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Hematopoietic stem cells can differentiate into
restricted myeloid progenitors before cell division
in mice
Tatyana Grinenko1, Anne Eugster2, Lars Thielecke3, Beáta Ramasz1, Anja Krüger1, Sevina Dietz2,

Ingmar Glauche 3, Alexander Gerbaulet4, Malte von Bonin 5,6,7, Onur Basak8,9,10, Hans Clevers8,9,11,

Triantafyllos Chavakis1,2 & Ben Wielockx 1,2

Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a

series of differentiation steps and repeated cell divisions that involve the generation

of lineage-committed progenitors. However, whether cell division in HSCs precedes

differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP

knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell

cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to

differentiate into restricted progenitors, especially common myeloid, megakaryocyte-

erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even

before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but

differentiated progenitors correlated with the expression of lineage-specific genes and loss of

multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These

results facilitate a better understanding of the mechanisms that control fate decisions in

hematopoietic cells.
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A rare population of hematopoietic stem cells (HSCs)
resides at the top of the hematopoietic hierarchy1.
Although most adult HSCs normally exist in a quiescent

or dormant state2, some of them divide and support the
production of all mature blood cell types through multiple
intermediate progenitor stages, during steady state, and in
response to acute needs3–5. These include myeloid progenitors
(MPs), encompassing restricted progenitors like common mye-
loid progenitors (CMPs), granulocyte-macrophage progenitors
(GMPs), pre-megakaryocyte-erythroid progenitors (PreMEs), and
pre-megakaryocyte progenitors (PreMegs). This classical point of
view was questioned in recent studies from two groups showing
that HSC populations contain stem-cell-like megakaryocyte
progenitors, which under stress conditions such as transplanta-
tion into irradiated recipients6 or after acute inflammation7

activate a megakaryocyte differentiation program. The
commitment process(es) that turns HSCs into mature cells are
currently understood to be a sequence (or even a continuum) of
decision steps in which the multilineage potential of the cells is
sequentially lost8–10. Although many of these steps have been
investigated in great detail, the entire picture is still repeatedly
challenged6,8,9,11–13. HSC transition through the multipotent and
restricted progenitor stages is also accompanied by intense cell
proliferation3. However, it is unclear whether each fate decision
step is associated with one or more division events or whether cell
proliferation and differentiation are independent processes.
Further, if differentiation of HSCs does require cell division, the
phase of the cell cycle that is particularly important for this
process is also currently unknown. The dependence of cell fate
decisions on cell cycle progression was so far only shown in vitro
for pluripotent embryonic stem cells14–17. However, a few reports
point toward a functional connection between these two
processes in adult stem cells, such as neuronal stem cells16,18.
With regard to hematopoietic stem and progenitor cells,
characterization of the cell cycle itself is currently ongoing19–22,
and an understanding of how HSC fate decisions relate to cell
division and cell cycle progression is lacking19.

Therefore, we used in vivo cell tracing to simultaneously follow
the divisional history and the initial differentiation steps of HSCs.
Our data reveal that HSCs are able to differentiate into restricted
progenitors prior to cell division, most prominently PreMEs and
PreMegs, and that this occurs before the cells enter the S phase of
the cell cycle. Moreover, our data also demonstrate that the
G0/G1 phases are important for fate decision in HSCs to either
differentiate or self-renew.

Results
HSCs differentiate into MPs without dividing. To study the
initial steps of HSC differentiation in vivo, we sorted Lin− Kit+

Sca-1+ (LSK) CD48− CD41− CD150+ stem cells (Fig. 1a)1. CD41+

cells were excluded to reduce myeloid-23 and megakaryocyte-biased
HSCs24–26. We used the CellTrace Violet dye27,28 to uniformly
label HSCs and track cell division history after transplantation
(Fig. 1a). Recently, Shimoto et al. have shown that numerous
empty HSC niches are available upon transplantation into non-
conditioned recipients, which are located distant from filled
niches and available for HSC engraftment and proliferation.
Moreover, donor HSCs give rise to all blood cells without any
bias29. Labeled cells were transplanted into unconditioned
recipients to prevent irradiation-induced stress30–32 (Fig. 1a).
Thirty-six hours after transplantation, 30% of the donor cells had
downregulated Sca-1 expression (Fig. 1b), one of the principal
surface marker for HSCs33, and changed their phenotype from
HSCs to MPs. Importantly, the purification procedure alone did
not lead to downregulation of Sca-1 (Supplementary Fig. 1a). A

possible contamination of potential donor MPs was excluded,
since transplantation of these progenitors alone did not result in
any detectable donor MPs 36 h later (Supplementary Fig. 1b). To
further classify these phenotypically restricted MPs in vivo, we
used a gating strategy according to Pronk and colleagues34.
Briefly, PreMEs (Lin− Sca1− Kit+ CD41− CD16/32− CD105−

CD150+), Pre-CFU-E (Lin− Sca1− Kit+ CD41− CD16/32−

CD105+ CD150+), CFU-E (Lin− Sca1− Kit+ CD41− CD16/32−

CD105+ CD150−), PreMegs (Lin− Sca1− Kit+ CD41+

CD16/32− CD150+), and Pre-GM (Lin− Sca1− Kit+ CD41−

CD16/32− CD105− CD150−) staining was initially confirmed
by transplantation of cells into lethally irradiated mice
(Supplementary Fig. 2a, b). However, Pre-GMs gave rise to pla-
telets and myeloid and erythroid cells after transplantation and
were therefore classified as CMPs. Based on surface staining at 36
h posttransplantation, we subdivided donor MPs into the fol-
lowing restricted progenitors: CMPs, GMPs (Lin− Sca1− Kit+

CD41− CD150− CD16/32+), PreMEs, and PreMegs (Fig. 1b).
Next, we analyzed the proliferation history of transplanted cells

based on dilution of CellTrace Violet dye, whereby intensity of
the dye in CD4+ CD62L+ naive T cells was used as the reference
for undivided cells (Supplementary Fig. 1c)35,36. This analysis
reveals that, at 36 h after HSC transplantation, a majority of LSK
cells with the long-term HSC phenotype (LSK CD48− CD150+),
short-term HSCs (ST-HSCs) (LSK CD48− CD150−), multipotent
progenitors (MPP2: LSK CD48+ CD150+ and MPP3/4 LSK
CD48+ CD150−) (Supplementary Fig. 3a)1 and 50% of the MPs
remained undivided (Fig. 1c). Additionally, based on CD41 and
CD150 expression, these MPs were predominantly CMPs,
PreMEs, and PreMegs (Fig. 1d, e). We also performed an even
more stringent gating strategy to avoid overlay between non-
divided and divided cells (Supplementary Fig. 1d) but found no
difference in the frequency of restricted progenitors, as compared
to the previous gating strategy (Supplementary Fig. 1e). To
exclude the possibility that HSCs differentiated into MPs without
division due to the limited niche space, we used the HSC-CreERT
+R26DTA/DTA mouse line allowing for the inducible depletion of
HSCs and transplanted CellTrace dye labeled wild-type HSCs
into them37 (Supplementary Fig. 1f). However, we did not find
any difference in the frequency of HSCs differentiated into
myeloid-restricted progenitors 36 h after transplantation,
compared to controls (Supplementary Fig. 1g, h). Surprisingly,
compared to mice not preconditioned with tamoxifen (TAM), we
found that donor HSCs in TAM-treated mice displayed enhanced
differentiation into GMPs without cell division, suggesting
potentially additional stress induced by TAM.

Interestingly, transplantation of MPP2 or MPP3/4
subsets revealed a similar phenomenon as most of the MPs did
not divide. Further, while MPP2 cells mostly gave rise to
PreMEs and PreMeg cells, MPP3/4 cells differentiated into
CMPs and GMPs (Supplementary Fig. 3b–d). Taken together,
these results strongly suggest that HSCs/MPPs can give
rise to restricted progenitors including CMPs, PreMEs, and
PreMegs based on the cell phenotype, without undergoing cell
division.

Undivided differentiated progenitors express lineage genes. To
investigate the molecular differences between undivided HSCs
and undivided MPs, we designed a panel of primers to analyze
single-cell expression levels of 70 genes including cell cycle genes
and those specific for HSCs, myeloid, erythroid, megakaryocyte-
erythroid progenitors (MEP), and platelets (Supplementary
Table 1)8,911,12,33,38–41. Essentially, single-cell expression analysis
of freshly sorted HSCs, CMPs, PreMEs, and PreMegs showed a
clear separation of the cell types whether based on all analyzed
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Fig. 1 Differentiation and division proliferation history of HSCs after transplantation into non-conditioned recipients. a HSCs (LSK CD48−CD41−CD150+)
were labeled with CellTrace Violet dye and 3600 cells were transplanted into non-conditioned wild-type mice. Purity of transplanted cells was >99% for
each experiment. b Bone marrow was harvested at 36 h after transplantation and donor cells were analyzed using the indicated gates. c Dilution of CellTrace
Violet in donor LSK and MPs, 36 h after transplantation. Labeled and transplanted naive CD62L+CD4+ T cells were used as reference for undivided cells.
Five hundred donor cells were analyzed from 11 transplanted mice, representative data for 1 out of 13 experiments. d Phenotype of undivided and divided
donor MPs (n= 11), representative example of 13 independent experiments. e Frequency of restricted progenitors in undivided (0 div.) and divided (1 div.)
donor MPs, pooled data from 13 independent experiments. Unpaired Student's t-test, data are means +/− s.d., ***P= 0.0002, *P= 0.02
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genes or only on selected MEP/platelet genes (Supplementary
Fig. 4a–c).

We then isolated undivided donor cells at 36 h after
transplantation of LSK CD48− CD41− CD150+ cells (Fig. 2a)
and retrospectively categorized them on the basis of index sorting

data as HSCs (LSK CD48− CD150+) or various MP populations
(Supplementary Fig. 5a–d). Within these populations, we
performed single-cell quantitative PCR (qPCR) on 42 HSCs,
7 CMPs, 15 PreMEs, and 20 PreMegs pooled and obtained from
two independent experiments (Fig. 2b). Performing t-distributed
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stochastic neighbor embedding (t-SNE) analysis of the qPCR data
revealed separation of HSCs from PreMEs and PreMegs, based
on all analyzed genes (Fig. 2c) or the MEP/platelet genes
alone (Fig. 2d, Supplementary Table 1). This separation
among phenotypically defined populations was also confirmed
by a majority of the MEP/platelet-specific genes (Fig. 2e,
Supplementary Tables 2, 3, 4, 5) and was similar to that observed
before transplantation (Supplementary Fig. 4d). Thus undivided
PreME/PreMeg cells obtained after transplantation express genes
typically restricted to MEP.

For an in-depth comparative analysis of the transplanted
undivided cells (Fig. 2) and non-transplanted cells (Supplemen-
tary Fig. 4), we performed t-SNE42 and hierarchical cluster
analysis on gene expression data (Fig. 3a, b, Supplementary
Fig. 5e). We wondered whether HSCs and PreMegs truly form
distinctive subgroups in terms of their gene expression profile.
Therefore, we excluded the intermediate cell differentiation stages
(colored in green) and provided the algorithm with a number of
expected clusters (k= 2). Figure 3b illustrates that not only the
visual inspection of the t-SNE visualization but also the k-means
cluster algorithm is able to distinguish between those two cell
types. As expected, while our results reveal a close association
between the before- and after-transplantation HSC or PreMeg
populations, HSCs and PreMegs themselves form distinct
clusters. Therefore, changes in the HSC phenotype before cell
division reflect gene expression changes associated with
differentiation.

HSCs differentiate before the S phase of the cell cycle. While the
cell-tracing dye allowed us to follow cell division, it did not give
information on cell cycle progression. Therefore, to determine in
which phase of the cell cycle HSCs make fate decisions, we scored
each cell for its likely cell cycle phase using signatures for G1 and
S/G2/M phases39. We categorized individual cells in the G0/G1 or
the S/G2/M phases (Fig. 4a) based on the average expression of
phase-specific genes39,43. As expected, and later confirmed by
expression of individual cell cycle genes (Fig. 4b), HSCs were
more quiescent, with almost one third of the PreME/PreMeg cells
still in the G0/G1 phases (Fig. 4a). We also confirmed cluster
separation between cells in G0/G1 and S/G2/M phases by per-
forming t-SNE analysis based on all 15 measured cell cycle genes
but restricted to PreME/PreMeg populations (Fig. 4c). To deter-
mine whether the expression of MEP/platelet genes is dependent
on progression through the S/G2/M phases, we again used t-SNE
analysis to compare PreME/PreMeg cells in the G0/G1 and S/G2/
M phases. There was no separation of cells according to their cell
cycle status (Fig. 4c), suggesting that PreME/PreMeg cells had

previously upregulated differentiation genes in the G0/G1 phases
of the cell cycle. That PreME and PreMeg cells increase the
expression of lineage-specific genes independent of cell cycle
phase was further supported by comparing the mean expression
of MEP/platelet genes between cells in G0/G1 and S/G2/M phases
(Fig. 4d). Indeed, PreME and PreMeg cells increase the expression
of the lineage-specific genes independent of cell cycle phases.
These data imply that transplanted HSCs are able to differentiate
before entering the S phase of the cell cycle.

To corroborate these findings, we used Ki67RFP knock-in
mice44. KI67 is a nuclear protein that is absent in the G0 phase,
starts to be synthesized at the beginning of the S phase, increases
until mitosis, and gradually decreases thereafter in the G1 phase
of the daughter cells until re-entry into the S phase45. We first
confirmed that none of the RFP− cells (LSK or MP) was in the
S/G2/M phase, (Supplementary Fig. 6a) and that only RFP+ cells
incorporated bromodeoxyuridine (BrdU; Supplementary Fig. 6b).
Using an antibody against KI67, we found that RFP+ expression
truly reflects KI67 expression at the protein level (Supplementary
Fig. 6c). Thus Ki67RFP knock-in mice are an appropriate tool to
trace cell cycle progression in hematopoietic cells.

To follow HSCs through cell cycle progression and differentia-
tion, we sorted RFP− HSCs residing in the G0/G1 phases, labeled
them with CellTrace Violet, and transplanted these cells into non-
conditioned recipients. Our results reveal that the majority of
donor undivided MPs did not upregulate RFP expression (Fig. 4e),
thus remaining in the G0/G1 phases. When taken together with
the above results, these findings demonstrate that phenotypic
HSCs do not require S-phase entry to become phenotypic MPs.

Functional differences between undivided HSCs and progeni-
tors. We used in vitro colony assays to verify functional
differences between undivided phenotypic HSCs and MPs due to
changes in gene expression profiles. Undivided donor HSCs (LSK
CD48− CD150+) and PreMegs (Lin− Sca-1- Kit+ CD150+ CD41
+) were isolated at 36 h after transplantation and cultured as
single cells in the presence of growth factors (stem cell factor
(SCF), thrombopoietin, interleukin-3, and erythropoietin)46.
Twelve days later, 89% of HSCs were multipotent and gave rise to
all cell types (myeloid, erythroid, and megakaryocyte), whereas
92% of the PreMegs differentiated into megakaryocytes alone,
clearly suggesting that this population had lost their multipotency
(Fig. 5a).

We further investigated the in vivo repopulating capacity of
donor cells. For this, we sorted undivided donor GFP+ LSK and
MP cells obtained at 36 h after transplantation of LSK CD48/41−

CD150+ cells, and re-transplanted the same amount of cells into
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lethally irradiated wild-type mice (Fig. 5b, c). Although both
populations gave rise to long-lived erythroid cells, only mice
transplanted with LSKs displayed donor-derived GFP+

short-lived neutrophils and platelets at 3 weeks after transplanta-
tion (Fig. 5b–d); moreover, LSK but not MP showed donor-
derived neutrophils, platelets, erythrocytes, and lymphocytes
16 weeks after transplantation (Supplementary Fig. 6d).
These observations imply that hematopoietic progenitor
cells that downregulate Sca-1 without prior cell division, as
expected, exhibit a dramatic reduction in their repopulation
capacity.

Discussion
In this study, we demonstrated in vivo that HSCs can differentiate
into ST-HSCs, MPPs, and even restricted MPs before undergoing
cell division. Using a cell-tracing approach and Ki67RFP knock-in
mice, we followed HSC differentiation in vivo and analyzed the
expression of several essential megakaryocyte-erythroid- and
myeloid-specific genes, and cell cycle genes, at the single-cell level.
Our findings using undivided PreMegs reveal that phenotypic
and gene expression changes in undivided but differentiated
progenitors are accompanied by loss of multipotency and
repopulation capacity after transplantation. Based on restricted
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PreME and PreMeg progenitors as an example of differentiated
cells, we reveal that HSCs can initiate a specific differentiation
program in the G0/G1 phases, which is before the actual physical
division of the cell.

HSCs are rare cells that give rise to numerous blood cell types
through a series of intermediate progenitors4. Multipotent and
restricted progenitors intensively proliferate, making them the
key amplifiers of cell numbers in the hematopoietic system3. The
currently accepted model of hematopoiesis holds that HSCs have
to divide in order to produce multipotent and lineage-restricted
progenitor populations3,47,48. Thus, with respect to HSCs,
proliferation and differentiation are currently characterized as
simultaneous processes; however, to date, no direct in vivo proof
of this concept has been provided. On the contrary, it is also
conceivable that proliferation and differentiation exist as two
independent processes. A few in vitro studies have supported this

argument and have suggested that HSC division and differ-
entiation are parallel processes. Indeed, while Mossadegh-Keller
and colleagues49 have shown that the myeloid transcription factor
PU.1 is induced during the first cell cycle after in vitro stimulation
of HSCs with macrophage colony-stimulating factor, Yamamoto
and colleagues6 reported that HSCs can divide asymmetrically
and give rise to restricted long-term repopulating megakaryocyte
progenitors even after the first division. Kent and colleagues50

have shown that HSCs downregulated a number of transcription
factors responsible for self-renewal division and lost long-term
repopulation capacity before first division in vitro. Using a single-
cell sequencing approach, Yang and colleagues demonstrated that
HSCs can express megakaryocyte and granulocyte-specific genes
during the G1 phase of the cell cycle51. However, no in vivo
studies on the possible uncoupling of HSC fate decision and cell
cycle progression are currently available.
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Indeed, the idea that cells can make fate decisions in the G1
phase of the cell cycle is not new. Pluripotent stem cells (PSCs)
initiate differentiation during progression through the G1 phase14

due to the presence of a ‘window of opportunity’, which is
dependent on epigenetic changes that occur during that phase.
On the other hand, PSCs maintain their pluripotent state during
the S and G2 phases of the cell cycle, which is regulated by the cell
cycle machinery but is independent of the G1 phase17. G1-phase-
specific cell cycle regulators such as cyclin D directly regulate the
localization of differentiation transcriptional factors in PSCs52.
Our results reveal a new avenue by which the HSC fate decision
process is connected with cell cycle progression in vivo. More-
over, our data are also in line with another report, which
demonstrated that division and differentiation of B cells into
plasma cells were temporally separated with no significant
influence on each other53.

In summary, we show that HSC division and their
differentiation are probably independent processes and that HSCs
make fate decisions before entering the S phase of the cell cycle.

Additionally, these results open new directions in determining
similar capacities in human HSCs, as well as identifying the
factors that influence these fate decisions in connection with cell
cycle progression, during normal hematopoiesis and even
pathologies associated with abnormal differentiation.

Methods
Mice. C57BL/6 (B6), B6.SJL-PtprcaPep3b/BoyJ (B6.SJL), and Ubc:GFP mice were
purchased from the Jackson Laboratory. Ki67RFP knock-in mice have been recently
described in detail44. Mice (male and female) were used at an age of 8–12 weeks.
HSC-CreERT/R-DTA mice were generated by crossing R26DTA (Gt(ROSA)
26Sortm1(DTA)Lky) and HSC-CreERT (Tg(Tal1-cre/ERT)42–056Jrg)37 and used as
recipients (male and female) at the age of 14–16 weeks. All mice were bred and
maintained under specific pathogen–free conditions in the animal facility at the
Medical Theoretical Center of the University of Technology, Dresden. Experiments
were performed in accordance with the German animal welfare legislation and
were approved by the “Landesdirektion Sachsen – Referat 24.1”.

Cre-activation. One week before the start of TAM administration, mice were kept
on low phytoestrogen standard diet (LASvendi, Solingen, Germany). TAM tablets
30 mg (Ratiopharm, Ulm, Germany) were dissolved overnight in lipid emulsion
(SMOFlipid, Fresenius Kabi, Bad Homburg, Germany). TAM 20mg/ml solution
was applied two times (72 h apart) by oral gavage at a dose of 0.2 mg/g body weight
to animals at the age of 8–14 weeks.

Transplantation. Bone marrow (BM) was isolated from mouse tibia, femora,
pelvis, and vertebrae; crushed; and filtered through a 70-µm cell strainer. Cells were
lysed in ACK Lysis Buffer (Life Technologies Cat. A10492-01) and lineage depleted
using biotinylated antibodies (anti-mouse CD3 (2C11; 17A2) (1:1000/Cat. 13-
0031-82), CD11b (M1/70) (1:500/Cat. 13-0112-81), CD19 (1D3) (1:500/Cat. 13-
0193-81), CD45R (RA3-6B2) (1:400/Cat. 13-0452-82), Gr-1 (RB6-8C5) (1:800/Cat.
13-5931-82), Nk1.1 (PK136) (1:2000/Cat. 13-5941-81), Ter119 (1:200/Cat. MA5-
17819), and anti-biotin micro-beads using magnetic cell separation (Miltenyi
Biotec Germany Cat. 130-090-485). Cells were then stained with antibodies and
CellTrace Violet dye (Molecular Probes Cat. C34557) according to the manu-
facturer’s instructions. Cells were sorted on a fluorescence-activated cell sorter
(FACS) Aria II or III (BD Bioscience). In all, 3600 HSCs (Lin− Sca-1+ Kit+ (LSK)
CD48−CD41− CD150+), 5000 MPP2 (LSK CD48+ CD150+), or 10,000 MPP3/4
(LSK CD48+ CD150−) cells were transplanted via intravenous injection into non-
conditioned C57BL/6 mice. CD4+ CD62L+ naive T cells (106), labeled with
CellTrace Violet, were transplanted as controls for undivided cells. Lymph node
donor cells were analyzed 36 h after transplantation along with LSK cells. For
transplantation of cells from Ki67RFP knock-in mice, RFP− cells were sorted and
donor BM cells were analyzed 36 h after transplantation, based on CellTrace Violet
staining. For competitive transplantation, 20 GFP+ LSK cells or MPs (Lin− Sca-1−

Kit+) were sorted 36 h after a primary transplantation of 3600 HSCs from Ubc-
GFP mice into unconditioned recipient C57BL/6 mice. LSKs and MPs were
transplanted together with 105 non-fractionated BM cells from B6.SJL mice into
lethally irradiated (900 cGy) C57BL/6 wild-type recipients.

Flow cytometry. All analyses were done on FACS Aria II and Canto (BD
Bioscience). The antibodies used for staining are mKi67 (1:100/Cat. 11-5698−82),
CD117 (2B8) (1:600/Cat. 47-1171−80), Sca-1 (D7) (1:100/Cat. 15-5981-81), Ter119
(Ter119) (1:200/Cat. 15-5921-81), CD41 (MWReg30) (1:400 (fluorescein

isothiocyanate (FITC))–1:800 (allophycocyanin)/Cat. 11-0411-82), CD105 (MJ7/
18) (1:200/Cat. 12-1051-82), CD16/32 (93) (1:50/Cat. 56-0161), CD11b (M1/70)
(1:1200/Cat. 12-0112-81), Gr-1 (RB6-8C5) (1:800/Cat. 48-5931), CD3e (1:200/Cat.
17-0031-82), and CD45R (1:400/Cat. 13-0452-82) all from eBioscience. CD48
(HM48-1) (1:300/Cat. 103411) and CD150 (TC15-12F1) (1:50/Cat. 115914) are
from BioLegend.

Single-cell index sorting. Isolated cells were single-cell sorted into 8-well strips
containing 5 µl of phosphate-buffered saline. To record marker levels of each cell,
the FACS Diva-7 “index sorting” function was activated during cell sorting. Using
index sorting, single cells were sorted from the entire Lin− Kit+ CellTrace Violet+

space, and the intensities of the CellTrace Violet, Kit, Sca-1, CD41, CD48, CD150,
CD105, and CD16/32 FACS markers were recorded and linked to each cell’s
position.

Cytospins. Cells were spun onto object slides at 200 × g, dried, and stained with
May-Grunwald and Giemsa solution (Sigma Aldrich).

In vitro culture. Single cells were sorted and cultured in 96-well plates in StemSpan
SFEM medium (STEMCELL Technologies, Cat. 09600) supplemented with 20 ng/
ml rmSCF (Peprotech, 250-03), 20 ng/ml rmTPO (eBioscience, 34-8686-63), 20 ng/
ml rmIl3 (Peprotech, 213-13), and 5 U/ml rhEpo (Roche) and cultivated for
12 days at 37 °C with 5% CO2.

Cell cycle analyses. For intracellular staining, cells were fixed and permeabilized
using fixation and permeabilization buffers from eBioscience. To distinguish
between the G0 and G1 phase, cells were stained with intracellular Ki67 FITC
(eBioscience, clone SolA15). DAPI (4, 6 diamidino-2-phenylindole; Molecular
Probes) was used to measure DNA content and separate the cells in S/G2/M phases
from those in the G0 and G1 phase. For the BrdU incorporation assay, 10 µM BrdU
(Sigma-Aldrich) was added to the culture for 3.5 h and BrdU incorporation ana-
lyses were performed using anti-BrdU-FITC ab (eBioscience, clone BU20a, Cat. #
11-5071-42)46.

Clustering-based analysis of cell cycle state. Cell cycle genes were classified
based on single-cell deep sequencing data39 or defined previously in synchronized
HeLa cells43 (G1 phase genes: Ccne1, Cdk2, Cdkn1a, Cdkn1c; S/G2/M phase genes:
Cdkn2d, E2f4, Cdk6, Cdkn2c, Ccng2, Ccnf, Mki67, Ccna2, Ccnb1, Ccnb2, Cdc20).
First, expression of each gene for each cell was normalized to the maximum
expression of the gene; second, cell cycle signature for each cell was defined as the
average expression of phase-specific subsets of cell cycle genes. Discrimination
between G1 and S/G2/M was done based on the distribution of control HSCs
(before transplantation) and data that around 90% of HSCs (mouse strain C57Bl6)
are in G0/G1 phase of the cell cycle.

Single-cell qPCR. Gene expression profiles of single cells were obtained using a
modified protocol54,55. Briefly, cDNA was synthesized directly on the cells using
the Quanta qScriptTM cDNA Supermix. Total cDNA was pre-amplified for 20
cycles (1 × 95 °C 5′, 95 °C 45″, 60 °C, 1′, 72 °C 1.5′) and once at 68 °C for 10’ using
the Multiplex PCR Kit (Qiagen, Hilden, Germany) in a final volume of 35 µl in the
presence of primer pairs (25 nM for each primer) for all genes (listed in Table S1).
Pre-amplified cDNA (10 µl) was then treated with 1.2 U Exonuclease I, and gene
expression was quantified by real-time PCR on the BioMark™ HD System (©
Fluidigm Corporation, CA, USA) using the 96.96 Dynamic Array IFC, the GE 96 ×
96 Fast PCR+Melt protocol, the SsoFast EvaGreen Supermix with Low ROX (BIO
RAD, CA, USA), and 5 µM primers, for each assay. Raw data were analyzed using
the Fluidigm Real-Time PCR analysis software.

Bioinformatics analysis. Pre-processing and data analysis of single-cell expression
profiles were conducted using the KNIME 2.11.2, R Version 3.3.2, and RStudio
Version 0.99.486 and version 1.0.136 (Boston, MA, USA) software. Where further
required, pre-processing via a linear model to correct for confounding sampling
effects was conducted54. t-SNE plots were created using the R package “Rtsne”.
To model the bi-modal gene expression of single cells, the Hurdle model, a
semi-continuous modeling framework, was applied to pre-processed data56.
This allowed us to assess differential expression profiles as a function of frequency
of expression and mean positive expression using a likelihood ratio test.
k-means clustering for k= 2 was performed on the normalized data and using the
R package “stats”.

Statistical analysis. Data were expressed as mean +/− standard deviation (s.d.).
Statistical analyses based on unpaired Student’s t-test were performed using the
Prism 5.0 software (GraphPad). P-value <0.05 were considered as statistically
significant.
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Data availability. All data generated or analyzed during this study are included in
this published article and its Supplementary Information files or are available from
the corresponding authors upon reasonable request.
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