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Abstract: Virus-like particles (VLPs) have emerged as promising vaccine candidates against
foot-and-mouth disease (FMD). However, such vaccines provide a relatively low level of protection
against FMD virus (FMDV) because of their poor immunogenicity. Therefore, it is necessary to
design effective vaccine strategies that induce more potent immunogenicity. In order to investigate
the means to improve FMD VLP vaccine (VLPFMDV) immunogenicity, we encapsulated VLPs
(MPL/DDA-VLPFMDV) with cationic liposomes based on dimethyldioctadecylammonium bromide
(DDA) and/or monophosphoryl lipid A (MPL, TLR4 agonist) as adjuvants. Unlike inactivated
whole-cell vaccines, VLPFMDV were successfully encapsulated in this MPL/DDA system. We found
that MPL/DDA-VLPFMDV could induce strong cell-mediated immune responses by inducing not only
VLP-specific IFN-γ+CD4+ (Th1), IL-17A+CD4+ (Th17), and IFN-γ+CD8+ (activated CD8 response)
T cells, but also the development of VLP-specific multifunctional CD4+ and CD8+ memory T cells
co-expressing IFN-γ, TNF-α, and IL-2. In addition, the MPL/DDA-VLPFMDV vaccine markedly
induced VLP-specific antibody titers; in particular, the vaccine induced greater Th1-predominant IgG
responses than VLPFMDV only and DDA-VLPFMDV. These results are expected to provide important
clues for the development of an effective VLPFMDV that can induce cellular and humoral immune
responses, and address the limitations seen in current VLP vaccines for various diseases.

Keywords: foot-and-mouth disease; virus-like particles; vaccine; liposome; TLR4
agonist; immunogenicity

1. Introduction

Foot-and-mouth disease virus (FMDV) can cause highly contagious foot-and-mouth disease
(FMD) in cloven-hoofed livestock, particularly cattle, sheep, goats and pigs [1,2]. This virus belongs
to a prototypical member of the Aphthovirus of the Picornaviridae family, and is classified into
seven distinct serotypes (O, A, C, SAT 1 to 3, and Asia 1), as well as >65 subtypes [3,4]. Given that
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cross-reactivity varies, antigenic diversity among these serotypes and subtypes should be considered
for vaccine development [5]. The FMDV virion surrounds an approximately 8.3 kb positive-sense
single-stranded RNA genome within an envelope composed of icosahedral capsids from 60 copies of
four distinct structural polypeptides, from VP1 to VP4, organized in 12 pentameric forms [3,6,7].

Although chemically inactivated FMDV vaccines have proven to be effective in controlling FMD
in endemic areas, the disease still affects millions of animals and continues to cause economic problems
worldwide [8,9]. Moreover, these commercial vaccines have several immunological limitations, such as
absent or very low immune memory and cell-mediated immunity, and limited cross-reactive immunity
against multiple serotypes [10–12]. Thus, there is currently a clear demand for a new generation or
platform of FMD vaccines, such as recombinant subunit vaccines, DNA vaccines, adenovirus vector
vaccines, and virus-like particles (VLPs) that can replace or improve current FMD vaccines [7,13,14].

Among the various vaccine platforms, FMD VLPs (VLPFMDV), which retain the antigenicity of
capsid proteins of the native FMDV virion, but lack a viral genome, have been evaluated as being
among the most innovative vaccine platforms [15,16]. The VLPFMDV vaccine induces a strong and
sustained humoral immune response, but is not sufficient to provide 100% protective immunity in the
setting of a large animal infection model [12,17].

Since T-helper 1 (Th1)-type T cell immunity and Th1-based IgG subclasses are known to be
important in regulating RNA viral infections, including FMDV, a number of studies are underway
concerning immunogenic adjuvant systems to improve cellular and humoral immune responses to
VLPFMDV vaccines [12,18]. Terhuja et al. reported that a VLPFMDV vaccine formulated with CpG
adjuvants increased T-lymphocyte proliferation and IgG2 response, thereby conferring superior
protection (75% protection) compared to VLPFMDV-only vaccination in guinea pigs [12,18]. Moreover,
Guo et al. reported that immunization with VLPFMDV emulsified in mineral oil adjuvant (Complete
Freund’s Adjuvant) elicited similar levels of protective immunity to those of inactivated whole-virus
vaccines, and this protection correlated with increased levels of FMDV-specific antibodies, T cell
proliferation, and Th1-type cytokine (IFN-γ) production [13]. Given these findings, the adjuvant system
is an essential component in optimizing and maximizing the protective efficacy of VLPFMDV vaccines.

AS01 is a liposome-based adjuvant system developed by GlaxoSmithKline Inc. (GSK) containing
a synthetic TLR4 agonist (monophosphoryl lipid A; MPL) and Quillaja saponaria Molina, fraction
21 (QS-21) [19]. It has been tested as a potent cell-mediated immune response adjuvant for clinical
human vaccine studies, including malaria, tuberculosis and herpes zoster [19,20]. The first licensed
AS01-based vaccine, Shingrix, displayed >90% protection against herpes zoster virus infection at all
ages [21]. In addition, hybrid malaria–hepatitis B VLPs formulated with AS01 adjuvant represent the
first malaria vaccine in a phase III clinical trial [22]. However, the use of AS01 as a veterinary vaccine is
very limited, because the cost of this system is extremely high and the patent for QS-21 is owned by
GSK [20,23,24].

In this study, a VLPFMDV vaccine was manufactured by applying a different type of AS01 adjuvant
system that uses dimethyldioctadecylammonium bromide (DDA) instead of QS-21 to avoid patent
and pricing issues. Furthermore, we investigated whether the incorporation of MPL into the DDA
liposome-VLP complex, named MPL/DDA-VLPFMDV, could enhance VLP-specific humoral and cellular
immunity in mice.

2. Materials and Methods

2.1. VLP Purification

FMDV capsid proteins (His-Sumo-VP0, His-Sumo-VP1, and His-Sumo-VP3) were obtained using
an Escherichia coli (E. coli) expression system established at Lanzhou Veterinary Research Institute
(LVRI, Lanzhou, China), and the assembly of VLPs was performed according to previously described
methods [13]. The assembled VLPs were identified using a Zetasizer-Nano instrument (DLS; Malvern
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Zetasizer-Nano ZS90, Worcestershire, UK) and by transmission electron microscopy (TEM) (HT7700,
Tokyo, Japan), respectively.

2.2. Preparation of Vaccine Formulations and Immunization of Mice

C57BL/6 mice (female, 6–7 weeks of age) were purchased from Orient Bio Inc. (Seoul, Korea).
Mice were acclimatized to the following controlled conditions: temperature (25 ± 2 ◦C), humidity
(55 ± 5%), and 12 h light/dark cycle at the Central Animal Research Laboratory of the Korea Atomic
Energy Research Institute (KAERI, Jeongeup, Korea). The animal experiments were approved by
the Institutional Animal Care and Use Committee (KAERI-IACUC-2019-018) and were performed in
strict compliance with the guidelines prescribed by the committee. For adjuvant formulation, MPL
and DDA were obtained from Sigma-Aldrich (St. Louis, MO, USA). DDA can be applied to the
preparation of cationic liposomes, as described previously [25]. Briefly, DDA (10 mg/mL) mixed with
distilled water (DW) was heated at 80 ◦C until micelles formed, and then cooled to room temperature
(RT). MPL mixed with DW containing 0.2% trimethylamine was heated at 70 ◦C for 30 seconds, then
sonicated for 30 seconds, and these steps were repeated twice. MPL was subsequently mixed with DDA
immediately before use (termed MPL/DDA). The size distribution of the formulated VLP vaccines was
confirmed by Dynamic Light Scattering (DLS) analysis. Mice were immunized subcutaneously twice at
2-week intervals with 100 µL of PBS (Group 1/G1), 250 µg DDA (G2), 25/250 µg MPL/DDA (G3), 10 µg
VLPFMDV (G4), 250/10 µg DDA/VLPFMDV (G5; DDA-VLPFMDV) or 25/250/10 µg MPL/DDA/VLPFMDV

(G6; MPL/DDA-VLPFMDV).

2.3. Flow Cytometry

Two weeks after the final immunization, the spleens of immunized mice were filtered through
a cell strainer (40 µm, BD Biosciences, San Diego, CA, USA) in RPMI 1640 (GIBCO, Carlsbad, CA,
USA) complete medium (2% fetal bovine serum, GIBCO). Red blood cells (RBCs) present in the
filtrate were lysed for 3 min with RBC lysis buffer (Sigma Aldrich) and washed with RPMI 1640
complete medium. Single-cell suspensions (2 × 106 cells) were stimulated with 10 µg/mL VLPs and
2 µg/mL anti-CD28 monoclonal antibody (eBioscience, San Diego, CA, USA) in a buffer containing
0.5 µg/mL GolgiStop (eBioscience) and 0.5 µg/mL GolgiPlug (BD Biosciences) for 12 h at 37 ◦C.
Next, the cells were washed in PBS and stained for 30 min at RT with a Live/Dead staining kit
(InvivoGen, San Diego, CA, USA), anti-CD3e-APC-Cy7 (eBioscience), anti-CD4-Alexa488 (eBioscience),
anti-CD8-PerCp-Cy5.5 (eBioscience) and anti-CD44-V450 (BD Bioscience) antibodies to stain T cell
surface markers. The cells were fixed and permeabilized using a Cytofix/Cytoperm kit (BD Bioscience)
according to the manufacturer’s recommendations, and intracellular cytokines were stained with
anti-IFN-γ-PE (BD Bioscience), TNF-α-APC (BD Bioscience), anti-IL-2-PE-Cy7 (eBioscience), anti-IL-5
(BD Bioscience) and anti-IL-17A-PE-Cy7 (eBioscience) Abs. Subsequently, the stained cells were
analyzed using a BD FACSVerse flow cytometer and FlowJo analysis software (TreeStar, Ashland, OR,
USA) to determine T cell immunity induced by various vaccine formulations.

2.4. Cytokine ELISA

Splenocyte culture supernatants, prepared as described above, were collected, and cytokine levels
(IFN-γ, IL-5, and IL-17A) were measured using an enzyme-linked immunosorbent assay (ELISA) kit
(eBioscience).

2.5. VLP-Specific IgG Isotype ELISA

The VLP-specific IgG, IgM, IgG1 and IgG2a responses in the serum from antigen-immunized
mice were analyzed by sandwich ELISA. Ninety-six-well plates were coated with 1 µg/mL VLP at
4 ◦C for 24 h. The plates were washed 5 times with PBS containing 0.2% Tween 20 (PBS-T), and then
blocked with 5% BSA in PBS at RT for 1 h. After blocking, diluted serum was added to each well and
incubated at RT for 1 h. Unbound antibodies were removed by washing with PBS-T, and then goat
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anti-mouse IgG-HRP (Sigma-Aldrich), goat anti-mouse IgM-HRP (Sigma-Aldrich), goat anti-mouse
IgG1-HRP (Sigma-Aldrich), or IgG2a-HRP (Sigma-Aldrich) were added to the wells, and incubated
for 30 min at RT. After washing the plates 5 times with PBS-T, 100 µL of TMB substrate reagent (BD
Biosciences, Franklin Lakes, NJ, USA) was added. When colors developed, 50 µL of 2 N H2SO4

was added, and optical absorbance was measured at 450 nm using a Victor X3 light plate reader
(Perkin-Elmer, Waltham, MA, USA).

2.6. Statistical Analysis

All analyses were repeated at least twice. The level of significance for comparisons between
samples was determined by unpaired Student’s t-tests (between two groups), and one-way ANOVA
followed by Dunnett’s multiple comparison test (between three or more groups) using statistical
software (GraphPad Prism, version 5; San Diego, CA, USA). Results are expressed as means ±
standard deviation (S.D.). Values of * p < 0.05, ** p < 0.01 and *** p < 0.001 were considered to be
statistically significant.

3. Results

3.1. Higher VLP-Specific T Cell Immunity Induced by Formulating in MPL/DDA

We first performed a DLS analysis on five types (DDA only; MPL/DDA: MPL and DDA formulation;
VLPFMDV only; DDA/VLPFMDV: VLPFMDV formulated with DDA; MPL/DDA/VLPFMDV: VLPFMDV:
VLPFMDV formulated with DDA and MPL) of formulated VLPFMDV vaccines to confirm the particle
sizes and successful formulation. As shown in Figure 1A, VLPFMDV had an average diameter of
44.6 nm. In addition, DDA (Figure 1B) and MPL/DDA (Figure 1C) without VLPFMDV showed average
diameters of 1950 nm and 1900 nm, respectively. After formulating with VLP, the average diameters of
DDA-VLPFMDV (Figure 1D,F) and MPL/DDA/VLPFMDV (Figure 1E,F) increased significantly to 2402 nm
and 2442 nm, respectively. There was no significant effect on particle size between DDA-VLPFMDV

and MPL/DDA-VLPFMDV (Figure 1F). These results strongly suggested that VLPs were successfully
encapsulated into DDA or MPL/DDA liposomes, which led to the increase in liposome particle size.
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expressed as the mean ± SD of 3 samples per group. ** p < 0.01. 

Figure 1. Physical characterization of virus-like particle (VLP) vaccines formulated with
dimethyldioctadecylammonium bromide (DDA) or/and monophosphoryl lipid A (MPL). Particle size
distributions of VLPFMDV (A), DDA (B), MPL/DDA (C), DDA-VLPFMDV (D), and MPL/DDA-VLPFMDV

(E) were measured by DLS analysis. VLPFMDV: recombinant food-and-mouth disease VLP
vaccine; MPL/DDA: MPL and DDA formulation; DDA-VLPFMDV: VLPFMDV formulated with DDA;
MPL/DDA-VLPFMDV: VLPFMDV formulated with DDA and MPL. (F) Bar graph is expressed as the
mean ± SD of 3 samples per group. ** p < 0.01.
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Next, since both CD4+ and CD8+ T cells are crucial to protect against viral infection, including
FMDV [26,27], we evaluated T cell subtypes induced by VLPFMDV vaccination formulated with
DDA and MPL. Mice were immunized subcutaneously twice at 2-week intervals, and single cell
suspensions of splenocytes were re-stimulated with 10 µg VLP, followed by analyzing VLP-specific
Th1 (IFN-γ-producing CD4+ T cells), Th2 (IL-5-producing CD4+ T cells), Th17 (IL-17A-producing
CD4+ T cells), and activated CD8+ T cells (IFN-γ-producing CD8+ T cells) by cytometry gating,
as shown in Figure 2A. As seen in Figure 2B, all groups immunized with VLPFMDV (VLPFMDV only
(G4), DDA-VLPFMDV (G5), and MPL/DDA-VLPFMDV (G6)) were found to have significantly increased
frequencies of IFN-γ+CD4+, IL-5+CD4+, and IFN-γ+CD8+ cells compared to the PBS control group
(G1). Among these groups, the MPL/DDA-VLPFMDV (G6)-immunized group had the highest frequency
of IFN-γ+CD4+ Th1 cells (G4 vs. G6; up to 2.8-fold, G5 vs. G6; up to 2-fold) and IL-17A+CD4+ cells (G4
vs. G6; up to 30-fold, G5 vs. G6; up to 2-fold) compared to the other groups (G4 and G5). Nevertheless,
we did not identify any significant differences in IL-5+CD4+ Th2 cells between VLPFMDV-vaccinated
groups (G4, G5, G6), indicating that the MPL/DDA formulation led to a Th1-biased immune response
to VLPFMDV. In addition, improved frequencies of IFN-γ+CD8+ T cells (G4 vs. G6; up to 1.6-fold, G5 vs.
G6; up to 1.5-fold) were found in the MPL/DDA-VLPFMDV group (G6) compared to the VLPFMDV alone
(G4) and DDA-VLPFMDV (G5) groups (Figure 2B). However, significant differences between all T cell
subsets (Th1, Th2, and Th17) in unstimulated T cells were not observed (data not shown).
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Figure 2. Analysis of VLP-specific CD4+ and CD8+ T cell responses. Mice (n = 5 animals/group) were
immunized twice with PBS (G1), DDA (G2), MPL/DDA (G3), VLPFMDV (G4), DDA-VLPFMDV (G5),
or MPL/DDA/VLPFMDV (G6). (A,B) Single-cell suspensions were re-stimulated with 10 µg/mL VLP for 12 h
and analyzed for VLP-specific Th1 (IFN-γ-producing CD4+ T cells), Th2 (IL-5-producing CD4+ T cells), Th17
(IL-17A-producing CD4+ T cells) and activated CD8+ T cells (IFN-γ-producing CD8+ T cells) by intracellular
cytokine (IFN-γ, IL-5, IL-17A) staining based on T cell-specific makers (CD3, CD4, CD8). (B) The percentages
of VLP-specific Th1, Th2 and Th17, and activated CD8+ T cells in spleens from immunized mice were
analyzed by flow cytometry. (C) Single-cell suspensions of splenocytes were treated with 10 µg/mL VLP for
24 h, and supernatants were collected and evaluated for VLP-specific cytokines (IFN-γ, IL-5 and IL-17A) by
ELISA. The means ± SD shown are representative of two independent experiments. * p < 0.05, *** p < 0.001.
n.s.: not significant.
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The levels of secreted cytokines in splenocytes isolated from each group responding to VLP
stimulation were measured by ELISA (Figure 2C). Consistent with the above results, significantly
higher levels of IFN-γ and IL-17A were detected in the MPL/DDA-VLPFMDV groups (G6) than in the
other groups (G4 and G5), while the IL-5 production was similar to or slightly higher than that of the
VLPFMDV alone (G4) and DDA-VLPFMDV (G5) groups. This confirmed that the MPL/DDA formulation
can induce VLPFMDV immune responses in the direction of Th1 and Th17, but less so for Th2.

3.2. Generation of VLP-Specific Multifunctional CD4+ T Cells by MPL/DDA-VLPFMDV

We next investigated whether the MPL/DDA-VLPFMDV vaccine induces multifunctional CD4+ T
cells capable of simultaneously producing multiple effector Th1 cytokines (IFN-γ, TNF-α, and IL-2),
which are known to have higher effector functions than monofunctional CD4+ T cells [28]. Single cell
suspensions of splenocytes obtained from immunized mice were re-stimulated with 10µg VLP, and then
VLP-specific single-, double- or triple-positive CD3+CD44+CD4+ T cells were analyzed by multicolor
intracellular cytokine staining and flow cytometry, as described in Figure 3A. CD3 and CD44 antibodies
were used as markers to identify total T cells and memory T cells, respectively. As shown in Figure 3B,
IFN-γ+IL-2+ (G4 vs. G6; up to 56-fold, G5 vs. G6; up to 4-fold), TNF-α+IL-2+ double-positive (G4 vs.
G6; up to 6.9-fold, G5 vs. G6; up to 1.4-fold), and triple-positive CD44+CD4+ T cells (G4 vs. G6; up to
64-fold, G5 vs. G6; up to 2.7-fold) were significantly enhanced in the MPL/DDA-VLPFMDV-vaccinated
group (G6) compared to those in the G4 and G5 groups. However, there was no difference between
G5 and G6 in the IFN-γ+TNF-α+ double-positive CD44+CD4+ T cells. The proportions of single
cytokines, IFN-γ, TNF-α or IL-2-positive CD44+CD4+ T cells were significantly increased in the
VLPFMDV-immunized groups (G4, G5, G6), but the MPL/DDA-VLPFMDV vaccine (G6) was the highest
among all the groups. Based on the above data, we analyzed the relative proportions of single-, double-
and triple-positive cytokine levels in total CD44+CD4+ T cells (Figure 3C). The main CD44+CD4+ T
cells in the negative control groups (G1, G2, and G3) were single-positive, cytokine-producing T cells.
However, when mice were vaccinated with MPL/DDA-VLPFMDV (G6), the triple-positive cytokine
CD44+CD4+ T cells dramatically increased even compared to the G4 (p < 0.001) and G5 (p < 0.044)
groups. These data demonstrated that the DDA formulation also effectively induced VLP-specific
cellular immunity, whereas the MPL/DDA formulation was more effective in generating VLP-specific
multifunctional CD4+ T cell immunity.
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Figure 3. Analysis of antigen-specific multifunctional CD4+ T cells. (A) Gating strategy for
multifunctional CD4+ memory T cells. Memory CD4+ T cells (determined by increased CD44
expression) gated to show CD3+CD4+CD44+ T cells. For multifunctional CD4+ T cells analysis, cells
were identified by intracellular cytokine (IFN-γ, TNF-α, and IL-2) staining based on memory CD4+ T cell
gating. (B) The percentage of VLP-specific total cytokine (IFN-γ, TNF-α, and/or IL-2)-producing cells
among splenic CD4+CD44+ memory T cells. (C) Pie charts representing the mean frequencies of cells
co-expressing IFN-γ, TNF-α, and/or IL-2. The relative amounts of single-, double- and triple-functional
CD4+CD44+ memory T cells are indicated as pie arcs. Means ± SD (n = 5 mice/group) shown are
representative of two independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001. n.s.: not significant.

3.3. Generation of VLP-Specific Multifunctional CD8+ T Cells by MPL/DDA-VLPFMDV

We next analyzed the functional composition of VLP-specific multifunctional CD8+ T cells.
Multifunctional viral-specific CD8+ T cells have been shown to be important and effective immune
cells during viral infection [29,30]. Unlike single-positive CD4+ T cells, there was no increase in
TNF-α or IL-2 single-positive CD8+ cells, and IFN-γ single-positive CD8+ cells were only increased



Vaccines 2020, 8, 633 8 of 14

in VLPFMDV-vaccinated groups (G4, G5, G6). Among these, the MPL/DDA-VLPFMDV group (G6)
had the highest proportion of VLP-specific IFN-γ single-positive CD8+ T cells compared to the other
groups (G1–G5). Surprisingly, the VLPFMDV only group (G4) showed no or few double and triple
multifunctional CD8+ T cells, while the G5 and G6 groups had significantly higher levels of those
cells than the G4 group. In addition, we found that MPL/DDA-VLPFMDV (G6) represented the highest
frequency of IFN-γ+TNF-α+ (G4 vs. G6; up to 86-fold, G5 vs. G6; up to 2.26-fold), IFN-γ+IL-2+

double-positive (G4 vs. G6; up to 75-fold, G5 vs. G6; up to 1.8-fold), and triple-positive CD44+CD8+ T
cells (G4 vs. G6; up to 115.6-fold, G5 vs. G6; up to 2.8-fold) compared to the other groups (Figure 4A,B).
Based on the above data, we analyzed the relative proportions of single-, double- and triple-positive
CD44+CD8+ T cells (Figure 4C). We found only single-positive multifunctional CD8+ cells in the G1,
G2, G3 and G4 groups. The proportion of double- and triple-positive CD44+CD8+ T cells dramatically
increased in the G5 and G6 groups. Together, these data show that the addition of MPL and DDA
adjuvants to the VLPFMDV vaccine can effectively induce superior multifunctional T cell responses.
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Figure 4. Analysis of antigen-specific multifunctional CD8+ T cells. (A) Gating strategy for multifunctional
CD8+ memory T cells. (B) Percentage of VLP-specific total cytokine (IFN-γ, TNF-α, and/or IL-2)-producing
cells among splenic CD8+CD44+ memory T cells. (C) Pie charts represent the mean frequencies of cells
co-expressing IFN-γ, TNF-α, and/or IL-2. The relative amounts of single-, double- and triple-functional
CD4+CD44+ memory T cells are indicated as pie arcs. The means ± SD (n = 5 mice/group) shown are
representative of two independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001. n.s.: not significant.
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3.4. VLP-Specific Antibody Responses Elicited by Immunization with MPL/DDA-VLPFMDV

Th1-predominant IgG isotypes, such as IgG2a, IgG2b, IgG2c and IgM, are more likely to
induce stronger protective effects against viral infection, including FMDV, than Th2-predominant
IgG responses [12,31]. Thus, we evaluated whether the formulations of DDA and/or MPL could
promote the generation of humoral Th1- and/or Th2-predominant immune responses. As shown
in Figure 5, the MPL/DDA-VLPFMDV group (G6) had significantly higher levels of total IgG, IgM,
and Th1-predominant IgG2a than the G4 and G5 groups. In contrast, the Th2-predominant IgG1 level
of G6 was similar to that of G5 (Figure 5). These findings suggest that the MPL and DDA formulations
induced greater VLP-specific Th1-predominant IgG responses.
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Figure 5. Analysis of VLP-specific serum antibody isotype. Mice were immunized twice with VLPFMDV

in different adjuvant combinations. Two weeks after final immunization, serum from five mice in
each group was obtained, and the VLP-specific IgG, IgM, IgG1 and IgG2a were analyzed using ELISA.
Data from one of two independent experiments are shown. * p < 0.05, ** p < 0.01, *** p < 0.001. n.s.:
not significant.

4. Discussion

FMD is one of the most economically devastating veterinary diseases worldwide [32]. Although a
chemically inactivated whole FMD vaccine has been widely used and is known to provide a reduction
in FMD prevalence in endemic areas, there is a clear need for a new generation of FMD vaccines to
improve overall immunogenicity and safety [33]. Among the several types of vaccines employed for
veterinary and human needs, VLPFMDV vaccines have been proven to show reliable immunogenicity
and safety in pre-clinical and clinical studies [34–36]. Since VLPs can be manufactured in biosafety
level 1 (BSL1) facilities, they are also certainly more safe and economical than the current inactivated
FMD vaccine [37]. Previous studies have shown that VLPFMDV can be stably expressed and packaged
using an E. coli system, but this has not yet been commercialized because of the lack of exceptionally
high immunogenicity compared to current vaccines [12,17]. To improve vaccine immunogenicity,
several adjuvant systems have been formulated for use with VLPFMDV [12]. In order to enhance the
cellular immunity of the VLPFMDV vaccine, we used DDA, a liposome-type adjuvant, to encapsulate
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VLPFMDV. In addition, MPL as an adjuvant was combined with DDA liposomes to increase VLP-specific
multifunctional T cell responses.

Liposomes are an attractive delivery system that has been used to induce the effective uptake of
various vaccine candidates, such as proteins, peptides, and genes (DNA and RNA), for presentation
to APCs such as dendritic cells and macrophages [38–40]. Furthermore, recently, researchers have
investigated the incorporation of synthetic TLR agonists, such as MPL and CpG oligodeoxynucleotides,
into the membrane bilayer of liposomes to enhance their adjuvant effect [41–43]. MPL, a detoxified
bacterial lipopolysaccharides, has been shown to have beneficial effects in a range of vaccines, including
for allergies, cancer and pathogens [44–46]. For example, in a set of studies evaluating the impact of
adjuvants on vaccine immunogenicity, Mycobacterium tuberculosis (Mtb) antigen ESAT-6, which has
a lower immunogenicity, was able to induce strong antigen-specific Th1 responses, and high titers
of antigen-specific IgG1 and IgG2b antibodies, when combined with MPL/DDA [47,48]. In addition,
the MPL/DDA formulation has also been reported to activate antigen-specific cytotoxic T-lymphocytes
(CTL or activated CD8+ T cells) and humoral responses to the malaria sporozoite antigen [41]. However,
the virus is too large to encapsulate in liposomes, and it is very difficult to apply to the liposome system
because of the irregular aggregation of inactivated viruses during the inactivation process. Although
MPL-based liposome adjuvants are a promising system to enhance the cellular immunogenicity of
protein- or peptide-based vaccines, we first reported here that this adjuvant system is attractive for
enhancing VLPFMDV-induced humoral and cellular immune responses. In fact, VLPFMDV produced in
E. coli has 44.6 nm diameter, which is much smaller than other viral VLPs, such as influenza VLPs
(70–200 nm) and human papillomavirus VLPs (55–65 nm) [13,49,50]. Thus, the smaller-sized VLPFMDV

is likely to be an important factor in liposome encapsulation.
To date, CD4+ and CD8+ T cells capable of co-producing IFN-γ, TNF-α and IL-2 (namely

multifunctional CD4+ and CD8+ T cells) have been considered to be important for controlling various
viral infections [49,50]. Darrah et al. reported that T cells co-producing IFN-γ, TNF-α and IL-2
cytokines have a greater capacity to aid cognate cells (effector and/or memory cells against pathogens)
compared with single- or double-cytokine-producing T cells [28]. In particular, IFN-γ, TNF-α and IL-2
produced by T cells were recently shown to be associated with protection against FMDV infection [51].
For example, inactivated FMDV-vaccinated mice receiving IFN-γ, TNF-α and IL-2 as vaccine adjuvants
exhibited a 100% survival rate, whereas inactivated FMDV-only vaccinated mice exhibited a 40%
survival rate, which was correlated with FMDV-specific antibody titers, and with levels of memory B
cells, memory γδ T cells, and effector/memory T cells. We also demonstrated that the frequency of
multifunctional CD4+ and CD8+ T cells increased in VLP vaccines (MPL/DDA-VLPFMDV) formulated
with MPL/DDA. Upon stimulation with VLPs, MPL/DDA-VLPFMDV-immunized mice displayed
significantly greater levels of VLP-specific CD4+CD44+ and CD8+CD44+ memory T cells capable of
producing single- (in only CD4+ T cells), double- (particularly IFN-γ+TNF-α+ and IFN-γ+IL-2+ T cells)
and triple-positive effector cytokines in the spleen, thereby indicating that the MPL/DDA formulation
can be included in interventions capable of promoting multifunctional T cells to control FMDV.
Although we addressed much important evidence demonstrating the enhancement of cellular and
multifunctional immune responses by the encapsulation of VLPFMDV, several additional experiments
should be performed to support these results. For example, mice strain-, age-, and sex-dependent
differences in MPL/DDA-VLPFMDV vaccine-induced immunity should be investigated to clarify
the immunogenicity and vaccine efficacy of MPL/DDA-VLPFMDV. In addition, the efficacy of the
MPL/DDA-VLPFMDV vaccine against that of a currently inactivated vaccine must be compared
by using a challenge animal model, which might explain the advantages of MPL/DDA-VLPFMDV

vaccine-induced immunity.
Although the protective roles of Th1 and activated CD8+ T cells against FMDV infection have

been extensively studied [12,27], relatively little is known concerning the role of the Th17 response.
Since IL-17-producing cells are critical for host defense through controlling innate and adaptive
immunity against infectious diseases in the mucosa, it might be important when FMDV invades
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animals through mucosal surfaces [51,52]. For example, Lee et al. showed that inoculation with
an inactivated FMDV vaccine and IL-23, which is essential for Th17 cell differentiation, induces
strong memory B cell expansion, confers protective immunity, and imparts significant protection
upon a murine model against FMDV infection [53]. We found that VLPFMDV alone had a lesser or
no impact on Th17 activation, but one formulated with MPL/DDA could induce significant levels of
VLP-specific IL-17A-producing CD4+ T cells. The protective immune response of VLP against the Asia
1 serotype used in this study was certainly high. Since VLPs have highly strain-specific immunological
properties, although an adjuvant effect of MLP/DDA may somehow contribute to the activation of T
cells, we should not expect pan-serotype specific effects against multiple FMDV strains other than
Asia 1 serotype by MLP/DDA/VLPFMDV. However, our present study provided the proof-of-concept
for developing an immunologically enhanced and effective FMDV vaccine by employing VLP and
MLP plus DDA systems. The subsequent study will be focused on the development of multi-serotype
effective FMDV vaccines by including VLPs from multiple prevalent FMDV serotypes.

5. Conclusions

Our present data demonstrated that the MPL/DDA formulation shows potential as an effective
immunostimulatory adjuvant for VLPFMDV vaccines by satisfying the following criteria: (1) the ability
to induce strong antigen-specific Th1 and Th17 immune responses; (2) showing remarkable generation
of antigen-specific multifunctional CD4+ and CD8+ memory T cells; and (3) showing excellent increases
in antigen-specific antibody titers. Thus, MPL/DDA might be an excellent adjuvant for VLPFMDV

vaccines, especially considering the otherwise low immunogenicity of VLPFMDV vaccine candidates
against FMDV.
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