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Background. Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision
vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing
activities in Germany.

Methods. AtRobert Koch Institute (RKI), theGermanNational Institute of PublicHealth, we established the IntegratedMolecular
Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2–
positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI.

Results. We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282
were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold
larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple
mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus
neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset
facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together withmodeled vaccine efficacies, Delta-
specific incidence estimation indicated that theGerman vaccination campaign contributed substantially to a deceleration of the nascent
German Delta wave.

Conclusions. SARS-CoV-2molecular and genomic surveillancemay inform public health policies including vaccination strategies
and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.
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At the beginning of the third year of the coronavirus disease
2019 (COVID-19) pandemic, it is becoming evident that its
causative agent, the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), will not be eradicated. Reasons
include viral persistence in some individuals [1–3]; multiple in-
dications that zoonotic reservoirs can be, or have already been
established [4–8]; and the emergence of variants of concern
(VOCs), SARS-CoV-2 strains that have evolved to, for instance,
transmit more effectively [9–11]. Thus, it seems that
SARS-CoV-2 may continue to circulate for decades to come.
Although the burden on the acute healthcare sector may lessen
over time, there is considerable evidence that SARS-CoV-2 is
more virulent than other respiratory viruses, including influen-
za viruses [12–14]; moreover, SARS-CoV-2 displays broad tis-
sue tropism, frequently causing a multisystemic illness that is
not limited to the respiratory tract and may have long-term
consequences [15–18]. Therefore, the effective use of
COVID-19 vaccines may remain a long-term public health
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imperative. While postpandemic circulation patterns cannot be
predicted with absolute certainty, once high population immu-
nity is achieved, COVID-19 could become an endemic disease
with high impact and recurrent epidemic peaks [19, 20].
Depending on the quality and the duration of immune protec-
tion, these epidemic peaks may occur regularly during the win-
ter season, similar to influenza. Additionally, they might be
triggered, for example, by zoonotic reintroductions or the
emergence of novel VOCs capable of immune escape [19, 20].

Pathogen surveillance can substantially contribute to maxi-
mizing vaccine effectiveness at the population level. Relevant
factors include not only the timing of epidemic peaks but
also pathogen genetic variation: For example, the Omicron
surge of the COVID-19 pandemic is caused by a genetically dis-
tinct SARS-CoV-2 variant with pronounced immune-evasive
properties [21–23]. The Omicron variant has a substantial
transmission advantage and has therefore prompted the devel-
opment of novel Omicron-specific vaccines. Given the severity
and anticipated long-term epidemiological persistence of
COVID-19, as well as SARS-CoV-2’s ability to evolve and adapt
to immune selection pressure, there is an urgent need to estab-
lish adequate and robust surveillance instruments for this virus.
Among these instruments, pathogen molecular and genomic
surveillance, which also allow the tracking of viral evolution,
may serve as powerful tools to complement and advance preci-
sion vaccinology.

In response to the emergence of the Alpha VOC in Europe in
late 2020, SARS-CoV-2 sequencing efforts in Germany were
ramped up substantially by a statutory order for diagnostic lab-
oratories to submit viral genome information from a fraction of
positive diagnostic specimens to a central hub [24] against fi-
nancial compensation. Since then, a vast amount of complete
genome sequences has been deposited in public repositories
such as the GISAID database [25]. However, such large-scale,
resource-intensive efforts will become difficult to sustain, espe-
cially in the postpandemic period. Thus, it is crucial to establish
molecular surveillance approaches that are not only informa-
tive but also cost-effective.

In 2020, Robert Koch Institute (RKI, the German
National Institute of Public Health) established the
Integrated Molecular Surveillance for SARS-CoV-2
(IMS-SC2) network with the explicit goal to complement
the existing epidemiological surveillance with a national-
scale, representative SARS-CoV-2 genomic surveillance
that is also resource-efficient. Here, we present the results
of 13 months of SARS-CoV-2 molecular and genomic sur-
veillance in Germany, spanning the time period from the
first emergence of Alpha to the rise of Omicron. We also
demonstrate how genomic surveillance as part of a compre-
hensive surveillance system can be used as an unbiased and
independent data source that allows researchers not only to
gauge the overall dynamics of SARS-CoV-2 spread, but also

to retrospectively assess the impact of the vaccination cam-
paign on the pandemic trajectory of the Delta VOC in
Germany.

METHODS

Sample Selection

IMS-SC2 network laboratories are distributed across Germany
and include large regional laboratories involved in routine test-
ing of samples from ambulatory healthcare centers and hospi-
tals, academic diagnostic laboratories, and 2 public health
laboratories (1 running diagnostics for local health depart-
ments and another running the national sentinel for acute re-
spiratory infections [26]). The Supplementary Methods
provide details on sampling approaches.

Ethics Statement

Assessment of vaccine-induced humoral immunity via neutral-
ization assays was approved by the ethics committee of the
Hesse Medical Association (2020-1664_2-evBO) and written
informed consent was obtained from all participants. All inves-
tigations were conducted according to the principles laid down
in the Helsinki Declaration. All analyses were based on anony-
mized data.

RNA Extraction, Sequencing, and Genome Reconstruction

At RKI, total RNA was extracted using established protocols
[26, 27] as described in the Supplementary Methods, which
also provide details on the sequencing and genome reconstruc-
tion procedures used.

Plaque Reduction Neutralization Test

The plaque reduction neutralization test was performed in du-
plicate in the biosafety level 3 (BSL-3) facility at RKI as de-
scribed elsewhere [28] and outlined in the Supplementary
Methods.

Sequence Data Set Preparation

The IMS-SC2 data set was prepared for downstream analysis
employing poreCov v0.11.7 [29], Pangolin v3.1.17 [30], and
covSonar v1.1.0 (https://gitlab.com/s.fuchs/covsonar) and re-
stricted to the time period 1 December 2020 until 31
December 2021, as outlined in the Supplementary Methods,
which also explains how the German GISAID dataset was
prepared.

Geographical Distribution Analysis

A crucial component of national-level molecular surveillance is
collecting a steady flow of samples that approximates the total
population of a pathogen, which renders key importance to
adequate geographical coverage. Therefore, we conducted
geographical distribution analysis as described in the
Supplementary Methods.
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Phylogenetic Tree Inference and Data Visualization

Phylogenetic tree inference and data visualization procedures
are explained in detail in the Supplementary Methods. In brief,
phylogenetic analysis was performed on the randomly sampled
IMS-SC2 dataset employing MAFFT [31], IQ-TREE
v2.1.4-beta [32], 1000 ultra-fast bootstrap replicates [33], and
Iroki [34] for visualization; Sankey and UpSet graphs were gen-
erated using a custom script (https://github.com/hoelzer/
sankey) inspired by the Pavian package [35] and the UpSetR
package [36], respectively.

Testing Statistical Increase for a VOC Count

Significant increase in a VOC proportion was assessed using a
Fisher exact test on sample counts between 2 successive calen-
dar weeks (as detailed in [37]).

Genome-Based Incidence Estimation and Case Ascertainment

We used the newly established genome-based incidence esti-
mation pipeline GInPipe [38] to assess the “true” number of
SARS-CoV-2 infections and the case ascertainment (detection)
rates in Germany over time. These analyses were based on the
random IMS-SC2 sequence dataset (3282 sequences) and were
validated using a sequence dataset from GISAID (226 316 se-
quences) covering the same time frame. Details on this analysis
are provided in the Supplementary Methods.

Vaccine Efficacy and Impact of Vaccinations

Analyses on vaccine efficacy and impact of vaccination onDelta
cases are based on mathematical modeling that is outlined in
detail in the Supplementary Methods.

RESULTS

Integrated Molecular Surveillance for SARS-CoV-2

After completion of preparatory work, the IMS-SC2 network
was established at RKI in November 2020 as a scalable surveil-
lance instrument with the aim to guide and inform public
health policies by providing insights into SARS-CoV-2 geno-
mic epidemiology at national level.

The IMS-SC2 employs 2 complementary sampling strategies:
(1) representative sampling, where SARS-CoV-2 reverse-
transcription polymerase chain reaction–positive specimens
are arbitrarily selected for whole-genome sequencing and (2)
targeted sampling of SARS-CoV-2 cases occurring in settings
of clinical or epidemiological interest, such as vaccine break-
through infections, reinfections, outbreaks, and cases of travel-
ers returning from countries with high VOC prevalence [39].

The IMS-SC2 laboratory network currently comprises 16 di-
agnostic laboratories distributed across Germany (Figure 1A).
For representative sampling, the laboratories randomly select
a total average of 58+ 22 SARS-CoV-2–positive remainder
specimens and send them to RKI for whole-genome sequenc-
ing on a weekly basis. In addition, a limited number of

specimens fulfilling the targeted sampling criteria (see above)
are sent to RKI on an as-needed basis. Thus, while the
IMS-SC2 is primarily based on an unbiased sample set of
SARS-CoV-2 cases in Germany, emerging genetic variants
may be captured at an early timepoint, while they are still rare.
Once received at RKI, samples undergo RNA extraction, li-

brary preparation, sequencing, and bioinformatic analysis to
generate a consensus genome for each sample, using standard-
ized operating procedures (Figure 1B). Samples are sequenced
with either Illumina or Nanopore instruments; the reads gener-
ated undergo sequence quality control and are subsequently
subjected to specialized pipelines for reference-based genome
reconstruction [40, 29]. The resulting consensus genomes are
then forwarded to a pipeline that automatically performs the
following steps on a daily basis: consensus andmetadata quality
control, lineage assignment using the most up-to-date software
versions of pangolin [30], generation of mutation profiles and
storage in a harmonized database, cluster detection, and gener-
ation of summaries for reporting and subsequent data analyses.
Analysis protocols and bioinformatic algorithms undergo reg-
ular benchmarking and adjustment for optimal performance in
the face of ongoing viral evolution. To enable subsequent anal-
yses that are meaningful from a public health standpoint, the
sequencing data are complemented with the corresponding
metadata that hold information on the date, approximate loca-
tion, sampling indication, and additional circumstances of each
sequenced specimen.

Genome Sequencing

Of a total 4249 samples collected from 1 December 2020 to 31
December 2021, 3623 underwent sequencing via Nanopore
(92.72%) or Illumina (7.27%) and passed quality control with at
least 90% sequence identity to NC_045512.2 and allowing not
more than 10% of ambiguous calls with not more than 5% of un-
informative N calls. The consensus sequences reconstructed
from Nanopore data were covered by 116k reads and comprised
1.62% N bases on average. The reconstructed SARS-CoV-2
genomes underwent downstream analyses as outlined below.

Total Sample: Timely Detection of VOCs at Representative
Proportions

Of the total 3623 SARS-CoV-2–positive specimens with ge-
nomes successfully reconstructed, 90.6% (3282) were sampled
randomly, whereas 5.4% (194) were collected via targeted selec-
tion (remaining unknown). The study samples originated from
almost all regions in Germany (Figure 1A). The sampling peri-
od covered the second, the third, and the ongoing fourth wave
of the COVID-19 pandemic in Germany (Figure 1C, incidence
in Germany).
All World Health Organization (WHO)–declared VOCs

were present in the IMS-SC2 sample set, at frequencies that var-
ied over time (Figure 1C, Figure 2A; and section “Random
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Figure 1. A, Map visualizing the distribution and amount of submitted samples to the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) project in Germany
based on 3-digit zip codes. The locations of participating laboratories are highlighted in yellow. The map is based on random samples (n= 3282), suspected samples (n=
194), and unknown samples (n= 147) of which 3.42% (n= 124) were excluded due to missing or incorrect geographical data. B, IMS-SC2 workflow. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)–positive samples from multiple locations are transported to the Robert Koch Institute wet laboratory where they undergo processing
for whole-genome sequencing. Sequence data are analyzed using standardized pipelines, which are updated at regular intervals to adjust for changing wet-lab protocols as
well as sequence variation and evolution. All IMS-SC2 samples are cryopreserved, enabling isolation and further in vitro evaluation (eg, via neutralization assays) of S-
ARS-CoV-2 strains displaying sequence features of interest, for example, amino acid substitutions in the spike gene that may be associated with immune evasion. C, S-
ARS-CoV-2 lineage counts over time as captured by the IMS-SC2 network. Variants of concern (VOCs) shown are Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta
(B.1.617.2), and Omicron (B.1.1.529). Lineage B.1.177 is also shown as an early variant that emerged in Europe in early summer 2020 [41]. Information on sublineages
(such as AY sublineages for Delta) are summarized in their parent lineage. Shadow bars indicate total sequence numbers determined. Blue line displays national
SARS-CoV-2 incidences (right y-axis) at the corresponding time points. Arrows denote the time points that each VOC was declared as such by the World Health Organi-
zation (Alpha: mint; Beta: blue; Gamma: light green; Delta: pink; Omicron: yellow); a black double-asterisk shows the time point at which the weekly count of Delta genomes
increased significantly (Fisher exact test, P,.01); colored asterisks denote the time points when Alpha and Delta were declared predominant variants in Germany, based on
sequencing data, registered case counts, and polymerase chain reaction genotyping efforts. Additional information is shown in Supplementary Table 1. D, SARS-CoV-2
lineage and corresponding sublineage proportions as captured by the IMS-SC2, compared to German genome proportions in GISAID in the same time frame. VOCs shown
here are Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), including their corresponding sublineages. Lineage B.1.177 is also shown as
an early variant that emerged in Europe in early summer 2020. All remaining SARS-CoV-2 lineages are pooled into “Other.”
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Figure 2. A, Variant proportions over time, as captured in the representative sampling subset of Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) laboratory
network genome sequences. To visualize the dynamics in the virus population over time, virus lineages were determined with pangolin based on the randomly sampled
genome sequences (n= 3282, see Materials and Methods). Lineage frequencies were aggregated based on the date of sampling relative to calendar weeks. Missing values
have been interpolated. Visualization was performed using RAWGraphs. Please see Supplementary Figure 1 for a detailed visualization including non–variants of concern
(VOCs). B, Phylogenetic tree highlighting VOC clades. Sequencing data presented here are based on all randomly selected severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)–positive specimens from the IMS-SC2 network (n= 3282). Lineage B.1.177 is also shown as an early variant that emerged in Europe in early summer 2020 as
well as 3 A.27 samples. Please see Supplementary Figure 2 for the full tree visualization, including the 2 long branch attractions described in the Supplementary Methods. C,
Mutation of concern (MOC) proportions and combinations over time, as captured by the randomly sampled IMS-SC2 genomes. MOCs shown here highlight the spike amino
acid positions, rather than the specific exchanged amino acid, as the selected positions can have.1 amino acid substitution. We constructed an UpSet diagram to visualize
the 20 most common intersecting sets, ie, shared MOCs among the randomly selected IMS-SC2 sequences. For selected MOCs, the diagram shows all intersections (specific
mutation profiles) and the number of IMS-SC2 sequences that harbor these profiles. On the leftmost panel, we show the frequencies of specific MOCs over time (x-axis:
calendar weeks). For selected mutation profiles, we also show the distribution of SARS-CoV-2 lineages. For additional information on the selected mutations, please se-
e Supplementary Figure 3 and Supplementary Table 3. D, Assessing the susceptibility of SARS-CoV-2 variants to neutralization. Thirty-four sera drawn from individuals vac-
cinated twice with the BNT162b2 vaccine were assessed for their capacity to neutralize different SARS-CoV-2 isolates in vitro. Bars represent the geometric mean plaque
reduction neutralization test (PRNT50) titer and 95% confidence intervals. The red dot–marked patient in (A) is immunosuppressed and not included in the statistical analysis.
The geometric mean titer is indicated above each bar. Significance was determined by 2-way analysis of variance. ***P , 0.001; ns, not significant.
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sample: Variant, phylogenetic, and mutation analysis” below).
VOCs relevant to COVID-19 epidemiology in Germany were
detected in a timely manner: for example, Alpha (B.1.1.7),
Beta (B.1.351), and Delta (B.1.617.2 and sublineages) were de-
tected in IMS-SC2 specimens sampled over 1 week (Alpha,
Beta) and over 3 weeks (Delta) before these variants were de-
clared VOCs by the WHO (Figure 1C and Supplementary
Table 1). To assess how adequately the IMS-SC2 data set cap-
tured relevant variants, we used the GISAID subset of sequenc-
es submitted by German laboratories from the same time
period as reference and compared the relative proportions of
selected SARS-CoV-2 lineages. Although the IMS-SC2 dataset
was 2 orders of magnitude smaller than the total GISAID data-
set, VOC proportions were well-correlated with the reference
dataset (Figure 1D). As expected, non-VOC sequences were
present in the IMS-SC2 dataset at a higher proportion

(18.9%) than in the German GISAID dataset (9.8%), reflecting
differences in the underlying sample acquisition system: While
a considerable part of sequences submitted to GISAID origi-
nate from targeted samples that were sequenced because a
VOC infection was suspected, themajority of IMS-SC2 samples
(90%) have been obtained via random sampling as outlined
above.

Random Sample: Variant, Phylogenetic, and Mutation Analysis

The randomly selected sample set included 3282 SARS-CoV-2
specimens collected between December 2020 and December
2021, for which whole genomes were successfully reconstruct-
ed. The study population of this random sample was diverse
with respect to their age distribution (Supplementary
Table 2). Figure 2A and Supplementary Figure 1 depict the lin-
eage composition over time in the sequence dataset derived

Figure 3. A and B, Reported severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases in Germany (rolling average, red line) and genome-based incidence
estimation using GInPipe [39]. A, The solid and dashed blue lines depict the median trajectory and its 5th to 95th percentile of GInPipe’s incidence estimate using only
Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) laboratory network data (3282 sequences, random set). B, The solid and dashed green lines depict the cor-
responding estimates using all available German sequences deposited in GISAID (226 316 sequences). C and D, Predicted changes in case ascertainment using GInPipe
with the IMS-SC2 data (C ), as well as all available German sequences deposited in GISAID (D). Case ascertainment is centered on the median case ascertainment probability.
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from the random sample. Lineage composition was initially di-
verse and both the Alpha (B.1.1.7) and Beta (B.1.351) VOCs
were detected less frequently than, for instance, B.1.177 (a var-
iant prevalent in Europe during the 2020 summer [41]), and
other non-VOC variants (Figure 2A, Supplementary
Figure 1). Whereas Beta detections remained sporadic, Alpha
rose to predominance in March 2021 and was frequently found
throughout the first half of that year. A single sample, collected
in July 2021, was classified as Gamma (P.1). Delta (B.1.617.2
and sublineages), first identified in a sample from April 2021,
spread in mid-2021 to become the single most common VOC
through December 2021, when the first Omicron (B.1.1.529)
genomes were identified.

Phylogenetic analysis was performed to explore the genetic
diversity within each VOC clade and between different VOCs
(Figure 2B and Supplementary Figure 2). As expected, genomes
belonging to the same VOC clustered together. The VOC to-
pology in our phylogeny overall agrees with the one based on
all global GISAID sequences, as shown in the Nextstrain web-
site build (https://nextstrain.org/ncov/gisaid/global; accessed
17 January 2022): Omicron branching together with Alpha
and B.1.177 branching together with Delta.

Mutation analyses focused on nonsynonymous spikemutations
with previously characterized phenotypic effects (Supplementary
Table 3 and Supplementary Figure 3). For several of these muta-
tions of concern (MOCs), the time-dependent detection patterns
appeared similar (Figure 2C, leftmost panel), indicating combined
occurrence. We identified several MOC combination profiles, of
which the most common ones were indeed specific to Delta,
Alpha, and Omicron, the VOCs identified at the highest frequen-
cies in the IMS-SC2 dataset (Figure 2C, upper and main panels).
Figure 2C also reveals changes in single specific sites, for example,
S:L18 for B.1.177 and Beta.

Assessing Variant Sensitivity to Vaccine-Induced Humoral Immunity

A major goal of SARS-CoV-2 molecular surveillance efforts is to
predict phenotypical virus properties, such as immune evasion.
For such genotype-to-phenotype predictions to be robust, se-
quencing data must be complemented with laboratory experi-
mental data. Native swab samples submitted by IMS-SC2
network laboratories can be used for virus isolation in a dedicated
high biosafety level (BSL-3) at RKI. To assess SARS-CoV-2 vari-
ants circulating in Germany for their susceptibility to
vaccine-induced humoral immunity, we have established a proto-
col to measure the neutralizing activity of postvaccine plasma
against different variants, using authentic viruses. Sera from 35
healthcare workers receiving routine COVID-19 vaccination
with BNT162b2 [42] were tested against 1 of the first German
SARS-CoV-2 isolates (reference, lineage B) and isolates obtained
from the IMS-SC2 and classified as A.27 [37], Alpha, Beta, and
Zeta (P.2). As shown in Figure 2D, sera from these vaccinated in-
dividuals displayed overall robust neutralization activity against

each of these variants, with the exception of a serum sample orig-
inating from an immunocompromised study participant, which
neutralized, at low titers, only 1 out of the 5 isolates tested. The
mean neutralization titers were significantly higher against the
reference strain, Alpha, and A.27 than they were against Beta
and Zeta, confirming that both Beta and Zeta are capable of im-
mune evasion [43, 44]. Thus, the IMS-SC2 infrastructure enables
experimental studies to assess immune escape. This is a key pri-
ority with respect to relevant phenotype predictions [45].

IMS-SC2 Facilitates Genome-Based Incidence Estimation to Assess
Unreported Case Numbers

To assess the epidemic activity and spread of COVID-19, it is im-
portant to know the size of the population infected per time, that
is, the incidence of SARS-CoV-2 infections. This key epidemio-
logic parameter is commonly gauged by monitoring the number
of confirmed cases. However, number of confirmed cases may
considerably underestimate the true number of infections, for ex-
ample, due to varying test capacities or test strategies [46–48, 38].
We have previously established a bioinformatic method that en-
abled an unbiased estimate of SARS-CoV-2 incidence, based on
genome sequencing data [38]. We employed this novel approach
to retrospectively assess SARS-CoV-2 incidences in Germany,
based on the IMS-SC2 genome sequencing dataset. To this end,
sequences are assigned to consecutive subsets according to their
sampling dates (temporal bins) and for each temporal bin, the
number of sequences different from a reference, as well as
the number of unique sequences, is computed in order to infer
the incidence correlate, which can then be used to estimate the
“true” number of infections (ie, independent of the testing strat-
egies, which are biased; seeMaterials andMethods). In Figure 3A,
we show the sequence-based incidence estimation for the ran-
domly selected IMS-SC2 data (3282 sequences). For validation
purposes, we performed the same calculation using the German
sequence data (226 316 sequences) available on GISAID, which
were generated during a corresponding time frame, that is, start-
ing in February 2021, when the IMS-SC2 began to generate a
steady data influx. This validation showed comparable results
for the GISIAD sequence data, although confidence intervals
were narrower compared to the smaller IMS-SC2 data set.
Based on the sequence-based incidence estimate, it is also possible
to predict the case ascertainment probability over time (the prob-
ability that an infected case is reported). This analysis suggests
that SARS-CoV-2 was underreported between end of May and
end of August 2021 (Figure 3C), similar to findings observed in
other European countries in the summer of 2020 [38].
Convincingly, case ascertainment analysis with the entire
GISAID dataset largely confirmed these trends (Figure 3D).
These calculations suggest that it is possible to perform genome-
based incidence estimation and accurate case ascertainment anal-
ysis using a well-designed national-scale genomic surveillance
dataset.
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Figure 4. A, Reported cases (rolling average) during the onset of the Delta wave in Germany (July–November 2021, solid red line) and genome-based incidence estimation
to infer the “true” Delta incidences for the considered time window, using an established in-house bioinformatic method [38] using the Integrated Molecular Surveillance for
SARS-CoV-2 (IMS-SC2) sequence set (solid blue line=median estimate; dashed blue lines= 5th and 95th percentile, 1497 sequences) vs the GISAID sequence set (solid
green line=median estimate; dashed green lines= 5th and 95th percentile, 132 610 sequences). B, Daily number of individuals receiving the second vaccine shot (blue line)
in Germany and smoothed 7-day average (red line). C, Expected reduction of new Delta cases in Germany resulting from the timeline of vaccination and the waning dynamics
of vaccine efficacy. D, Reported weekly severe acute respiratory syndrome coronavirus 2 cases during the onset of the Delta wave in Germany (blue bars) and expected
additional weekly Delta cases if the German vaccine campaign had not been rolled out (gray bars; computed using the susceptible-infected-recovered [SIR] model outlined
in the Supplementary Methods). E, Expected total Delta cases averted by the German vaccination campaign until December 2021 (computed using the SIR model outlined in
the Supplementary Methods).
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The German Vaccination Campaign Decelerated and Delayed the Delta
Wave

The number of reported cases in Germany increased exponen-
tially from July to late August 2021 (Figures 3A and 4A, red
line). We hypothesized that this pronounced increase was
borne by the Delta VOC, which had emerged in India in
March 2021, rapidly spread around the world, and became pre-
dominant in Germany in late June 2021 (Figure 1C). To con-
firm this hypothesis, we inferred the “true” Delta incidences
by genome-based estimations focusing on Delta genomes
from the IMS-SC2 random sample set (1497 sequences, blue
line in Figure 4A). Indeed, this Delta-specific subanalysis con-
firmed that the increase of total reported cases coincided with
an exponential rise in cases (Figure 4A and 4B); this finding
was validated by analysis based on the GISAID data set
(132 610 sequences, green line in Figure 4B). Thus, it is reason-
able to assume that the rising case counts in July and August
represented the nascent Delta wave.

Interestingly, both reporting data and genome-based Delta
incidence estimation revealed a plateau and decreasing trend
during August and September (Figure 4A, red line), followed
by rapid increase from mid-October onward (fourth wave in
Germany). Underreporting might have affected these dynam-
ics. However, not only the reporting data, but also genome-
based incidence estimation point towards the plateau and de-
crease, which makes it unlikely that this represents a reporting
artefact. Rather, there appears to be a “true” deceleration of the
nascent Delta wave, which is related to a real-world decrease in
Delta infections (Figure 4A).

A reasonable cause for the Delta wave deceleration
(Figure 4A), in addition to containment measures, may in
fact be the German vaccination campaign: As shown in
Figure 4B, most Germans received their second vaccine dose
during July and August 2021, that is, during a time period
which immediately preceded the Delta plateau in August/
September. To assess whether vaccination may have decelerat-
ed the Delta wave, we estimated the onset and waning dynamics
of vaccine efficacy against Delta infections (Supplementary
Methods). Based on these dynamics and the timeline of vaccine
administration, we were able to estimate the expected reduc-
tions of infections solely attributed to vaccination (Figure 4C;
Supplementary Methods). We then fitted a susceptible-
infected-recovered (SIR) model to the case reporting data to
derive an estimate of the time-varying “force of infection”
(Supplementary Methods). By calculating the impact of the
vaccination campaign on the force of infection
(Supplementary Methods) and using the derived SIR model,
we could simulate a hypothetical scenario in which vaccination
had not slowed down the pandemic. The resulting weekly cases
and the overall cases, if vaccination had not been rolled out in
Germany, are depicted in Figure 4D and 4E. This analysis indi-
cates that the German vaccination campaign considerably

reduced the velocity of the Delta wave at its onset during July
to October. Our model predictions indicate that if vaccination
had not taken place, the nonaverted cases in the summer (ie,
during the early phase of the Delta wave) would have led to
an exponential rise in cases during late autumn and winter,
with weekly incidences .10 times higher than those actually
observed (Figure 4D). In conclusion, the German vaccination
campaign contributed substantially to a true deceleration of
the Delta wave during August–October 2021, and profoundly
reduced the overall number of cases until December 2021
(Figure 4E).

DISCUSSION

Robust molecular and genomic SARS-CoV-2 surveillance is cru-
cial for detection,monitoring, and evaluation of viral variants with
potentially negative public health implications due to concerning
characteristics [39, 45, 49–52]. In January 2021,Germany, through
use of financial incentives, implemented a large-scale, mainly
commercial-laboratory based molecular surveillance of
SARS-CoV-2. In 2021, this surveillance collected .450 000 se-
quences. In the long term, maintaining genomic surveillance of
such high intensitymay prove financially and logistically challeng-
ing. Thus, molecular surveillance instruments that are efficient
and sustainable are becoming increasingly important.
Here, we present the first results of the German IMS-SC2, a

well-designed medium-scale molecular surveillance network at
the national level that could be adopted as a postpandemic ge-
nomic surveillance infrastructure to monitor SARS-CoV-2
evolution. We show that this surveillance instrument allows
for the detection and experimental laboratory study of impor-
tant VOCs (Figures 1C and 2D). Moreover, the robust primary
surveillance dataset captures the abundance of major variants
quite accurately, when compared to the entire German se-
quence data set (Figures 1C, 1D, and 2A), thereby allowing
the monitoring of concerning mutations (Figure 2C), to char-
acterize outlier variants by phylogenetic analysis (Figure 2B),
and to assess antigenic attributes of the humoral vaccine re-
sponse against emerging variants; the latter is crucial to predict-
ing immune evasion, that is, a highly relevant clinical
phenotype (Figure 2D). Furthermore, these data enabled us
to monitor infection dynamics through genome-based inci-
dence estimation and to monitor case ascertainment rates
over time (Figure 3). Sample size selection in molecular surveil-
lance balances resource allocation against downstream analysis
requirements. While large-scale SARS-CoV-2 genomic surveil-
lance may be scaled down considerably in the future, our data
demonstrate that a well-designed surveillance network using
substantially smaller sample sizes allows to capture important
aspects of SARS-CoV-2 viral evolution and infection dynamics.
Limitations of smaller sample sizes include greater uncertainty,
as illustrated by the wider 95% confidence intervals of the
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IMS-SC2–based incidence estimation (Figure 3A) compared to
the GISAID-based estimation (Figure 3B); and potentially lon-
ger lag times to the detection of low-frequency (eg, emerging)
variants. Depending on the certainty levels required for down-
stream applications, adjusting the numbers of sequenced sam-
ples may therefore be beneficial.

We show that the IMS-SC2 data can be used for genome-
based incidence estimation [38] to obtain information on the
“true” SARS-CoV-2 infection dynamics (Figure 3). In addition
to laboratory-confirmed infections, this approach allows us to
quantify unreported cases, that is, infections that do not find
their way into official case counts. Using this method, we ob-
served considerably higher incidences during the 2021 summer
than were captured via registered cases; these high infection
levels during the summer were setting the stage for the 2021
winter surge (Figure 3). Importantly, we were able to reliably
predict changes in case ascertainment probabilities (ie, the like-
lihood that a SARS-CoV-2 case is detected and reported). Thus,
the IMS-SC2 provides an additional data source that facilitates
the assessment of testing policies for adequacy, and the surveil-
lance of infection dynamics, even if these are hidden, for exam-
ple, due to paucity of testing. Such capability will be particularly
important in the postpandemic future, when testing may de-
crease substantially below the current levels. The IMS-SC2
data may then also serve to more precisely assess the impact
of vaccine timing and vaccine coverage on infection dynamics
at the population level (Figure 4), thereby helping to inform
and optimize future vaccination campaigns.

Antigenic variation in SARS-CoV-2 can decrease vaccine effi-
cacy substantially, thereby increasing virus circulation and leav-
ing vulnerable groups unprotected. The Delta and, in particular,
Omicron surges of the COVID-19 pandemic are caused by var-
iants capable of substantial immune evasion [53, 54]. They indi-
cate a need for SARS-CoV-2 surveillance that closely monitors
virus evolution and antigenic drift to inform public health deci-
sions and potentially vaccine strain adjustment in a timely man-
ner. Current vaccines have induced robust protection toward
SARS-CoV-2 circulating until summer 2021, but show a rapid
waning towards more divergent variants such as Delta and
Omicron, requiring booster immunizations to maintain high
vaccine efficacy. The messenger RNA vaccine technologies en-
able swift designing and redesigning of vaccines, possibly includ-
ing the option to produce bivalent or trivalent formulations if
needed. The combination of these technologies with the moni-
toring of SARS-CoV-2 genomic diversity and evolution at ade-
quate temporal and geographic resolution will open up the
possibility to administer vaccines that have been optimally ad-
justed to pathogen genetic diversity, considering partial as well
as total immune evasion that may emerge in the future.

In summary, the IMS-SC2 is an efficient surveillance instru-
ment, complementing and enhancing existing pathogen sur-
veillance mechanisms. Of particular value, IMS-SC2 data can

inform vaccination strategies to maximize vaccine effectiveness
at the population level.
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Supplementary materials are available at Clinical Infectious Diseases online.
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author.
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