinxinatg/RBP-TSTL
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Table 7. Statistical summary of the predicted RBPs with different confidence levels (CL) in H. sapiens, A. thaliana, E. coli, and Salmonella

Species
CL

H. sapiens A. thaliana E. coli Salmonella

>50% 17 935 20 174 144 686 222 192
>60% 15 851 18 857 132 930 203 636
>70% 13 958 17 559 121 281 183 896
>80% 12 207 16 366 110 553 160 762
>90% 10 067 14 599 96 872 133 240

different self-supervised pre-trained models for the RBPs
prediction and proposed an effective two-stage transfer
learning strategy. The first stage involved transferring
knowledge from a self-supervised pre-trained model,
while the second stage transferred the knowledge from
the annotated non-species-specific RBPs dataset to each
of the four target species. Performance benchmarking
analysis showed that the species-specific RBP-TSTL
models achieved state-of-the-art performance in RBPs
prediction for H. sapiens, A. thaliana, E. coli, and Salmonella,
despite the relative abundance or scarcity of the
annotated data. We further applied the best-performing
RBP-TSTL models and conducted the genome-scale
prediction of RBPs in H. sapiens, A. thaliana, E. coli, and
Salmonella. The predicted results are publicly available
as a computational compendium at https://github.com/
Xinxinatg/RBP-TSTL. We anticipate that the proposed
RBP-TSTL approach will be leveraged as a useful tool
and can inspire the development of self-supervised pre-
trained protein LMs to explore their sequence–structure–
function relationships.

Despite the excellent performance of RBP-TSTL for
predicting RBPs, there exist several aspects that can
be further improved by transferring the knowledge
within eukaryotic or prokaryotic species and replacing
the weighted binary cross-entropy methods with boot-
strapping [91] to counter the data imbalance issue. As
discussed in Cross-species prediction of RBPs section, the
models of species within eukaryotes or prokaryotes could
retain the predictive capabilities for cross-species RBPs
prediction. Therefore, the target species with limited data
could potentially benefit by transferring the knowledge
from other species with more abundant data if they all
belong to prokaryotes or eukaryotes. More specifically,
the model of A. thaliana can be fine-tuned on top of the
trained model of H. sapiens, and the model of E. coli can
be fine-tuned on top of the trained model of Salmonella.
Accordingly, the scarcity of data in certain species can
be alleviated to some extent. In addition, the weighted
binary cross-entropy might have some drawbacks in
terms of counting the severe data imbalance. As an
alternative approach, the bootstrapping method [45]
can be used to tackle this data imbalance problem in
the training dataset. In this way, the species-specific
model for RBPs prediction can be potentially developed
for the target species that have practically limited
data.

Key Points

• Computational methods that are capable of accurately
identifying RBPs are highly desirable and have important
implications for biomedical and biotechnological appli-
cations.

• We designed and developed a new two-stage com-
putational approach based on the pre-trained pro-
tein language model, termed RBP-TSTL, for high-
performance, genome-scale, species-specific prediction
of RNA-binding proteins.

• Benchmarking experiments showed that RBP-TSTL
achieved better performance for predicting the RNA-
binding proteins in H. sapiens, A. thaliana, E. coli, and
Salmonella when compared with several existing
methods.

• As a computational compendium, the predicted puta-
tive RBPs at the genome-scale are publicly accessible at
https://github.com/Xinxinatg/RBP-TSTL for the research
community to use.
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Funding
National Health and Medical Research Council of
Australia (NHMRC) (grant nos. APP1127948, APP1144652);
Australian Research Council (ARC) (grant nos. LP110200333,
DP120104460); National Institute of Allergy and Infec-
tious Diseases of the National Institutes of Health (grant
no. R01 AI111965); Major Inter-Disciplinary Research
(IDR) project awarded by Monash University.

Code and Data Availability
The source code of RBP-TSTL and genome-scale predic-
tion results is publicly available at https://github.com/
Xinxinatg/RBP-TSTL.

References

1. Jeng YM, Chang CC, Hu FC, et al. RNA-binding protein insulin-like
growth factor II mRNA-binding protein 3 expression promotes

https://github.com/Xinxinatg/RBP-TSTL
https://github.com/Xinxinatg/RBP-TSTL
https://github.com/Xinxinatg/RBP-TSTL
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac215#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://github.com/Xinxinatg/RBP-TSTL
https://github.com/Xinxinatg/RBP-TSTL


RNA-binding protein prediction using transfer learning | 13

tumor invasion and predicts early recurrence and poor progno-
sis in hepatocellular carcinoma. Hepatology 2008;48:1118–27.

2. Ding Z, Yang H-W, Xia T-S, et al. Integrative genomic analyses of
the RNA-binding protein, RNPC1, and its potential role in cancer
prediction. Int J Mol Med 2015;36:473–84.

3. Huang Y, Chen S, Qin W, et al. A novel RNA binding protein-
related prognostic signature for hepatocellular carcinoma. Front
Oncol 2020;10:1908–32.

4. Wu Y, Liu Y, He A, et al. Identification of the six-RNA-binding
protein signature for prognosis prediction in bladder cancer.
Front Genet 2020;11:992.

5. Li T, Hui W, Halike H, et al. RNA binding protein-based model
for prognostic prediction of colorectal cancer. Technol Cancer Res
Treat 2021;20:15330338211019504.

6. Castello A, Horos R, Strein C, et al. Comprehensive identifica-
tion of RNA-binding proteins by RNA interactome capture. Post-
Transcriptional Gene Regulation Springer 2016;1358:131–9.

7. Si J, Cui J, Cheng J, et al. Computational prediction of RNA-binding
proteins and binding sites. Int J Mol Sci 2015;16:26303–17.

8. Gerovac M, El Mouali Y, Kuper J, et al. Global discovery of bacte-
rial RNA-binding proteins by RNase-sensitive gradient profiles
reports a new FinO domain protein. RNA 2020;26:1448–63.

9. Yang Y, Zhan J, Zhao H, et al. A new size-independent score
for pairwise protein structure alignment and its application
to structure classification and nucleic-acid binding prediction.
Proteins 2012;80:2080–8.

10. Zhao H, Yang Y, Zhou Y. Highly accurate and high-resolution
function prediction of RNA binding proteins by fold recognition
and binding affinity prediction. RNA Biol 2011;8:988–96.

11. Yang Y, Zhao H, Wang J, et al. SPOT-Seq-RNA: predicting pro-
tein–RNA complex structure and RNA-binding function by fold
recognition and binding affinity prediction. Protein structure
prediction. Springer 2014;1137:119–30.

12. Sharan M, Förstner KU, Eulalio A, et al. APRICOT: an integrated
computational pipeline for the sequence-based identification
and characterization of RNA-binding proteins. Nucleic Acids Res
2017;45:e96–6.

13. Beckmann BM, Horos R, Fischer B, et al. The RNA-binding pro-
teomes from yeast to man harbour conserved enigmRBPs. Nat
Commun 2015;6:1–9.

14. Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding
and functional map of human RNA-binding proteins. Nature
2020;583:711–9.

15. Hentze MW, Castello A, Schwarzl T, et al. A brave new world of
RNA-binding proteins. Nat Rev Mol Cell Biol 2018;19:327–41.

16. Zhang J, Chen Q, Liu B. iDRBP_MMC: identifying DNA-binding
proteins and RNA-binding proteins based on multi-label learn-
ing model and motif-based convolutional neural network. J Mol
Biol 2020;432:5860–75.

17. Sun X, Jin T, Chen C, et al. RBPro-RF: use Chou’s 5-steps rule to
predict RNA-binding proteins via random forest with elastic net.
Chemom Intel Lab Syst 2020;197:103919.

18. Qiu J, Bernhofer M, Heinzinger M, et al. ProNA2020 predicts pro-
tein–DNA, protein–RNA, and protein–protein binding proteins
and residues from sequence. J Mol Biol 2020;432:2428–43.

19. Bressin A, Schulte-Sasse R, Figini D, et al. TriPepSVM: de novo
prediction of RNA-binding proteins based on short amino acid
motifs. Nucleic Acids Res 2019;47:4406–17.

20. Zheng J, Zhang X, Zhao X, et al. Deep-RBPPred: predicting RNA
binding proteins in the proteome scale based on deep learning.
Sci Rep 2018;8:15264.

21. Zhang X, Liu S. RBPPred: predicting RNA-binding proteins from
sequence using SVM. Bioinformatics 2017;33:854–62.

22. Paz I, Kligun E, Bengad B, et al. BindUP: a web server for non-
homology-based prediction of DNA and RNA binding proteins.
Nucleic Acids Res 2016;44:W568–74.

23. Ma X, Guo J, Xiao K, et al. PRBP: prediction of RNA-binding pro-
teins using a random forest algorithm combined with an RNA-
binding residue predictor. IEEE/ACM Trans Comput Biol Bioinform
2015;12:1385–93.

24. Ma X, Guo J, Sun X. Sequence-based prediction of RNA-
binding proteins using random forest with minimum redun-
dancy maximum relevance feature selection. Biomed Res Int
2015;2015:425810.

25. Wang Y, Chen X, Liu Z-P, et al. De novo prediction of RNA–
protein interactions from sequence information. Mol Biosyst
2013;9:133–42.

26. Peng C, Liu L, Niu B, et al. Prediction of RNA-binding proteins by
voting systems. J Biomed Biotechnol 2011;2011:506205.

27. Ma X, Guo J, Wu J, et al. Prediction of RNA-binding residues
in proteins from primary sequence using an enriched ran-
dom forest model with a novel hybrid feature. Proteins 2011;79:
1230–9.

28. Kumar M, Gromiha MM, Raghava GP. SVM based prediction of
RNA-binding proteins using binding residues and evolutionary
information. J Mol Recognit 2011;24:303–13.

29. Shao X, Tian Y, Wu L, et al. Predicting DNA-and RNA-binding pro-
teins from sequences with kernel methods. J Theor Biol 2009;258:
289–93.

30. Shazman S, Mandel-Gutfreund Y. Classifying RNA-binding
proteins based on electrostatic properties. PLoS Comput Biol
2008;4:e1000146.

31. Kumar M, Gromiha MM, Raghava GPS. Prediction of RNA binding
sites in a protein using SVM and PSSM profile. Proteins 2008;71:
189–94.

32. Yu X, Cao J, Cai Y, et al. Predicting rRNA-, RNA-, and DNA-binding
proteins from primary structure with support vector machines.
J Theor Biol 2006;240:175–84.

33. Han LY, Cai CZ, Lo SL, et al. Prediction of RNA-binding proteins
from primary sequence by a support vector machine approach.
RNA 2004;10:355–68.

34. Mishra A, Khanal R, Kabir WU, et al. AIRBP: accurate identifi-
cation of RNA-binding proteins using machine learning tech-
niques. Artif Intell Med 2021;113:102034.

35. Zhao Y, Du X. econvRBP: improved ensemble convolutional neu-
ral networks for RNA binding protein prediction directly from
sequence. Methods 2020;181:15–23.

36. Zhang J, Yan K, Chen Q, et al. PreRBP-TL: prediction of species-
specific RNA-binding proteins based on transfer learning. Bioin-
formatics 2022;38:2135–2143.

37. Yang Q, Li B, Tang J, et al. Consistent gene signature of
schizophrenia identified by a novel feature selection strategy
from comprehensive sets of transcriptomic data. Brief Bioinform
2020;21:1058–68.

38. Lam JH, Li Y, Zhu L, et al. A deep learning framework to predict
binding preference of RNA constituents on protein surface. Nat
Commun 2019;10:1–13.

39. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and
PSI-BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res 1997;25:3389–402.
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