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Abstract: In the last few years, the preservation of cultural heritage has become an important issue
globally, due to the fact that artifacts and monuments are continually threatened by degradation. It
is thus very important to find adequate consolidators that are capable of saving and maintaining
the natural aspect of these objects. This study aims to provide an updated survey of the main
nanomaterials used for the conservation and restoration of cultural heritage. In the last few years,
besides the classic nanomaterials used in this field, such as metal nanoparticles (copper and silver) and
metal oxides (zinc and aluminum), hydroxyapatite and carbonated derivatives, tubular nanomaterials
(such as carbon nanotubes) have been used as a potential consolidate material of cultural heritage.
Tubular nanomaterials have attracted attention for use in different fields due to their structures, as
well as their ability to present multiple walls. These nanotubes have the necessary properties in
preserving cultural heritage, such as superior mechanical and elastic strength (even higher than steel),
high hydrophobicity (with a contact angle up to 140◦), optical properties (high photodegradation
protection), large specific surface area (from 50 to 1315 m2/g, depending on the number of walls) for
absorption of other nanomaterials and relatively good biocompatibility.

Keywords: carbon nanotubes; nanomaterials; metal nanoparticles; hydroxyapatites; cultural heritage;
carbonated hydroxyapatite

1. Introduction

The preservation of cultural heritage is essential for humanity to maintain the history of mankind,
as well as the authenticity of artifacts and constructions. An artifact represents any object created
or modified by humans bearing historical value. In archeology, an artifact is an object recovered by
archaeological methods which may have a cultural interest. These artifacts are continually threatened
by degradation factors. For example, stone, paper and wood artifacts are constantly subject to several
serious degradation factors, such as biological or chemical degradation, which affect more or less the
structural integrity and mechanical strength of these materials [1–4]. Nanomaterials (1–100 nm) with
higher surface areas than similar larger-scale materials have the possibility to penetrate deep into the
damaged artifacts due to their particle size [5].

In the last few decades, nanomaterials have received special attention in the field of cultural
heritage due to their unique properties. Currently, the obtaining of new systems (such as metal oxides
and hydroxides (TiO2, ZnO, Ca(OH)2, Mg(OH)2, Sr(OH)2, and metal nanoparticles (Au, Ag, Pt))
and their potential as consolidants on different artifacts and works of art have been reported in the
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literature [1,6,7]. For example, metal oxide nanoparticles have been used in the last decade to protect
building surfaces against biofilm formation. The potential of these nanoparticles in the conservation
and restoration of cultural heritage has been established for the consolidation of decomposed materials,
self-cleaning, improving the surface of the material or as biocide to reduce biodeterioration [8].

Presently, the efficiency of these nanoparticles has been tested on different materials belonging to
the cultural heritage. Barberio M. and co-workers investigated the possibility of using nanoparticles of
TiO2 and SiO2 as consolidating materials without introducing chemical, physical or aesthetic changes
on the surfaces of ceramic artifacts. After the artifacts were treated, it was observed that this layer
was perfectly transparent, uniform and hydrophobic, and the nanoparticles penetrated the surface
of the artifacts, giving them a higher resistance [9]. In the case of wooden artifacts, several studies
that evaluate the performance of Ag, Cu, ZnO, and TiO2 nanoparticles have been reported. Tests
against termites, rot, mold, fungi and UV degradation have shown that these nanoparticles significantly
improve the wood’s resistance and provide protection against degradation. Also, it has been reported
that ZnO and TiO2 nanoparticles have promising antifungal and antibacterial properties [10–12].
Ciliberto E. and co-workers obtained Sr(OH)2 nanoparticles and applied them on various cultural
heritage artifacts (wood, paintings, paper and stone). Following the experiments, they showed that
these nanoparticles can be successfully used for the protection and consolidation of cultural heritage
artifacts [13]. In another study, MgO nanoparticles were successfully used to de-acidify the paper,
ensuring the prevention of paper degradation [14,15]. Sassoni E. and co-workers and Ion R.-M. and
co-workers were pioneers in the use of hydroxyapatite (HAp) as an alternative to calcium oxalate
for the consolidation of carbonate stones used in building heritage [16,17]. Also, based on its good
compatibility with the crystal structure and lattice parameters of calcite, HAp has been applied for
the consolidation of limestones [16], marbles [18] and chalk stone [19,20]. Thanks to its low viscosity,
this aqueous consolidant product is able to penetrate deeply into the stone, generating significant
improvement in mechanical properties [21]. Presently, carbonated hydroxyapatite and its metallic
derivatives seem to be alternatives for older consolidants [22].

Referring to all nanoparticles used to consolidate different artifacts, the situation of the diffusion
over time of papers related to the application of nanoparticles on different artifacts is presented in
Figure 1.
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Figure 1. Graph of scientific papers published per year in the period 2000–2020 regarding nanoparticles
used to consolidate different artifacts. From Scopus (https://www.scopus.com).

In recent years, researchers have tried to find new materials in order to improve the properties of
consolidating materials (Figure 2). From this point of view, nanotubes have received a real interest
from researchers because of their ideal properties: open interior and a large volume (reported to the
size of the tube), which makes the inner surface accessible and thus allows the attachment of different

https://www.scopus.com
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nanomaterials/agents inside the tubes; the surface porosity or its shape does not change with pH
variations; not being vulnerable to microbial attack; high mechanical and elasticity resistance [23,24].
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Currently, several studies have been reported regarding the successful use of tubular materials in art
conservation [25]. Also, a new challenge regarding these tubular materials is to attach nanoparticles on
the surface of nanotubes in order to test their potential in preserving/restoring cultural heritage [26,27].

2. Types of Consolidating Materials and Substrates

Wood and stone are the oldest materials used in the construction of different types of structure
founded in many parts of the world [28]. Initially, these materials were used in the construction of
different buildings (houses, churches, etc.), and later they were used to make various decorative objects
(furniture, statues, instruments, etc.) [29]. One of the most important applications of wood, which has
been discovered by humans, remains the manufacture of paper [3].

Wood is an organic material that is continuously subject to damage through various processes
encountered in nature (heat, frost, the presence of various organisms, etc.). The most used wood in the
manufacture of artifacts is poplar, lime and spruce [30,31]. In the case of the wood, several factors that
affect its integrity have been identified:

extreme temperatures, that lead to the loss of the structural strength of the wood [1];
biological attack (insects and fungi) which makes the wood becomes soft and fragile [32,33];
relative high humidity, that can cause severe alteration of the wood substrate [30].
Thus, the consolidation of fragile and degraded wood becomes a serious problem worldwide.

Therefore, researchers are trying to obtain new materials and capable methods to provide long lasting
wood durability. The purpose of such treatment is to improve mechanical resistance of the degraded
material, preserving the restored authenticity of the object at the highest level.

Generally, any conservation treatment should follow the internationally established principles:
the used treatment for preservation should not alter the object’s integrity and authenticity; the used
treatment must have potential reversibility and allow for additional restoration interventions, whenever
necessary; the used treatment must remain stable for long periods of time; the used treatment must
penetrate and be evenly distributed throughout the wood surface [1,34].

Currently, researchers have proposed tested and analyzed various materials that can be used in
wood preservation/restoration, for example, synthetic polymers, such as Paraloid B67, Paraloid B72
and Paraloid B44, and metallic nanoparticles. These synthetic polymers are used in the consolidation
process in two phases: the impregnation phase (the polymer solution enters in the wood structure),
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followed by a conditioning phase (the solid polymer is fixed in the wood structure and the solvents
evaporate). The techniques commonly used in a consolidation treatment are total immersion, brushing,
spraying, but the technique must be chosen according to the particularities of the object [1,35].

Stone is an inorganic material found in nature and is used for the manufacture of utensils, weapons,
jewelry, sculptures and architectural elements. This material represents the oldest traces of human
activity, such as in artifacts dating from 700,000 to 130,000 years ago. The first rocks used were granite,
diorite, basalt and quartz, due to their high hardness. Later, with the discovery of metals, any type
of rock could be processed, for example, marble carvings. Limestone and sandstone are the main
materials from which the vast majority of buildings are built; therefore, these types of material are
among the most studied for conservation and restoration [3,36].

Over time, different situations have been observed that endanger the integrity of the stone, such as
the poor condition of the protection cornices, improper jointing in masonry, temperature fluctuations,
rainfall or inefficient precipitation removal [37,38].

The main challenges in the case of stone protection are related to the creation of a hydrophobic
surface, its protection against pollutants and the deposition of organic/inorganic particles, while
ensuring aesthetic compatibility with the substrate and the reversibility of the treatment [39]. Presently,
various materials used for the conservation and restoration of stone have been reported in the literature,
such as hydrophobic coatings, antifouling treatments and self-cleaning nanoparticles. Also, nano-HAp
was successfully applied to marble and limestone [40], and in a recent study, Ion R.-M. and co-workers
successfully applied carbonated hydroxyapatite together with its metal derivatives (silver, strontium,
barium, potassium and zinc) on stone models in order to improve the mechanical properties and the
resistance to repeated cycles of freeze-thaw [22]. Scherer G.W. tested HAp as a protective treatment
for marble against acid rain corrosion, showing an improvement in the marble resistance to the
dissolution [41]. Also, Sassoni E. and co-workers investigated the effectiveness and compatibility of
HAp treatment for limestone, in comparison with ethyl silicate. It was reported that HAp was able to
overcome some ethyl silicate limitations (mainly, prolonging curing time and compatibility), being a
very promising consolidant product of porous limestones [42]. The same group evaluated the durability
of the HAp treatment to wetting–drying, freezing–thawing and salt weathering cycles, in comparison
with ethyl silicates. It was concluded that HAp was a better option for limestone consolidation
compared to ethyl silicates, because the samples treated with HAp presented less deterioration than
the samples treated with ethyl silicates [43].

3. Nanomaterials with Applications in the Conservation and Restoration of Cultural Heritage

3.1. Main Used Nanomaterials

In the last few years, nanomaterials have been successfully tested to conserve architectural
heritage, due to their ability to consolidate and protect damaged building materials. The nanoparticles
used for the preservation/restoration of objects have an important role; namely, they cover the surface
of the material in order to create a self-cleaning system, preserving the initial appearance of the
treated elements, while decreasing the deposition of pollutants and reducing the external degradation
processes due to the dirt phenomena. In order to be used in applications of conservation and restoration
of the cultural heritage, these nanoparticles must have the following attributes: thermal stability, be
biologically and chemically inert, non-toxic, low cost, good adaptability to various environments and
good absorption in the solar spectrum [6,11,44,45]. Presently, nanomaterials such as metal nanoparticles
(gold, copper and silver) and metal oxides (zinc and aluminum) are widely applied to provide wood
protection [46].

In the case of wood, its wall has a porosity of dimensions on a molecular scale due to the partial
filling of the spaces between the cellulose microfibrils. Small nanoparticles can deeply and efficiently
penetrate into wood, changing the chemistry of the wood surface and improving its properties. In
addition, full penetration and even distribution are obtained if the nanoparticle size is smaller than
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the pore diameter in the wood wall [1,46]. It has been reported that a thin and homogeneous layer of
TiO2 nanoparticles, with an average size of 50 nm, covers the internal structures of the wood, without
changing its natural appearance [11]. In Table 1, the main nanomaterials used for wood consolidation
and their properties are presented.

Table 1. Nanoparticles used in the literature as possible enhancers for wood and their properties.

Nanomaterials Properties References

TiO2
UV protection, hydrophobicity, self-cleaning, fire resistance,

protection against microorganisms, dimensional stability [47–49]

ZnO UV protection, resistance to fire and scratches, hydrophobicity,
protection against microorganisms, dimensional stability [50–52]

Au Protection against microorganisms [1,34]
Ag [53]

MgO UV protection, hydrophobicity, protection against
microorganisms [54]

FeO UV protection, protection against microorganisms [34]
SiO2 Fire resistance, self-cleaning, hydrophobicity, scratch resistance [55]
CuO Protection against microorganisms [56]

HAp/Au Anti-aging protection, mechanical resistance, hydrophobicity [1]

3.2. Physico-Chemical and Mechanical Properties

In the last decade, nanotechnologies have become a key factor in the field of cultural heritage,
due to their ideal properties that help to protect heritage objects, for example: cleaning surfaces,
acting against microorganisms, protecting materials from the negative effects of UV radiation, etc. The
advantage of applying nanomaterials is represented by the possibility of obtaining a great depth of
penetration in the structure of the materials (mainly it varies according to the porosity and the moisture
content of the material) and a high efficiency, preserving the original material [6,44,57].

Titanium dioxide (TiO2) is an inorganic material that is found in the form of nanocrystals or
nanogranules, and is intensely used in various applications due to its properties. In recent decades,
this material has been intensely used as a pigment, in UV protection, paints, ointments, toothpaste, etc.
This material has many advantages that make it ideal for different applications, such as the high surface
area offered by the small size of the TiO2 particles or the increased antimicrobial activity. These two
characteristics are closely related to the crystalline structure, shape and size of nanomaterials [58,59].

TiO2-based nanomaterials are obtained by various methods, such as sol-gel, the hydrothermal
method, the direct oxidation method, chemical vapor deposition, electrodeposition, etc. [58]. Depending
on the method of preparation, TiO2 can be obtained in various forms, including nanoparticles, nanofibers
and nanotubes [58,60]. The most widely used process for obtaining these nanomaterials is the sol-gel
method. In a typical sol-gel process, a colloidal suspension (sol) is formed from the hydrolysis and
polymerization reactions of the precursors, and then the complete polymerization and loss of the
solvent leading to the passage from the liquid sol to a solid gel phase occurs. TiO2 nanomaterials
are synthesized by the sol-gel method of hydrolysis of a titanium precursor [61–65]. Sugimoto T.
and co-workers obtained different shapes and sizes of TiO2 nanoparticles by varying the reaction
parameters. Thus, it was observed that the morphology of the TiO2 nanoparticles changes from
cubic to ellipsoidal, when the solution is brought to a pH above 11 with triethanolamine (it acts as a
surfactant). When diethylenetriamine was used, at pH above 9.5, it was observed that the shape of
TiO2 nanoparticles evolves in ellipsoids with a higher appearance than that with triethanolamine [66].
Also, it has been reported in the literature that the shape of TiO2 nanoparticles can be changed from a
round to a cubic form by using sodium oleate and sodium stearate. The shape control is attributed to
the growth rate regulation of the different crystalline planes of the TiO2 nanoparticles by the specific
adsorption of the shape regulators to these planes under different pH conditions [66–68]. In another
study, TiO2 nanoparticles were obtained by the sol-gel method, and subsequently, the influence of acid
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pH (3.2–6.8 with a hydrochloric acid solution) on the formation of TiO2 nanocrystalline powders and
photoluminescent properties was studied. Thus, it was reported that the best luminescence property
was obtained for the TiO2 nanoparticles synthesized at a pH of 5.0 [69].

Presently, TiO2-based nanomaterials have been tested on different materials in order to consolidate
or restore the cultural heritage. For example, La Russa M.F. and co-workers studied the efficiency of
TiO2 nanoparticles dispersed in an acrylic polymer solution on limestone and marble samples. The
biocidal efficacy of TiO2 against A. Niger fungi was evaluated, and the results show a high efficiency of
growth inhibition on both types of samples. Also, the photodegradation tests revealed the efficiency
of increasing the speed of oxidation of the methylene blue stains. After aging, the behavior of the
two types of samples was different. The treated limestone surfaces do not appear to be affected by
solar radiation, while in the case of marble, the coating is almost inefficient after aging, suggesting
that the composition of the sample also plays an important role [70]. In another study, De Filpo
G. and co-workers tested these nanomaterials in order to study their efficiency as antifungal and
biocidal agents for woodworking. After the wood samples were treated, they were put in contact
with two species of fungi, Hypocrea lixii and Mucor circinelloides, which are known to be responsible
for the rapid degradation of the wood. The results show that the photo-catalytic activity of TiO2

nanoparticles prevents fungal colonization of wood samples for a much longer period, compared to
untreated samples [71]. Also, this treatment was deposited on the wood surfaces using a plasma jet
with atmospheric pressure in order to improve the stability of the wood against the ultraviolet (UV)
light and humidity resistance capacities. Color changes during UV exposure for both uncoated and
coated wood samples were measured. It was observed that the sample coated with TiO2 had become
more resistant to color change after exposure to UV radiation than untreated wood [72].

Zinc oxide (ZnO) is an inorganic compound used in various applications: pharmaceutical industry,
cosmetics, chemicals, ceramics, paint and glass [73]. The antibacterial activity of ZnO increases with
decreasing particle size and such action can be stimulated by visible light. Also, the absorption property
of UV radiation improves the stability of the composite [74].

Currently, various obtained methods involving ZnO-based nanomaterials have been developed,
such as: vapor phase growth, the vapor-liquid-solid process, electrophoretic deposition, sol-gel
processes, homogeneous precipitation, etc. The properties of ZnO nanoparticles, such as crystallinity
and morphology, can be controlled by adjusting factors such as pH, reaction temperature, time and
solvent [75].

Like TiO2, zinc oxide has been intensively studied as a potential enhancer used in conservation
and restoration applications of cultural heritage, thus demonstrating that it can be used successfully in
this field. For example, the humidity of the ZnO surfaces was examined; these flat ZnO substrates had
a water contact angle of up to 109◦, confirming the material’s ability to provide hydrophobicity to the
surface on which it is applied [76]. In another study, pine samples were treated with ZnO nanoparticles
in order to investigate the efficiency of the consolidant for water absorption. It has been reported that
ZnO nanoparticles (at a concentration greater than or equal to 2.5%) significantly improved water
absorption resistance for 12 months of outdoor exposure, compared to control [50]. Also, David M.E.
and co-workers confirmed the capacity of cellulose acetate-based micronized particles (ZnO and TiO2)
to provide hydrophobicity on the pinewood surface [77]. Clausen C.A. and the co-workers reported
that the use of ZnO nanoparticles as a wood coating product leads to a significant decrease (under 4%)
in the consumption of eastern subterranean termites in the case of wood blocks and to an increase in
the mortality of these termites by over 94% [78]. In another study, it was reported that delamination
between the wood surface and the coating layer caused by UV and moisture irradiation could be
avoided using ZnO nanoparticles [79].

Gold (Au) nanoparticles are intensively used in various applications due to their unique properties
and increased surface functionalization ability with different compounds [80]. These nanoparticles
can be synthesized into different shapes and sizes due to the various synthesis methods available.
The most commonly used methods for the synthesis of Au nanoparticles are chemical and biological
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methods, but the chemical method offers the advantage of better control over the size and shape of
the nanoparticles. Since the size and shape of the nanoparticles depend on the synthesis method and
it can be controlled by adjusting the reaction parameters (including temperature, concentration and
pH) [81,82]. The physical, chemical and optical properties are strongly influenced by the size of the
nanoparticles. For example, it has been shown that Au nanoparticles with dimensions below 100 nm
provide a large surface-volume ratio, and the chemical, physical and optical properties are different
from those of the same bulk material [83,84]. Also, another important advantage of these nanoparticles
are the microbiological properties, these nanoparticles presenting an increased antimicrobial, antifungal
and antibiofilm activity [85,86].

Due to these properties, Au nanoparticles have attracted the attention to be studied in different
fields, including the conservation and restoration of cultural heritage. For example, Ion R.M. and
co-workers studied the efficacy of a new system based on Au and hydroxyapatite (HAp) nanoparticles
on hazelnut wood samples. Following the obtained results, it was observed that the wood samples
treated with the Au and HAp system were more stable and have superior mechanical and hydrophobic
properties, compared to the samples treated with either Au, HAp or untreated (control) samples. These
improved properties are mainly due to the presence of gold nanoparticles, which have the ability to
insert/penetrate into the wood channels, thus leading to hardening and protecting the wood (Figure 3).
Also, compared to HAp, the surface hardness increased considerably in the case of the sample on
which the Au and HAp based system was applied, due to the network of fibers generated on the wood
surface [1].
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Silver (Ag) nanoparticles and their nanocomposites are among the most used nanomaterials,
being used in almost all types of applications (medicine, antimicrobial agents, sensors, catalysts,
coating agents, cosmetics, water treatment, etc.) [87–89]. Of the entire range of metallic nanoparticles,
Ag nanoparticles are the most widely used due to their unique physical, chemical and biological
properties. The advantage of these nanoparticles as compared to the other noble metals, in terms of
their physico-chemical properties are: high electrical and thermal conductivity, non-toxicity, stability
under environmental conditions, low costs of obtaining, wide absorption of light, chemical stability
and catalytic activity. Moreover, they have a broad spectrum of high antimicrobial activity (bactericidal
and fungicidal activity) [90,91]. Currently, Ag nanoparticles can be synthesized by physical, chemical
and biological methods. Physical and chemical methods are the most laborious, compared to biological
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synthesis, which consists of a fairly simple and easy process to produce large-scale nanoparticles that
have attractive properties, such as high yield, solubility and stability [89,92].

As in the case of Au nanoparticles, the properties of Ag nanoparticles depend on the size and
shape of the nanoparticles, characteristics that are closely dependent on the synthesis method (they
can be controlled by adjusting the reaction parameters). For example, it has been reported that the
bactericidal activity of Ag nanoparticles is strongly influenced by nanoparticle size; the smaller the
nanoparticle size, the stronger the bactericidal activity is [93,94].

In recent years, Ag nanoparticles have been intensively studied to demonstrate their efficiency
as a consolidant for the conservation and restoration of cultural heritage. In a study, Berrocal
A. and co-workers tested a solution of Ag nanoparticles (50 ppm (parts per million)), which was
incorporated by pressure into three commercial wood species (Acacia mangium, Cedrela odorata and
Vochysia guatemalensis) from Costa Rica. Following the experiment, it was observed that the mass loss
was less than 5% for all three types of wood treated with Ag nanoparticles, while untreated wood
showed a mass loss of more than 20%. Also, the water absorption capacity was reduced for the three
wood species treated with Ag nanoparticles, while the dimensional stability increased for two of the
three wood types (Cedrela odorata and Vochysia guatemalensis) [95].

In another study, Mantanis G. and Papadopoulos A.N. studied the improvement of pine wood
from the point of view of water absorption using Ag nanoparticles. It has been observed that the
immersion of pine wood in an Ag nanoparticle solution for 2 min significantly reduces water absorption,
thus confirming the ability of this material to be used as a consolidate in cultural heritage [96].

Magnesium oxide (MgO) is a basic oxide and can be formed by the reaction of metal with
oxygen gas [97]. MgO nanoparticles can be synthesized by various methods, such as sol-gel, thermal
decomposition, precipitation reactions, etc. [45]. Currently, magnesium oxide has various applications,
such as an adsorbent for chemical agents, photocatalyst, antibacterial agent, antioxidant agent, etc.
Comparing the antimicrobial activity of MgO nanoparticles on Gram-positive and Gram-negative
bacteria, it has been shown that this material is more effective against Gram-positive bacteria (S. aureus).
It has also been shown that these nanoparticles possess photocatalytic activity both under UV
irradiation and in sunlight, which opens up several possible areas of application of these ecological
MgO nanoparticles [98–100].

In the last few years, MgO nanoparticles have been tested as potential consolidates for various
materials (wood, paper, etc.). In one study, it was reported that MgO is an excellent paper de-acidification
agent, which ensures good physico-chemical compatibility with the substrate, without producing
undesirable side effects on the treated material [45]. Also, Castillo I.F. and co-workers treated old
paper with MgO nanoparticles to prevent fungal damage of paper artifacts from fungi commonly
found on the surface of old colonizing paper: A. niger, C. cladosporioides and T. reesei. After treatment, it
was observed that dispersions of MgO nanoparticles on original paper samples from the 18th century
were effective in preventing fungal colonization without altering the appearance of paper artifacts. In
addition, this treatment inhibited activity in A. niger and T. reesei fungi [101].

Iron oxides are found in a wide variety of structures and are present in many types of applications,
from geological to nano-technological applications. They have seven crystalline phases, the most
common being α-Fe2O3 (hematite), γ-Fe2O3 (maghemite) and Fe3O4 (magnetite). Due to their ideal
properties (magnetic, electrical, optical), all these oxides have been extensively investigated by
chemists, engineers and physicists. Iron oxide nanomaterials can be synthesized by different methods
(co-precipitation, hydrothermal method, microemulsion, thermal decomposition, sol-gel, etc.) in
different shapes and sizes, such as nanotubes, nanowires, fibers and rings. The performance of iron
oxides is strictly influenced by their morphology, size and porosity [102–104]. These nanomaterials
have been successfully used in many applications, such as medicine, water cleaning, cathodes,
photoelectrochemical systems, dyes, etc. [103,105]. These nanomaterials have also been used to protect
and improve the resistance of wood. Schauwecker C.F. and the co-workers used iron oxide particles
with different crystalline shapes and sizes to protect against the discoloration of wood under solar
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radiation. The results of this study suggest that the large size of the oxide particles offered both greater
opacity and protection [106]. Another advantage of these transparent iron oxides is that they are
multifunctional non-toxic pigments, which can be combined with a range of color shades with excellent
UV absorption, transparency and weather stability; factors that lead to increased protection of the
wood [107].

Silicon dioxide (SiO2) is a colorless, crystalline solid substance that does not react with water
and is resistant to acids. SiO2 particles can be used as a source of material for photovoltaic cells,
semiconductor electronic devices, catalysts, film substrates, ceramics, plastics fillers, humidity sensors,
absorbents, anti-corrosive agents, etc.

The synthesis of SiO2 particles can be realized by several methods, such as chemical vapor
deposition, plasma and combustion synthesis, the hydrothermal method and sol-gel processing.
Among these synthesis methods, sol-gel has low cost advantages in processing and also facilitates
the control of SiO2 properties (purity, composition and material homogeneity) [108–110]. The SiO2

properties are dependent on the conditions of its synthesis, such as temperature, pH, washing and
drying modes. These factors influence the size of the SiO2 particles, their aggregation and the specific
surface area [109].

SiO2 nanoparticles were also used in coatings for materials belonging to the cultural heritage.
Doubek S. V. and co-workers investigated the SiO2 capacity on beech (Fagus sylvatica) and fir (Abies alba)
wood. Following the treatment, it has been observed that silica mineralization can improve some of the
technical properties of the wood, leading to the prolongation of the life of the wooden structures. It has
also been reported that silicon dioxide has not shown anti-mold efficiency, a property that is essential
in protecting wood [111]. In another study, it was observed that the SiO2 nanoparticles treatment led
to a significant reduction in the swelling of the wood, but this also decreased the resistance of the
wood [112].

The effect of the properties of SiO2 nanoparticles on the wood surface was also studied by Fu Y.
and co-workers. The results show that the water absorption and the hygroscopic expansion rate
of the treated wood were lower, compared to the control sample. Also, the resistant properties to
discoloration were improved by 1.5 times, compared to the control sample. The contact angle test
showed that the treated wood was more hydrophobic than that of the control sample and increased
with the time of immersion in the SiO2 solution. Also, the treated wood showed increased resistance to
aging compared to the control sample [113]. These studies confirmed that SiO2 can be considered a
potential material to be used as a consolidant in wood preservation and restoration, but it is necessary
to improve the properties of this material to obtain better performances (e.g., SiO2/Ag, SiO2/TiO2 for
anti-mold properties [71,114]).

Copper oxide (CuO) is an inorganic compound produced on a large scale due to the various
applications in which it is used successfully. Copper oxide is a semiconductor metal with unique optical,
electrical and magnetic properties and has been used for various applications, such as the development
of supercapacitors, infrared filters, magnetic storage media, sensors, catalysts, semiconductors,
etc. [115,116]. One of the most important parameters in the synthesis of CuO nanoparticles is the
control of the particle size, their morphology and crystallinity, and different methods of synthesis
have been developed to achieve this objective; several more investigated approaches include the
sonochemical method, the sol-gel method, laser ablation, the electrochemical method and surfactant
techniques [115,117,118].

The synthesis methods of CuO nanoparticles have advanced significantly in the last ten years due
to the various important industrial applications. The synthesis technique is important for the properties
of the final nanosystem, because it can control the size and morphology of the nanoparticles. Also,
these nanoparticles exhibit various optical, magnetic, mechanical and electrical resistivity properties,
which differ from the characteristics of the bulk solid material [115].

In the last few years, metal nanoparticles have been intensively studied as wood protection
consolidates. Shiny K. and co-workers obtained CuO nanoparticles using plant extracts (Neem leaves
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(Azadirachta indica), Pongamia (Pongamia pinnata), Lantana (Lantana camara) and orange peel extract
(Citrus reticulata)), which are known to have wood preservation properties. The effectiveness of
the obtained CuO nanoparticles was tested against wood termites. It has been found that all CuO
nanoparticles obtained from plant extract provide termite protection for a period of six months,
compared with control. The development of a synthesis pathway based on sustainable plant extracts
for metallic nanoparticles allows the possibility of combining the intrinsic property of the plant
extract and the metallic nanoparticles for a potential application in wood protection. The resulting
formulation can protect the wood from biodeterioration in a more efficient way, without damaging the
environment [119]. In another study, Akhtari M. and D. Nicholas tested and compared the effectiveness
of CuO and ZnO nanoparticles as potential wood consolidants. CuO nanoparticles have been found to
be much more effective in protecting wood against termites, compared to ZnO nanoparticles [120].

CuO nanoparticles have been used to protect wood against various microorganisms (fungi and
bacteria) [121,122]. Also, another important advantage of using the CuO nanoparticles as a wood
consolidant is the fact that the effective removal of the CuO layer from the wood surface was achieved
with the help of chelated agents, without causing damage to the treated wood initially [123].

4. Tubular Nanomaterials with Applications in the Conservation and Restoration of
Cultural Heritage

In the last few years, tubular nanomaterials (like carbon nanotubes, titanium oxide nanotubes,
ZnO nanotubes, etc.) have attracted attention for use in different fields due to their structures, as well as
their ability to present multiple walls. In addition, their unique physical and chemical properties, their
interior voids and exterior surfaces make them ideal candidates for various applications [124–130].

4.1. Structure and Synthesis Methods of CNTs

Carbon nanotubes (CNTs) were discovered in 1991 by Sumio Iijima, through the action of a
catalyst on the gaseous species created by the thermal decomposition of hydrocarbons. Subsequently,
multi-walled carbon nanotubes (MWCNTs) were obtained as by-products for the production of
fullerenes in an electric arc without catalysts. Two years later, after repeated attempts to “fill” CNTs
with various metals, single-wall nanotubes (SWCNTs) were discovered.

CNTs are large cylindrical molecules consisting of a hexagonal arrangement of hybridized carbon
atoms, which can be formed by rolling a single graphene sheet (SWCNTs—Figure 4A) or rolling two
or more sheets of graphene linked through van der Waals non-covalent force, that acts between the
carbon atoms of the different walls (MWCNTs—Figure 4B). Typically, these nanotubes are coated at
both ends with a hemispherical arrangement of carbon networks, called fullerene [131–135].
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These two types of CNT differ not only in terms of structure, but also due to their properties; for
example, SWCNTs have important electrical properties (they can be excellent conductors), compared
to MWCNTs. SWCNTs are still very expensive, and the development of more cost-effective synthesis
techniques is vital for their use in a wider range of applications [136].

CNTs are widely used in many applications due to their unique properties (electrical, mechanical,
optical, thermal and other properties). The application of CNTs is usually given by their structure
(number of walls, diameter, length, chiral angle, purity, structural quality, etc.), which gives the specific
properties. These carbon nanotubes can be synthesized by various methods and each of these methods
has some advantages and disadvantages that lead to obtaining CNTs with different properties [137,138].

For example, a sonochemical method was also used to synthesize SWCNTs by the ultrasonic
irradiation of a solution containing silica, ferrocene and p-xylene powders. In this synthesis, ferrocene
was used as a precursor for the Fe catalyst, p-xylene was used as a carbon precursor and the silica
powder provided nuclear sites for the growth of CNTs. Ferrocene was sonochemically decomposed
to form small Fe groups, and p-xylene was pyrolysed to carbon atoms and carbon moieties. This
approach provides a convenient synthetic route for preparing CNTs under environmental conditions.
In addition, no extra purification steps were required in this process, which opens up the possibility
of large-scale ultrasonic synthesis of SWCNTs [139]. In another study, Wang W. and co-workers
synthesized MWCNTs with outer diameters between 9 and 19 nm and inner diameters between
4 and 8 nm by decomposing polyethylene glycol (PEG) into a basic aqueous solution with high
NaOH concentration under hydrothermal conditions at a temperature of 160 ◦C, without the addition
of a Fe/Co/Ni catalyst [140]. In another study, Jagadish K. and co-workers synthesized MWCNTs
by the hydrothermal method of polystyrene (PS) in the presence of the catalyst (Fe particles) at a
temperature of 400 ◦C. Following the morphological characterization, it was observed that the obtained
MWCNTs had inner and outer diameters of 19 and 22 nm, respectively, with a wall thickness of
5 nm, their length being a few millimeters [141]. Also, Manafi S. and co-workers prepared MWCNTs
by an easy sonochemical/hydrothermal method. MWCNTs were fabricated hydrothermally using
dichloromethane, cobalt chloride and lithium as starting materials in an aqueous NaOH solution, and
the ultrasonic pre-treatment of the solution mixture was performed before hydrothermal conditions
(150–180 ◦C for 24 h). Following this synthesis, high purity MWCNTs with lengths of 2–5 µm and
diameters of 60 ± 20 nm were obtained [142].

In another study, Chrzanowska J. and co-workers obtained SWCNTs by the laser ablation
method (laser source Nd: YAG–neodymium-doped yttrium aluminum garnet), and observed that the
properties of the synthesized CNTs are highly dependent on the laser fluency. In the case of the laser
with a wavelength of 355 nm, the best SWCNTs (morphologically) were obtained at the fluence of
F = 3 J* cm−2, while for 1064 nm, good results were obtained in the fluorescence range of 1 ≤ F ≤ J*
cm−2 (the distribution of nanotubes being the smallest at this fluency, with a diameter of 1.3 nm). Also,
it has been observed that the distribution of nanotubes, in terms of diameters, became wider as the
fluency increases [143].

Wu H. and co-workers tried to obtain CNTs by the electrochemical reduction of CO2 in different
molten Li-Na-K carbonate mixtures. By adjusting the density of the electric current, the electrolyte and
the temperature, the carbon products had different morphologies of structures. It was observed that
in the case of the Li-Na-K electrolyte, no CNTs were formed, but a high efficiency was observed for
pure Li, Li-Na or small Li-Ba and carbon electrolytes. Also, it was observed that the diameter of the
CNTs increased with the increase in the electrolysis time [144]. In another study, Dimitrov A.T. and
co-workers reported the obtaining of MWCNTs with lengths between 50 nm and 3 µm and diameters
between 10 and 80 nm, by electrolysis in Li−Cl molten mixtures [145].
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In another study, MWCNTs of about 16–55 nm in diameter and 1.2 µm in length were obtained
by chemical vapor deposition (CVD) method using ferrocene and molybdenum hexacarbonyl as
precursors of catalyst nanoparticles and methane as a nontoxic and economical carbon source [146].
Seidel R. and co-workers also tried to obtain SWCNTs at the lowest possible temperature. Thus, dense
SWCNT networks were synthesized by the thermal CVD method, at temperatures up to 600 ◦C using
Ni catalyst layers with a thickness of about 0.2 nm [147].

Chemical synthesis is a new technique for obtaining CNTs, being adapted according to the
Staudenmaier method [148] and one of the most promising routes for the production of MWCNTs.
This technique allows the easy and cheap preparation of MWCNTs, at low temperatures (70 ◦C) and
without applying pressure. The obtaining of CNTs by this technique is incipient, with only a few
articles being reported in the literature.

Using this method, Lee D.W. and Seo J.W. obtained MWCNTs with a diameter of about 14 nm
and with a zig-zag structure [149]. In another study, Ali B. and co-workers synthesized MWCNTs by
chemical synthesis with a diameter of about 13 nm and high thermal stability [150].

4.2. Properties of CNTs Important for Cultural Heritage

Over the years, CNTs have been used in many fields of application due to their highly useful
physical, chemical and mechanical properties. For example, CNTs introduced into polymeric matrices,
such as epoxy, are a new generation of composite materials with advanced mechanical properties [151].
It has been reported that the introduction of SWCNTs, and MWCNTs into polymeric matrices showed
significant increases in resistance and Young’s modulus compared to control (polymeric matrices) [152].
Therefore, CNTs are suitable candidates to be used in conservation and restoration of cultural heritage
due to their ideal properties:

Mechanical and elastic properties: CNTs are stiffer than steel and are highly resistant to the
application of physical forces (pressing on the top of a nanotube will cause it to bend, without damaging
the top) [153,154]. Compared to graphite fibers, CNTs exhibit tensile strength and superior elastic
behavior. Graphite fibers have been reported to have a tensile strength of approximately 1 GPa,
while MWCNTs have an average of 14.2 ± 0.8 GPa [155], and SWCNTs average 3.66 ± 0.4 GPa [156].
Analyzing the elasticity modulus (or Young’s Modulus), it was reported that SWCNTs have a value
of about 1 TPa, and MWCNTs have a higher modulus of elasticity of about 1.28 TPa [152]. These
properties differ depending on the obtaining method of the nanotubes and the temperature at which the
CNTs are synthesized, respectively. Therefore, the extreme mechanical strength of CNTs makes them
the best known material, with great potential for applications that require high mechanical strength
materials. The use of CNTs in order to improve the mechanical properties of different materials has
been reported in several studies [157–159].

Optical properties are very important because they show how the material interacts with light.
Presently, there are few studies in the literature on the optical properties of CNTs. In a recent study,
it was reported that UV exposure of these CNTs has no direct impact on their properties [160]. For
this reason, CNTs have been introduced into the polymeric matrix (poly (methyl methacrylate)),
noting that the addition of nanotubes into the matrix was beneficial for improving its resistance
against UV radiation. It was concluded that the high-energy radiation was dissipated through the
nanocomposite CNT network, thus improving the tolerance to deterioration [161]. Nguyen T. and
co-workers investigated the release capacity of CNTs from the polymer matrix in the environment after
UV exposure. Thus, after obtaining an epoxy nanocomposite based on MWCNTs, it was irradiated
with UV light (with a maximum value of 4865 MJ/m2) at different doses, and the effects of UV exposure
on surface accumulation and the potential release of MWCNTs has been studied. After UV exposure, it
was observed that the nanocomposite matrix suffered photodegradation, leading to the formation of a
dense network structure of MWCNTs, but no release of nanotubes was detected in the environment,
even at very high UV doses [162]. Also, Petersen E. J. and co-workers reported that the presence of
CNTs on the sample surface reduces the affinity of the epoxy matrix to photodegradation. Before
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the UV exposure, a smooth and flat surface of the nanocomposite can be observed, and after the UV
exposure (1089 MJ/m2), it can be observed that the surface morphology was significantly modified,
having a hard, non-uniform appearance, which attests that the upper layer of the polymer degraded,
being left on the surface the nanotubes [163]. These studies confirmed the capacity of the CNTs to
protect objects against photodegradation.

Hydrophobic properties: this property is indispensable in cultural heritage protection and CNTs’
hydrophobicity has been reported in several studies. For example, Eseev M. and co-workers obtained
superhydrophobic surfaces by applying the MWCNT agglomerates made from xerogel milled by the
carbon band CVD method and by studying the functionalization time of the MWCNTs. Thus, they
obtained a material with a contact angle of almost 151◦ and concluded that the short functionalization
periods of MWCNTs (up to 90 min) are dominated by the cleaning process of the nanotubes (amorphous
carbon and metal nanoparticles—the catalyst). The MWCNTs functionalized for 90 min showed an
increase in the contact angle from 112◦ (value obtained for a working time below 90 min) to 140◦

(90 min operating time), allowing this coating to be considered as being highly hydrophobic [164]. In
a recent study, MWCNTs were synthesized by catalytic CVD, and on the surface of these nanotubes
was physically adsorbed fluid poly (dimethylsiloxane) fluid, in order to obtain a superhydrophobic
nanocomposite material. After analyzing the contact angle, a value of 152◦ was reported for the
nanocomposite, while for the poly (dimethylsiloxane), a value of 57◦ was obtained. These results
confirm once again the high hydrophobicity of CNTs [165]. The presence of these nanotubes in the
polymer matrix can lead to significant decreases in the water adsorption capacity of the polymeric
matrix, due to the non-polar hydrophobic structure of the CNTs [166].

4.3. CNTs Used in Conservation and Restoration of Cultural Heritage and Future Challenges in This Area

Potential applications of CNTs include obtaining new materials, optical and microelectronic
devices, textiles and clothing. Presently, the aim is to create hydrophobic, anti-freeze and self-cleaning
coatings in several industrial sectors, particularly in the cultural heritage area. These coatings will
also have a wide application in the construction and automotive industries [164]. To date, only a few
studies have been reported on heritage conservation by using CNTs, which have been very successful
in the consolidation and restoration of the object [167,168]. For example, Cestari B. C. and co-workers
reported the successful use of CNTs embedded in epoxy resin as coatings for timber structures. It has
been proven that the use of these materials as timber consolidate leads to a significantly improved
in mechanical strength of the wood [169]. Valentini F. and co-workers sustained the use of CNTs in
cultural heritage by reporting the efficiency of SWCNTs in the removal of the black crust from the
surfaces of pentelic marbles from the Basilica Neptuni (Rome, Italy) [170]. The capacity of CNTs in the
consolidation and restoration of stone materials was also tested by mixing MWCNTs with mortar. It
was observed that the addition of MWCNTs in mortar improves its mechanical properties. Additionally,
the results show that the MWCNT concentration plays an important role in the matrix reinforcement
capability; around 0.2% wt. of MWCNTs are needed to better reinforce the matrix in terms of increased
flexural strength and to achieve optimum properties in terms of piezoresistivity [171–173]. In another
study, CNTs were used in an innovative and precise instrument for mild heating, designed specifically
for art conservation, in the form of lightweight, flexible, transparent and breathable film-like mats.
This device is made by various layers, and the main layers consist of a substrate (transparent polyester
film-gives good adhesion to any kind of coating), the conductive CNT coating, a protective-insulating
coating on top and two copper electrodes glued on polyester film (for the electrical supply). The device
is driven by a programmable mobile touch screen console, which gives the operator ultimate control
over the temperature and heating pattern, which is unprecedented in art conservation. In this study,
the device was successfully applied on paintings, textiles and works on paper and the humidification of
the artifacts was maintained in the required parameters, leading to a better preservation of objects over
time. Apart from the advantages mentioned above, this device offers the possibility to be designed
in ultra-thin, transparent, and woven forms, and also as gas permeable membranes to permit the
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migration of vapors. This treatment can therefore deal with local, global or specific conservation
problems, allowing conservators to easily apply mild heating locally and over very large areas [25]. In
a recent study, Eseev M. and co-workers obtained superhydrophobic anti-icing coatings, prepared
from milled xerogel based on CNTs and then, the resulting materials were applied on the steel sample
surfaces. It was reported that the treated sample presented a water contact angle of approximately 156◦

at the droplet inclination angle of 3.6◦, confirming the superhydrophobicity of the coating. Moreover,
the high hydrophobicity of the coating allows the deceleration of frosting formation and the droplet
slips from the coating before it can freeze. The authors also suggested that, due to the high sorption
capability of the CNTs, lubricants can be loaded on the CNTs surface. The suggested approach can
be used to create superhydrophobic coatings, which can be used in the cultural heritage field, for
anti-freezing protection, but also for protecting other surfaces, such as aircraft surfaces [174]. Also,
Krishnamurthy M. and co-workers reported the superhydrophobicity of the coating based on the
polymerization of SWCNTs with thiophene/aryl compounds tested on leather and glass surfaces, with
a water contact angle of 155◦ and 163◦, respectively [175].

Due to the promising results obtained for CNTs incorporated in polymeric matrices, in recent
years, a new concept has been tried, namely the functionalization of CNTs with metal nanoparticles. For
the functionalization of CNTs, several methods have been developed, including covalent modifications
(based on the formation of a covalent bond between functional entities and the CNT framework),
non-covalent modifications (using various adsorption forces, such as Van der Waals forces, hydrogen
bonds, etc.) or electrostatic interactions. Covalent bonding between nanoparticles and CNTs was
obtained by various acid treatments to create bonding groups such as carboxyl (–COOH), carbonyl
(–C=O) and hydroxyl (–OH); however, the mechanical and electronic properties of CNTs can be
significantly degraded after acid treatment due to the introduction of defects. The non-covalent
attachment of nanoparticles is more able to preserve the unique properties of CNTs with reduced
defects [176]. Depending on the methods used, the functional groups/materials can be introduced on
the surface of CNTs. Functionalized CNTs can have mechanical, optical or electrical properties that are
different from those of the initial nanotube and significantly improved [177,178]. In a recent study,
the functionalization of MWCNTs with Au nanoparticles in three stages was successfully performed:
functionalization of the surface of carbon nanotubes; grafting of cysteamine hydrochloride by a thiol
reaction and decorating the gold nanoparticles by chemical covalent bonds. After functionalization, it
can be observed that Au nanoparticles attached to the surface of MWCNTs have spheroidal shapes,
with dimensions between 15 and 35 nm [179]. Also, Ag nanoparticles have been successfully linked
on the surface of CNTs, thus expanding the applicability of CNTs in various fields, such as medicine,
food industry, controlled release systems, anti-cancer drugs, antimicrobial agents, coating for different
surfaces and textile industry [180]. Table 2 presents the structures based on functionalized CNTs and
the areas in which these structures were used.

Presently, the application of these functionalized CNTs in the cultural heritage area was not
achieved, but studies from other areas confirmed that functionalized CNTs offer superior mechanical,
optical or electrical properties, compared with non-functionalized CNTs. Therefore, the presence of
CNTs in the field of heritage can bring important improvements in the consolidators, these nanotubes
having the most important properties necessary for this area.
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Table 2. Functionalized CNTs and their applications.

Structures Applications References

MWCNT-g-PCA-Au * Lateral-flow immunochromatography assay for the screening [181]

MWCNT-g-APC-Au Optical nanosensor for determination of trace amounts of
thiourea in spring water and orange peel [182]

MWCNT-Au Sensor for hydrogen peroxide determination [183]
MWCNT-ms-Ag Antimicrobial agent [180]

SiO2-MWCNT/Ag Water treatment (antimicrobial effect) [184]
MWCNT-Ag Antimicrobial agent [185]
MWCNT-Ag Plasmonic photo thermal therapy in melanoma cancer [186]

MWCNT-TiO2 Photocatalytic activity [187]
MWCNT-Ag/TiO2 Antimicrobial agent [188]

MWCNT-ZnO Bolometric sensor [189]
MWCNT-ZnO/NiO Textile dyes degradation [190]
Cs-MWCNT/MgO Antimicrobial agent [191]

MWCNT-Fe3O4 Drug delivery system [192]
MWCNT-Fe3O4 Magnetic sensor [193]
SiO2-MWCNT Nanodevice for medicine [194]

MWCNT-CuO Chemical sensors with high sensitivity or catalysts with high
activity to organic volatiles at low temperature [195]

MWCNT-CuO Glucose sensor [196]
CNT-Pt Sensors for ozone gas detection [178]

* PCA—poly(citric acid); Pt—platinum; ms—surfactant matrix; Cs—chitosan.

5. Conclusions and Future Perspectives

In the last few decades, the conservation of cultural heritage has become a topic of interest
worldwide, due to the need to preserve the authenticity of artifacts and constructions, as well as
the history of mankind. Classic examples of artifacts include stone tools, wooden tools and objects,
metal or personal ornaments and ceramic vessels. Due to the age of these objects and the external
degradation factors, their structure is severely affected. For example, wood materials are constantly
subject to several serious degradation factors, such as biological or chemical degradation, which more
or less affect the structural integrity and mechanical strength of these materials.

Currently, nanomaterials are a good solution for this problem of cultural heritage, due to their
ability to consolidate and protect damaged building materials. Nanomaterials used in cultural heritage
conservation and restoration applications must meet the following requirements: to have thermal
stability, to be biologically and chemically inert, to be non-toxic, to have a low cost, to have good
adaptability to various media and good absorption in the solar spectrum. Also, once applied to the
surface of objects for preservation and restoration, these nanomaterials must create a self-cleaning
system, thus preserving the initial appearance of the treated elements, while decreasing the deposition
of pollutants and reducing the onset of external degradation processes due to contamination. Currently,
various nanomaterials are successfully used to preserve and restore heritage objects, such as metal
nanoparticles (gold, copper and silver) and metal oxides (zinc, titanium, iron and aluminum).

In recent years, tubular nanomaterials have attracted attention for use in different fields due to
their structures, as well as their ability to present multiple walls. In addition, compared to their unique
physical and chemical properties, their interior voids and exterior surfaces make them ideal candidates
for various applications, including for conservation and restoration applications of cultural heritage.
The carbon nanotubes are among examples of nanotubular materials, which have the advantage on
being synthesized by using several methods (e.g., arc discharge, sonochemical or hydrothermal method,
laser ablation, etc.). These nanotubes have properties necessary for the preservation and restoration of
objects, such as superior mechanical and elastic strength, high hydrophobicity, optical properties, large
specific surface area for absorption of other nanomaterials, relatively good biocompatibility, etc.



Materials 2020, 13, 2064 16 of 24

Presently, both the introduction into a polymeric matrix of CNTs and the attachment of metal
nanoparticles on the surface of CNTs has been successfully achieved. These obtained composites were
successfully applied in various applications, but also for the conservation and restoration of objects.
It was observed that following the introduction of CNTs in a polymeric matrix, the preservation
and restoration capacity of the object treated with this consolidant has increased significantly, with
the treated object presenting superior mechanical properties and a better UV resistance. Also, after
CNT functionalization and their application as coating for objects, mechanical, optical or electrical
properties were achieved that were significantly improved than those of the original nanotube (without
functionalization). Therefore, the presence of CNTs in the field of heritage can bring important
improvements in the consolidators, with these nanotubes having the most important properties
necessary for this area.
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20. Ion, R.-M.; Turcanu-Caruţiu, D.; Fierăscu, R.-C. Caoxite-hydroxyapatite composition as consolidating
material for the chalk stone from Basarabi–Murfatlar churches ensemble. Appl. Surf. Sci. 2015, 358, 612–618.
[CrossRef]

21. Sierra-Fernandez, A.; Gomez-Villalba, L.S.; Rabanal, M.E. New nanomaterials for applications in conservation
and restoration of stony materials: A review. Mater. Constr. 2017, 67, 107. [CrossRef]

22. Ion, R.-M.; Iancu, L.; Vasilievici, G. Ion-Substituted Carbonated Hydroxyapatite Coatings for Model Stone
Samples. Coatings 2019, 9, 231. [CrossRef]

23. Scarfato, P.; Avallone, E.; Incarnato, L. Development and evaluation of halloysite nanotube-based carrier for
biocide activity in construction materials protection. Appl. Clay Sci. 2016, 132, 336–342. [CrossRef]

24. Inagaki, M.; Kang, F.; Toyoda, M. Chapter 2—Carbon Nanotubes: Synthesis and Formation. In Advanced
Materials Science and Engineering of Carbon; Inagaki, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2014.

25. Meyer, H.; Saborowski, K.; Markevicius, T. Carbon Nanotubes In Art Conservation. Int. J. Conserv. Sci. 2013,
5, 633–646.

26. Xu, P.; Cui, D.; Pan, B. A facile strategy for covalent binding of nanoparticles onto carbon nanotubes.
Appl. Surf. Sci. 2008, 254, 5236–5240. [CrossRef]

27. Zulikifli, F.W.A.; Yazid, H.; Halim, M.Z.B.A. Synthesis of gold nanoparticles on multi-walled carbon nanotubes
(Au-MWCNTs) via deposition precipitation method. In Proceedings of the International Conference
“Functional Analysis In Interdisciplinary Applications” (Faia2017), Bohol, Philippines, 4–7 January 2017.

28. Öztank, N. An investigation of traditional Turkish wooden houses. J. Asian Archit. Build. Eng. 2010, 9,
267–274. [CrossRef]

29. Freeman, M.H.; Shupe, T.; Vlosky, R. Past, Present, and Future of the Wood Preservation Industry. For. Prod. J.
2003, 53, 8–15.

30. Tuduce Traistaru, A.A.; Sandu, I.; Timar, M. SEM-EDX, water absorption, and wetting capability studies
on evaluation of the influence of nano-zinc oxide as additive to paraloid B72 solutions used for wooden
artifacts consolidation. Microsc. Res. Technol. 2013, 76, 209–218. [CrossRef]

31. Schultz, T.P.; Nicholas, D.D.; Preston, A.F. A brief review of the past, present and future of wood preservation.
Pest Manag. Sci. Former. Pestic. Sci. 2007, 63, 784–788. [CrossRef] [PubMed]

32. Viitanen, H. Factors Affecting Durability of Wood in Buildings. In Proceedings of the Third Nordic
Symposium on Insect Pest Control in Museums, Stockholm, Sweden, 24–25 September 1998.

33. Schiopu, N.; Tiruta-Barna, L. 6—Wood preservatives. In Toxicity of Building Materials; Pacheco-Torgal, F.,
Jalali, S., Fucic, A., Eds.; Woodhead Publishing: Cambridge, UK, 2012.

34. Tuduce-Traistaru, A.-A.; Campean, M.; Timar, M.C. Compatibility indicators in developing consolidation
materials with nanoparticle insertions for old wooden objects. Int. J. Conserv. Sci. 2010, 1, 219–226.

35. Traistaru, A.T.; Timar, M.C.; Campean, M. Paraloid B72 versus Paraloid B72 with nano-ZnO additive as
consolidants for wooden artefacts. Mater. Plast. 2012, 49, 293–300.

36. Heaton, N. The preservation of stone. J. R. Soc. Arts 1921, 70, 124–139.
37. Bell, F.G.; Coulthard, J.M. Stone preservation with illustrative examples from the United Kingdom.

Environ. Geol. Water Sci. 1990, 16, 75–81. [CrossRef]
38. Gauri, K.L. The Preservation of Stone. Sci. Am. 1978, 238, 126–137. [CrossRef]
39. Toniolo, L.; Poli, T.; Castelvetro, V. Tailoring new fluorinated acrylic copolymers as protective coatings for

marble. J. Cult. Herit. 2002, 3, 309–316. [CrossRef]
40. Ion, R.-M.; Fierascu, R.-C.; Fierascu, I. Influence of Fântânit.a lake (chalk lake) water on the degradation

of basarabi–murfatlar churches. In Engineering Geology for Society and Territory—Volume 8; Springer:
Berlin/Heidelberg, Germany, 2015.

http://dx.doi.org/10.4028/www.scientific.net/KEM.660.383
http://dx.doi.org/10.1007/s00339-014-8629-3
http://dx.doi.org/10.1016/j.apsusc.2015.08.196
http://dx.doi.org/10.3989/mc.2017.07616
http://dx.doi.org/10.3390/coatings9040231
http://dx.doi.org/10.1016/j.clay.2016.06.027
http://dx.doi.org/10.1016/j.apsusc.2008.02.082
http://dx.doi.org/10.3130/jaabe.9.267
http://dx.doi.org/10.1002/jemt.22155
http://dx.doi.org/10.1002/ps.1386
http://www.ncbi.nlm.nih.gov/pubmed/17534842
http://dx.doi.org/10.1007/BF01702226
http://dx.doi.org/10.1038/scientificamerican0678-126
http://dx.doi.org/10.1016/S1296-2074(02)01240-2


Materials 2020, 13, 2064 18 of 24

41. Scherer, G.W. New treatment for corrosion-resistant coatings for marble and consolidation of limestone.
In Proceedings of the Jardins de Pierres: Conservation de la Pierre Dans Les Parcs, Jardins et Cimetières,
Paris, 22–24 June 2011; pp. 289–294.

42. Sassoni, E.; Graziani, G.; Franzoni, E. An innovative phosphate-based consolidant for limestone. Part 1:
Effectiveness and compatibility in comparison With ethyl silicate. Constr. Build. Mater. 2015, 102, 918–930.
[CrossRef]

43. Sassoni, E.; Graziani, G.; Franzoni, E. An innovative phosphate-based consolidant for limestone. Part 2:
Durability in comparison with ethyl silicate. Constr. Build. Mater. 2016, 102, 931–942. [CrossRef]

44. Kroftova, K.; Smidtova, M.; Kuritka, I. Nanotechnology In The Cultural Heritage-Influence Of Nanospensions
Adopted By Nanoparticles Of Tio2 For Cleaning The Surface Of Historical Plasters. Civ. Eng. J. Staveb. Obz.
2017, 3, 216–228. [CrossRef]

45. Baglioni, P.; Giorgi, R. Soft and hard nanomaterials for restoration and conservation of cultural heritage.
Soft Matter 2006, 2, 293–303. [CrossRef]

46. Papadopoulos, A.N.; Bikiaris, D.N.; Mitropoulos, A.C. Nanomaterials and chemical modifications for
enhanced key wood properties: A review. Nanomaterials 2019, 9, 607. [CrossRef]

47. Rassam, G.; Abdi, Y.; Abdi, A. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture
protection. J. Exp. Nanosci. 2012, 7, 468–476. [CrossRef]

48. Wang, X.; Liu, S.; Chang, H. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced
hydrophobicity and photostability. Wood Fiber Sci. 2014, 46, 109–117.

49. Van Chu, T.; Van Chuong, P.; Tuong, V.M. Wettability of wood pressure-treated with TiO2 gel under
hydrothermal conditions. BioResources 2014, 9, 2396–2404.

50. Clausen, C.A.; Green, F.; Kartal, S.N. Weatherability and leach resistance of wood impregnated with nano-zinc
oxide. Nanoscale Res. Lett. 2010, 5, 1464. [CrossRef] [PubMed]

51. Weichelt, F.; Emmler, R.; Flyunt, R. ZnO-Based UV Nanocomposites for Wood Coatings in Outdoor
Applications. Macromol. Mater. Eng. 2010, 295, 130–136. [CrossRef]

52. Kubel, H.; Pizzi, A. Protection of wood surfaces with metallic oxides. J. Wood Chem. Technol. 1981, 1, 75–92.
[CrossRef]

53. Green, F.; Arango, R.A. Wood Protection by Commercial Silver Formulations against Eastern Subterranean
Termites. Available online: https://www.fs.usda.gov/treesearch/pubs/31143 (accessed on 10 February 2020).

54. Wu, Y.; Yao, C.; Hu, Y. Comparative Performance of Three Magnesium Compounds on Thermal Degradation
Behavior of Red Gum Wood. Materials 2014, 7, 637–652. [CrossRef]

55. Lu, Y.; Feng, M.; Zhan, H. Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique.
Cellulose 2014, 21, 4393–4403. [CrossRef]

56. Matsunaga, H.; Kiguchi, M.; Evans, P. Micro-distribution of metals in wood treated with a nano-copper
wood preservative. In Proceedings of the International Research Group on Wood Protection Annual Meeting
(IRG/WP), Jackson Lake, WY, USA, 20–24 May 2007.

57. Waked, A. Nano materials applications for conservation of cultural heritage. WIT Trans. Built. Environ. 2011,
118, 577–588.

58. Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications.
Chem. Rev. 2007, 107, 2891–2959. [CrossRef]

59. Devrim, B.; Bozkır, A. Chapter 7—Nanocarriers and Their Potential Application as Antimicrobial Drug
Delivery. In Nanostructures for Antimicrobial Therapy; Ficai, A., Grumezescu, A.M., Eds.; Elsevier: Amsterdam,
The Netherlands, 2017.

60. He, Z.; Que, W.; Xie, H. Titanium Dioxide: Structure, Properties and Applications. Available
online: https://www.researchgate.net/publication/287364530_Titanium_dioxide_Structure_properties_and_
applications (accessed on 15 February 2020).

61. Kuznetsova, I.; Blaskov, V.; Stambolova, I. TiO2 pure phase brookite with preferred orientation, synthesized
as a spin-coated film. Mater. Lett. 2005, 59, 3820–3823. [CrossRef]

62. Lee, J.H.; Yang, Y.S. Effect of HCl concentration and reaction time on the change in the crystalline state of TiO2

prepared from aqueous TiCl4 solution by precipitation. J. Eur. Ceram Soc. 2005, 25, 3573–3578. [CrossRef]
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