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The mammalian genome harbors up to one million regulatory elements often located at great distances from their target

genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence

of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters ge-

nome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply

a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically sig-

nificant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target

genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active

histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone

marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes

cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level.

Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key develop-

mental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-

range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.

[Supplemental material is available for this article.]

Mammalian development and cell identity critically depend on
the function of regulatory DNA elements (such as enhancers, si-
lencers, and insulators) to establish spatiotemporal gene expres-
sion programs. Although recent advances in next generation
sequencing have enabled the large-scale identification of regulato-
ry DNA elements in mammalian genomes, which genes they reg-
ulate remains largely unknown. Distant genomic regions can be
brought into close spatial proximity through specific chromosom-
al interactions that play a key role in gene expression control
(Bulger andGroudine 2011). For example, developmental enhanc-
ers can be located at considerable genomic distances from the gene

promoters they regulate, often bypassing several promoters locat-
ed in the intervening DNA sequence to interact with their target
genes (Carvajal et al. 2001; Carter et al. 2002; Spitz et al. 2003;
Sagai et al. 2005; Jeong et al. 2006; Pennacchio et al. 2006; Ruf
et al. 2011; Marinic et al. 2013). These findings challenge the con-
cept of inferring regulatory interactions from genomic proximity,
which underlies the widely used strategy to assign enhancers to
the nearest gene promoter. An alternative strategy is to link pro-
moters with enhancers based on capturing their physical contacts,
because direct interactions between enhancers and promoters are
central to the dominant models for enhancer function (Bulger
and Groudine 2011). In strong support of these models, ex-
perimental tethering between an enhancer and its target gene
can induce gene transcription even in the absence of a key tran-
scriptional activator (Deng et al. 2012). A major task toward
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unraveling gene expression circuitry is to link, on a genome-wide
scale, regulatory sequences to the gene promoters they control.

Preferential chromosomal organization is not confined to
contacts between genes and regulatory elements. Intra- and inter-
chromosomal associations between genes have been detected in
a range of nuclear processes, including gene activation (Osborne
et al. 2004, 2007; Spilianakis et al. 2005; Apostolou and Thanos
2008), gene silencing (Bantignies et al. 2011; Engreitz et al.
2013), and recombination (Skok et al. 2007; Zhang et al. 2012).
Spatial coassociations have also been observed between coregu-
lated genes (Schoenfelder et al. 2010; Apostolou et al. 2013; de
Wit et al. 2013; Denholtz et al. 2013). These findings suggest
that spatial proximity between specific genomic elements, in addi-
tion to shaping 3D genome architecture, may influence genome
function (Fanucchi et al. 2013).

The 3C technique (Dekker et al. 2002) and its derivatives have
revolutionized the study of 3D genome organization by providing
the means to capture spatial proximity between genomic regions.
Variations of 3C have focused on interactions for a small number
of genomic bait regions (4C) (Simonis et al. 2006; Zhao et al. 2006;
van de Werken et al. 2012), interactions within specific genomic
domains (5C) (Dostie et al. 2006; Sanyal et al. 2012), or involving
a particular protein of interest (ChIA-PET) (Fullwood et al. 2009;
Handoko et al. 2011; Zhang et al. 2013). Hi-C, a genome-wide ad-
aptation of 3C (Lieberman-Aiden et al. 2009), has the potential to
capture the ensemble of chromosomal interactions within a cell
population. However, the vast complexity of mammalian 3C or
Hi-C libraries (estimated to contain up to 1011 unique pair-wise in-
teractions) (Belton et al. 2012) impedes their analysis at a resolu-
tion required to identify interactions between specific elements,
such as promoters and enhancers. To overcome this limitation,
we and others have incorporated a sequence capture step to enrich
3C (Hughes et al. 2014) or Hi-C (Dryden et al. 2014) libraries for
chromosomal interactions involving a few hundred specific bait
regions. These studies demonstrate the feasibility of capturing
specific interactions in 3C/Hi-C libraries, but a genome-wide ap-
proach enabling the systematic, unbiased, and high-resolution in-
terrogation of chromosomal interactions for tens of thousands of
genomic elements simultaneously, independent of their activity
or bound proteins, is currently lacking.

Here we combine Hi-C with sequence capture enrichment
(CHi-C for Capture Hi-C) for 22,225 annotated gene promoters
in themouse genome.We apply promoter CHi-C tomouse embry-
onic stem cells (ESCs) and mouse fetal liver cells (FLCs), creating
the first genome-wide map of interaction profiles for all anno-
tated mouse gene promoters in pluripotent and committed/differ-
entiated cells.

Results

Promoter capture Hi-C

To generate chromosomal interaction maps for all annotated pro-
moters in the mouse genome, highly complex Hi-C libraries were
subjected to solution hybrid capture with a custom-designed
collection of 39,021 biotinylated RNA “baits” targeting 22,225
annotated promoter-containing restriction fragments (Fig. 1A;
Supplemental Table 1). We generated two promoter CHi-C biolog-
ical replicates for both ESCs and FLCs and sequenced them to high
depth. In total, we analyzed more than 1.9 billion CHi-C paired-
end sequence reads (ditags), which were reduced to 754 million
uniquely mapped ditags after data filtering (HiCUP Hi-C analysis
pipeline) (see Methods). Promoter bait coverage was highly corre-

lated between the two biological promoter CHi-C replicates
(Spearman correlation r = 0.91 for ESC and r = 0.95 for FLC).
Sequence capture efficiencies, defined as the percentage of ditags
with at least one end mapping to a targeted promoter, were
71.1% for ESC and 65.6% for FLC, in line with previously reported
sequence capture approaches (Gnirke et al. 2009).We removed off-
target and exact sequence duplicate read pairs from our data
(Supplemental Table 2), since control barcoding experiments dem-
onstrated that exact duplicates arise from preferential PCR ampli-
fication rather than independent ligation events (SW Wingett,
S Schoenfelder, M Furlan-Magaril, T Nagano, P Fraser, S Andrews,
in prep.). Compared to our precapture Hi-C libraries, and to previ-
ously published Hi-C libraries (Dixon et al. 2012), promoter CHi-C
resulted in >10-fold enrichment of read-pairs involving promoter
elements (Fig. 1B; Supplemental Fig. 1A,B).

Capturing promoter fragments markedly enriches their inter-
acting fragments, thus reducing the overall library complexity
compared to a corresponding precapture Hi-C library. In order to
obtain an equivalent number of promoter reads, a Hi-C library
would need to be sequenced up to 19-fold greater depth. With
this increased power, promoter CHi-C enables the identification
of statistically significant promoter interactions at the restriction-
fragment level. To this end, we developed an interaction-calling al-
gorithm called GOTHiC (Genome Organisation Through Hi-C)
(B Mifsud, I Martincorena, E Darbo, R Sugar, S Schoenfelder, P
Fraser, NM Luscombe, in prep.). GOTHiC accounts for biases in
Hi-C experiments by considering that these will be represented
by the total coverage of the interacting fragments. Using the frag-
ment coverage, GOTHiC uses a cumulative binomial test to cal-
culate the probability of having two fragments linked by the
observed number of reads. P-values are corrected for multiple test-
ing with the Benjamini-Hochberg procedure (Benjamini and
Hochberg 1995), and significant interactions are called using an
FDR < 0.05. We focused on promoter interactions that were pre-
sent in both replicates and further filtered the significant interac-
tion set by interaction strength (see Methods). Promoter CHi-C
results in two types of paired-end sequence reads: read-pairs in
which one end maps to a promoter fragment and the other
maps to a nonpromoter fragment (promoter–genome contacts)
(Fig. 1C); and read-pairs in which both endsmap to promoter frag-
ments (promoter–promoter contacts) (Fig. 1D). Because these two
classes of ditags potentially represent different types of interac-
tions, we analyzed them separately.

GOTHiC detected 317,271 genomic fragments engaged in
548,551 significant, reproducible interactions with 21,748 pro-
moters in ESCs. In FLCs, we detected 311,475 genomic fragments
involved in 615,186 significant, reproducible long-range interac-
tions with 21,431 promoters (Fig. 1C). In both cell types, >99.9%
of the significant promoter–genome contacts were between pro-
moters and elements located on the same chromosome. The ma-
jority of promoter–genome interactions (59%) were unique to
either ESCs or FLCs, indicating strong tissue-specific promoter
interactomes. GOTHiC also detected 477,682 and 699,749 signifi-
cant promoter–promoter contacts in ESCs and FLCs, respectively
(Fig. 1D). More than 73% of these contacts were unique to either
ESCs or FLCs, demonstrating robust tissue-specific 3D genome
organization of promoters. At the chromosomal level, Hi-C and
CHi-C contact maps provide a similar coarse-grained view of
3D genome topology (Fig. 2A). However, in contrast to Hi-C, pro-
moter CHi-C enables the identification of statistically significant
long-range promoter interactions at the restriction fragment level
(Fig. 2A).
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To validate promoter capture Hi-C, we compared our data sets
to published 3C and 4C data. ESC-specific long-range interactions
involving the Phc1 (Kagey et al. 2010) and Nanog (Levasseur et al.
2008) genes were recapitulated in our data (Supplemental Fig. 1C,
D), as was an interaction between Pou5f1 and a putative enhancer
element (Supplemental Fig. 1E; van de Werken et al. 2012).
Similarly, known erythroid cell-specific enhancer–promoter inter-
actions in the Hbb (Mitchell and Fraser 2008) and Hba (Vernim-
men et al. 2007) gene loci were accurately detected in FLCs
(Supplemental Fig. 1F,G).

The promoter-interacting regions identified by promoter
CHi-C include regulatory elements that are required for appropri-
ate expression of their target genes, such as enhancers controlling
Hba (Supplemental Fig. 1F; Anguita et al. 2002), Hbb (Supplemen-
tal Fig. 1G; Bender et al. 2001, 2012), Sox2 (Zhou et al. 2014; data
not shown), andTal1 transcription (Supplemental Fig. 1H; Ferreira
et al. 2013). These examples indicate that CHi-C uncovers func-
tional chromosomal interactions and illustrate the potential of
promoter CHi-C to link gene promoters to the regulatory elements
controlling their expression.

We further validated a subset of shared and tissue-specific pro-
moter–genomeandpromoter–promoter interactions usingquanti-
tative 3C (3C-qPCR). In all cases tested, we detected higher 3C
interaction frequencies for contacting genomic fragments identi-
fied by promoter CHi-C in the appropriate tissue than for more
proximally located noninteracting regions (Fig. 2B). Finally, to
validate promoter CHi-C by an independent method, we assessed
selected long-range contacts by triple-label 3D DNA FISH (Supple-
mental Fig. 2; Fig. 2C–G). The results show that contacting regions
separated by multiple megabases are more frequently in close spa-
tial proximity than intervening control regions in the appropri-
ate cell types. Collectively, the comparison to published data
and validation by 3C and 3D DNA FISH demonstrate that pro-
moter CHi-C accurately identifies promoter-interacting, long-
range chromosomal elements and multiscale, tissue-specific ge-
nome architecture.

Promoter–genome interactomes

To obtain a generalized view of the genomic range of promoter in-
teractions, we plotted the average promoter interaction frequency
against increasing genomic distance from the promoters (Fig. 3A,
B; Supplemental Fig. 3A,B). These profiles confirm the inverse rela-
tionship between genomic distance and interaction frequency
that has previously been reported in 4C, 5C, and Hi-C data sets
(Gibcus and Dekker 2013). We found that active promoters under-

go significantly fewer short-range and more long-range interac-
tions than inactive promoters (P-value < 2.2 × 10−16; Ansari-test),
suggesting that the activity of a gene promoter is linked to the
range of its chromosomal interactome (Fig. 3A,B; Supplemental
Fig. 3A,B). Increasing gene expression is positively correlated
with the number of promoter interactions in FLCs, but less so in
ESCs (Spearman correlation) (Fig. 3C); whereas the average num-
ber of interactions per promoter is comparable in both cell types
(Supplemental Fig. 3C). Promoter-interacting fragments in both
cell types show a higher sequence conservation compared to all
nonbait fragments (P-value < 2 × 10−16) (Supplemental Fig. 3D).
We found that interactions between promoters and intragenic
sequences are more prevalent than interactions with intergenic re-
gions and that this preference increases with promoter expression
level (Spearman correlation) (Fig. 3D; Supplemental Fig. 3E). This
may reflect the fact that regulatory elements can be located within
genes they control, or indeed within neighboring or distal genes.

Epigenetic modifications at distal interacting sites

To assess the regulatory potential of promoter–genome interact-
ing sites, we integrated our promoter CHi-C data with published
epigenome data sets. In total, we examined data for 10 different
histone modifications, DNase I hypersensitivity, and low and
unmethylated DNA regions (Supplemental Table 3). We found
high levels of enrichment of active histone marks (H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K36me3) at distal
promoter-interacting sites that correlated with promoter expres-
sion level in ESCs and FLCs (Fig. 3E; Supplemental Fig. 3F). Pro-
moters of highly expressed genes interact with regions that are
highly enriched for “active” histone marks, whereas regions inter-
acting with moderately expressed genes show a less pronounced
enrichment. Promoters of weakly expressed and silent genes inter-
act with regions that are depleted for active histonemarks (Fig. 3E).
In contrast, the repressive histone mark H3K27me3 is enriched at
regions interacting with promoters of poorly expressed genes (Fig.
3E; Supplemental Fig. 3F). These results suggest that the promoter-
interacting sites identified show marks of regulatory potential ap-
propriate to the activity level of the genes they contact.

Trans-acting factor occupancy in promoter-interacting regions

We further characterized promoter-interacting regions in ESCs
and FLCs by assessing trans-acting factor occupancy (Supple-
mental Table 3). In total, almost 43% (135,944/317,271) of the
promoter-interacting fragments uncovered by promoter CHi-C

Figure 2. Validation of promoter interactions. (A) Hi-C and promoter CHi-C contact maps after GOTHiC filtering for significant interactions: whole chro-
mosome viewofmouse Chromosome 17 (left), and 1-Mb (middle) and 200-kb subregions (right) encompassing the Pou5f1 gene locus. Individual promoter
bait restriction fragments aremarked by light blue dots in the right panel. Color intensity corresponds to the significance of the interaction, −log10(q-value)
fromGOTHiC. (B) Validation of CHi-C results by 3C-qPCR. Graphs showing the relative crosslinking frequencies of promoter restriction fragments (top) with
another promoter, putative enhancer (Enh) or control, noninteracting fragments (C-), as depicted in the graphs and themaps below. Interactions identified
by promoter CHi-C present in both cell types (Hist1h2ae), preferential in ESCs (Wnt6, Tbx5, Mtnr1a, Bcl6), or preferential in FLCs (Ermap, Slc25a37) are
shown. Control fragments (C-) were identified as noninteracting, or interacting at lower frequencies by CHi-C, compared to the interacting fragments
in the respective cell type. Asterisks denote the position of the primers used in 3C-qPCR. (C–G) Validation of CHi-C results by triple-label 3D DNA FISH.
(C ) Promoter CHi-C contact maps for a ∼2-Mb region on mouse Chromosome 13 in ESCs (top) and FLCs (below), encompassing the Hist1h2ai, Vmn1r,
and Hist1h4h loci as shown. Contact enrichment between Hist1h4h and Vmn1r loci are marked by blue squares on the contact maps, and contact enrich-
ment between Hist1h4h and Hist1h2ai are marked by red squares. (D) and (F) Representative triple-label 3D DNA FISH in ESCs (D) and FLCs (F ), DNA FISH
signals for the Hist1h2ai locus (green), the Vmn1r locus (purple), and the Hist1h4h locus (red). Scale bar, 2 μm. (E) and (G) Interprobe distance measure-
ments of triple-label 3D DNA FISH in ESCs (E) and FLCs (G). Shown are the ranked interprobe distances between Hist1h4h and Hist1h2ai (red line) with the
corresponding interprobe distance between Hist1h4h and Vmn1r (blue dots) per allele. Percentages above the red line indicate the frequency at which the
distance between Vmn1r and Hist1h4h is greater than the distance between Hist1h2ai and Hist1h4h, whereas percentages below the line indicate the fre-
quency at which the distance between Vmn1r and Hist1h4h is less than the distance between Hist1h2ai and Hist1h4h. P-values: χ2 test comparing the dis-
tance distributions between Vmn1r and Hist1h4h to the distance between Hist1h2ai and Hist1h4h.
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in ESCs harbor at least one of the chromatinmarks analyzed, indic-
ative of potential biological function (Supplemental Table 4). In
general, we found high levels of enrichment of various transcrip-
tional regulatory factors occupying regions interacting with mod-
erately to highly expressed gene promoters (Fig. 3F; Supplemental
Fig. 3G). The same trend is seen in ESCs for the Mediator complex
(NIPBL, MED1, MED12), which has been implicated in the es-
tablishment and/or maintenance of chromosomal interactions
(Kagey et al. 2010; Phillips-Cremins et al. 2013). Binding sites for
EP300 and ELL3, two chromatin proteins that mark enhancer se-
quences (Chen et al. 2008; Visel et al. 2009; Lin et al. 2013), are
also enriched in genomic regions interacting with expressed
gene promoters (Fig. 3F). Genomic regions interactingwithnonex-
pressed gene promoters are either not enriched or depleted for
occupancy by these factors. As expected, none of the analyzed
chromatin proteins were enriched in promoter-interacting regions
when randomized ChIP-seq data sets were used (data not shown).

To gain further insight into the features of promoter-inter-
acting regions, we defined a set of chromatin states in ESCs, char-
acterized by distinct combinations of factor occupancy and
histone modifications (Supplemental Fig. 3H), and analyzed their
enrichment in promoter-interacting regions (Fig. 3G). The chro-
matin state results corroborate those obtained with individual
ChIP-seq data sets (Fig. 3E,F), and show that promoters of ex-
pressed genes preferentially interact with chromatin associated
with transcriptional activation (“Enhancer,” “Promoter-like,”
“Elongation”). Conversely, inactive gene promoters preferentially
associate with repressive chromatin (Fig. 3G). Collectively, these
results suggest that the long-range promoter-interacting elements
identified have strong regulatory potential.

Enhancer–promoter contacts

Previous studies have identified transcriptional enhancers in ESCs
and FLCs based on specific combinations of chromatin marks,
such as H3K4me1, H3K27ac, and EP300 binding (Shen et al.
2012). Our results assign more than two-thirds of all such identi-
fied enhancers in the cell types analyzed (67.6% in ESCs; 70.3%
in FLCs) to potential target genes. The remaining predicted en-
hancers may act via mechanisms that do not involve direct pro-
moter contact, interact too transiently with their target genes to
be captured, or interact in response to specific signals. Our data
also show that only about one in five promoter-interacting ele-
ments identified (17.7% for ESCs; 19.7% for FLCs) are predicted
enhancers (Shen et al. 2012), suggesting that other types of ele-
ments may contribute to promoter regulation.

Previous studies have suggested that mammalian genomes
harbor more than one million enhancers, far outnumbering
gene promoters (The ENCODE Project Consortium 2012; Shen
et al. 2012; Calo andWysocka 2013). The extent towhichmultiple
enhancers interact with the same target gene, andwhether specific
enhancers drive expression of the same target gene in different cell
types, is largely unknown. We found that 26.6% of all promoters
analyzed do not interact with any putative enhancer elements in
ESCs (Fig. 3H); and as expected, inactive genes are overrepresented
in this category. A total of 39.5%of promoters interact with several
(2–10) enhancers, whereas 12.1% of promoters interact with mul-
tiple (more than 10) enhancers (Fig. 3H–J). Gene ontology analysis
indicates that gene promoters interacting with more than 10 en-
hancers specifically in ESCs are enriched in developmental path-
ways, whereas genes driven by promoters interacting with more
than 10 enhancers only in FLCs are enriched in metabolic func-

tions (cumulative hypergeometric test with P-values corrected for
multiple testing) (Supplemental Fig. 3I,J). In general, we observed
a positive correlation between gene expression level and the num-
ber of interacting enhancer elements (Spearman correlation; r =
0.975 and P = 0.005 for both ESCs and FLCs), suggesting that addi-
tive effects of enhancers promote increased expression (Fig. 3H;
Supplemental Fig. 3I). Less than half of the enhancers present in
ESCs are also present in FLCs, and only a minority of these com-
mon enhancers are contacted by the same promoters in both cell
types (Fig. 3K; Supplemental Fig. 3K). This finding indicates that
extensive rewiring of enhancer–promoter contacts occurs during
development.

Highly connected enhancers and super-enhancers

We next asked whether enhancers are contacted by multiple pro-
moters. The majority of enhancer-like elements are contacted by
one to five promoters (69.1% in ESCs; 69.6% in FLCs), whereas
a smaller fraction of highly connected enhancers (2% in ESCs;
4.1% in FLCs) are contacted by more than five promoters (Fig.
4A,B). The promoters contacting these highly connected (HC) en-
hancers show ahigh degree of overlap between ESCs and FLCs (Fig.
4C). However, the HC enhancers themselves are largely different
between cell types (Fig. 4D; Supplemental Fig. 4A), suggesting
that highly connected enhancers represent a class of tissue-specific
hub enhancers that coordinate the expression of multiple genes
expressed in both cell types. The expression levels of genes in-
teracting with highly connected enhancers are similar to genes
contacting other enhancer elements (Fig. 4E). These characteristics
distinguish highly connected enhancers from super-enhancers,
which differ from “regular” enhancers in both domain size and oc-
cupancy of chromatin proteins (Whyte et al. 2013). The 231 super-
enhancers identified in murine ESCs are located in the genomic
proximity of, and have been proposed to associate with, 210
key genes controlling cellular identity (Whyte et al. 2013). We
found that 142 of these 210 genes interact with super-enhancers.
In addition, we found 361 other genes that interact with super-en-
hancers, suggesting that super-enhancers control the expression of
considerablymore genes than previously appreciated (Supplemen-
tal Fig. 4B). Gene ontology analysis (cumulative hypergeometric
test, P-values corrected for multiple testing) of this extended
gene set indicates that super-enhancers contact key genes control-
ling cellular identity. Unlike highly connected enhancers, super-
enhancers do not contact more promoters than other enhancer el-
ements in the genome (Supplemental Fig. 4C), but highly ex-
pressed gene promoters are overrepresented among their targets
(Fig. 4E). Interestingly, we found that nearly all genes that contact
super-enhancers in ESCs (98.2%) also associatewith other enhanc-
ers, suggesting that super-enhancers act in the context of larger 3D
regulatory networks.

Promoters frequently interact with distal enhancer elements

Enhancer–promoter interactions have been shown to bridge con-
siderable genomic distances, looping out intervening DNA and of-
ten bypassing other promoters or enhancers that are located closer
on the genomic map (Bulger and Groudine 2011). On a genome-
wide level however, it is not known how frequently “enhancer
skipping” occurs (i.e., how frequently a promoter skips over prox-
imal enhancers for interactions with more distal enhancers). We
found that in ESCs, 66.6% of active promoters interact with the
nearest enhancer (Fig. 4F), whereas the remaining active ESC pro-
moters interact with a more distal enhancer (4.1%) or bypass at
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least one enhancer (29.3%) (Fig. 4F,G). Enhancer skipping is also
found in FLCs, albeit less prevalent than in ESCs (Fig. 4F;
Supplemental Fig. 4D). If we consider individual enhancers and
the location of promoters that contact them, we find that promot-
er skipping, from the viewpoint of enhancers, is also observed in
ESCs and FLCs (Supplemental Fig. 4E). Our results demonstrate
that enhancer–promoter contacts cannot be reliably inferred
from genomic distance, consistent with chromosomal interaction
data from human gene loci (Sanyal et al. 2012). Even in cases in
which a promoter interacts with the nearest enhancer, 89.9%
also interact with at least one more distal enhancer, indicating
that the complexity of enhancer–promoter interactions is underes-
timated in the absence of spatial proximity data.

Long-range interactions and 3D architectural features

Enhancer–promoter units (EPUs) have recently been defined based
on the observation that coregulated enhancers and promoters
form clusters on the linear genomic map (Shen et al. 2012). As ex-
pected, we found that the majority (54% in ESCs; 51.7% in FLCs)
of enhancer–promoter interactions uncovered by CHi-C were
between elements within the same EPUs (Fig. 5A; Supplemental
Fig. 5A). However, we also identified a large number of interactions
in which either the promoter (15.6%), the associating enhancer
(6.2%), or both (9.4%) are located outside defined EPUs in ESCs
(Fig. 5A; Supplemental Fig. 5A). In total, 42.7% of the 22,594 en-
hancer–promoter pairs predicted by EPUs in ESCs (Shen et al.
2012) were confirmed by our data (Fig. 5B). In addition, promoter
CHi-C discovered 74,029 interactions between promoters and en-
hancer elements in ESCs that were not predicted by EPUs (Fig. 5B).

We next asked whether promoter interactions are limited by
structural domains in eukaryotic genomes, suchas topologically as-
sociating domains (TADs) (Dixon et al. 2012; Nora et al. 2012;
Sexton et al. 2012) or lamina-associated domains (LADs) (Guelen
et al. 2008).We found that only aminor fraction of promoter inter-
actions occurwithin LADs (15.5%) or cross LADboundaries (4.1%)
(Supplemental Fig. 5B), consistent with the notion that LADs are
gene-poor (Guelen et al. 2008; Peric-Hupkes et al. 2010). In con-
trast, our results show thatmostpromoter–genome interactionsoc-
cur within TADs, with only a minority bridging TAD boundaries
(6% in ESCs; 9.1% in FLCs) (Supplemental Fig. 5C,D).We observed
a marked directionality of promoter–genome interactions with re-
gard toTADboundaries (Fig. 5C).Notably, activepromotersdisplay
a higher probability for inter-TAD interactions (χ2 test; ESC: X2 =
17131.9, P-value < 2.2 × 10−16; FLC: X2 = 19031.01, P-value <
2.2 × 10−16) (Supplemental Fig. 5C,D), which may reflect the fact
that active genes in general engage in longer-range interactions
compared to inactive genes (Fig. 3A,B; Supplemental Fig. 3A,B).
This observation could also be explained by the fact that active pro-
moters tend to be located close to TAD boundaries (Dixon et al.
2012).Nevertheless,we see clear localminimaof interactions cross-
ing TAD boundaries (Fig. 5D) even when only very long-range
interactions (>500 kb) are considered (Supplemental Fig. 5E), con-
sistent with the concept that TADs represent discrete regulatory
domains.

We next looked for evidence that long-range interactions are
hindered by sites bound by architectural proteins such as CTCF
and cohesin (Phillips-Cremins et al. 2013). We found that the
vast majority of CTCF binding sites genome-wide, including sites
co-occupied by cohesin, are “bridged” by promoter–genome inter-
actions (i.e., CTCF binding sites are located in the intervening
sequence betweenpromoters and the interacting genomic regions)

(Supplemental Fig. 5F), supporting the idea that CTCF and CTCF/
cohesin sites are not general blocks to long-range interactions.
However, comparison to randomized controls suggest that CTCF
and CTCF/cohesin sites are bridged by significantly fewer interac-
tions than other genomic sites, even when CTCF/cohesin sites at
TAD boundaries are removed from the analysis (P-values < 2.2 ×
10−16) (Fig. 5E). This suggests that CTCF and CTCF/cohesin sites
may selectively block long-range promoter interactions. We also
found a significant number of promoter–genome interactions in
which both fragments (the promoter and the interacting region)
are bound by CTCF, cohesin, CTCF/cohesion, or Mediator (Fig.
5F), supporting previous findings implicating these factors in
long-range interactions (Hadjur et al. 2009; Mishiro et al. 2009;
Nativio et al. 2009; Handoko et al. 2011; Phillips-Cremins et al.
2013). The finding that these factors are potentially blocking
some interactions while facilitating others suggests that they
may contribute to the specificity of promoter contacts.

Promoter–promoter 3D interaction networks

We next used our promoter CHi-C data to interrogate contacts be-
tween promoters. Long-range intra- and interchromosomal pro-
moter–promoter contacts may represent an additional layer of
3D genome organization with potential to influence gene expres-
sion (Schoenfelder et al. 2010; Fanucchi et al. 2013). Consistent
with previous results (Lieberman-Aiden et al. 2009), active and in-
active promoters are largely spatially segregated, but surprisingly
we found that promoters across the entire expression spectrum
preferentially contact other promoters within the same expression
category, especially in FLCs (Fig. 6A,B). That highly expressed
genes contact each other more often could be predicted by the
fact that they aremore often at shared transcription sites compared
to medium and poorly expressed genes (Schoenfelder et al. 2010).
However, the same rationale would not predict that medium and
poorly expressed genes would preferentially contact medium and
poorly expressed genes, respectively. This nonrandom contact be-
tween promoters suggests that the transcriptional output of groups
of spatially associating genes may be coordinated.

To characterize these promoter–promoter networks more
thoroughly, we interrogated the connectivity of promoters associ-
ated with more than 1000 GO terms covering all major cellular
functions. To negate potential interaction bias between nearby
promoters, we focused the analysis on long-range (>1 Mb) interac-
tions. We found striking differences between ESCs and FLCs, with
several subnetworks enriched in specific GO categories and con-
taining promoters with higher than expected connectivity (Fig.
6C,D). The strongest subnetworks present in ESCs (fold change
> 6; P-value < 8.9 × 10−17; colocalization analysis) contain genes re-
lated to developmental processes, such as anterior/posterior pat-
tern specification or embryonic development (Fig. 6C). These
subnetworks were not found in FLCs, where instead we found
subnetworks of genes involved in regulation of cell cycle and
DNA replication (Fig. 6D). The majority of genes engaged in pro-
moter–promoter networks in FLCs are expressed at moderate to
high levels (Fig. 6D), whereas the spatially associating develop-
mental gene networks in ESCs contain a higher percentage of low-
ly expressed genes (Fig. 6C). This finding suggests that poised or
primed developmental genes spatially associate in the pluripotent
genome.

We next analyzed whether promoters occupied by specific
transcription factors are engaged in preferential interactions. We
found that promoters bound by key transcriptional regulators in
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trol sites. (F) Proportion of interactions in which the promoter and the interacting fragments are bound by the indicated proteins (CTCF, cohesin [SMC1A],
Mediator [MED12], or CTCF and cohesin) in ESCs (as illustrated by schematic on the right), compared to randomized control sites.

Genome-wide capture of promoter interactions

Genome Research 591
www.genome.org



A

C

02468

SMC3
SMC1A
CTCF
MAFK
ZFX

TFCP2L1
E2F1
STAT3

NANOG
KLF4

EP300
MYCN
SOX2

POU5F1
MYC

Endoplasmic reticulum
Perinuclear region of cytoplasm

Mitochondrion
Multicellular organismal development

Brain development
Nucleus

Nucleolus
DNA repair

Transcription factor binding
Positive regulation of transcription

Regulation of transcription
Cell cycle

Transcription
DNA binding

Chromatin binding
Ribosome

Negative regulation of transcription
Nucleosome

Nervous system development
Embryonic skeletal system development
Anterior/posterior pattern specification

0% 25% 50% 75% 100%

ExpressionEnrichment 
(fold change)

E

ESC promoter interaction networks

B
Enrichment

-0.2
-0.1
0.0
0.1
0.2
0.3

FLC

Expression

E
xp

re
ss

io
n

Not expressed

Not 
ex

pre
ss

ed

CTCF
KLF1 (Progenitor)

KLF1 (Erythroblast)
RNAPII
TAL1

GATA1

Golgi apparatus
Apoptotic process

Nucleic acid binding
Cell proliferation

Nucleotide binding
Mitochondrion

Structural constituent of ribosome
Translation

Mitochondrial matrix
Vesicle−mediated transport

Cell cycle
Transcription from RNA polymerase II promoter

Positive regulation of NF−kappaB cascade
Nucleolus

Nucleosome assembly
Ribosome

Cell division
mRNA processing

Nucleoplasm
Microtubule cytoskeleton

Centrosome
Nucleosome

Nuclear speckle
RNA splicing

Spliceosomal complex
Spindle

Chromatin modification
Ribonucleoprotein complex

DNA repair
rRNA processing

DNA recombination
DNA replication

Regulation of cell cycle

0% 25% 50% 75% 100%

Expression
01234

FLC promoter interaction networks

Enrichment 
(fold change)

Expression -

D

Expression -

Expression

E
xp

re
ss

io
n

-0.5

0.0

0.5

1.0

Enrichment

ESC

Not expressed

Not 
ex

pre
ss

ed

-0.5 0 1 2 4.5

50 500 5000

Endoplasmic reticulum
Perinuclear region of cytoplasm

Mitochondrion

Multicellular organismal development

Brain development

Nucleus

Nucleolus

DNA repair

Transcription factor binding

Positive regulation of transcription

Regulation of 
transcription

Cell cycle

Transcription

DNA binding

Chromatin binding

Ribosome

Negative regulation of transcription

Nucleosome

Nervous system development

Embryonic skeletal 
system development

Anterior/posterior 
pattern specification

log2 enrichment

Number of genes in GO category

Figure 6. Promoter–promoter interaction networks. (A,B) Enrichment of interactions between promoters from different expression categories in ESCs (A)
and FLCs (B). (C) ESC promoter–promoter interaction networks. (Left) Fold enrichment of GO categories (green bars) and promoters bound by trans-acting
factors (dark red bars) in ESC promoter interaction networks. (Right) Distribution of expression categories within the respective ESC promoter interaction
networks. (D) FLC promoter–promoter interaction networks. (Left) Fold enrichment of GO categories (green bars) and promoters bound by trans-acting
factors (dark red bars) in FLC promoter interaction networks. (Right) Distribution of expression categories within the respective FLC promoter interaction
networks. (E) Connectivity between ESCpromoter–promoter subnetworks categorizedbased ongene ontology.Circle sizes represent the numbers of genes
within the respective promoter subnetwork. Colorof circles represents the fold enrichmentof connectivity between themembers,whereas edge colors show
the enrichment of connectivity between the subnetworks.

Schoenfelder et al.

592 Genome Research
www.genome.org



the respective cell type (POU5F1, KLF4, SOX2, and NANOG in
ESCs; GATA1, KLF1, and TAL1 in FLCs) associate at higher than
expected frequencies (Supplemental Table 5). Neither genomic
distance nor expression level (Supplemental Fig. 6A,B; Supplemen-
tal Table 5) can fully account for the level of promoter connectivity
we observe, suggesting that occupancy by specific factors favors as-
sociations between specific groups of genes beyond the preferen-
tial contacts between expression categories we observed (Fig. 6A,
B). In general, promoters occupied by tissue-specific transcription
factors show a stronger enrichment in promoter networks than
promoters bound by the architectural chromatin proteins CTCF
and the cohesin complex (Fig. 6C,D).

Finally, we looked at the degree of contacts between promot-
er–promoter subnetworks. Interestingly, we found that the MYC,
SOX2, POU5F1, and NANOG subnetworks are highly centralized
and strongly connected to each other in ESCs (Supplemental Fig.
6C). Visualizing the networks based on GO categories demon-
strates that key genes involved in gene expression control and
developmental processes are central and highly connected in
ESCs, whereas genes in the “nucleosome” and “endoplasmic retic-
ulum” categories have fewer than expected connections (Fig. 6E).
The results in FLCs show different categories that are central and
highly connected, mainly involved in RNA processing, DNA repli-
cation, and repair (Supplemental Fig. 6D). Collectively, these re-
sults show that genes involved in related functional pathways,
regulated by common transcription factors and of similar tran-
scriptional output are preferentially contacting each other, sug-
gesting that 3D gene organization contributes to coordination of
cell type-specific gene expression programs.

Discussion

Promoter capture Hi-C: genome-wide promoter interactome

profiling

We have applied CHi-C to the ensemble of mouse gene promoters
in pluripotent and differentiated cells, providing the first compre-
hensive catalog linking promoters to their interacting elements
across the genomic landscape. CHi-C represents a significant tech-
nological advance for the analysis of 3D genome organization.
Compared toHi-C, promoter CHi-Coffers amarked increase in res-
olution for targeted regions, enabling the genome-wide linkage
of promoters to their interacting elements with statistical signifi-
cance. Genome-scale chromosomal interaction maps have previ-
ously been generated for selected loci using 4C (Simonis et al.
2006; Zhao et al. 2006). However, even in multiplex 4C experi-
ments (van de Werken et al. 2012; de Wit et al. 2013) the number
of interrogated bait points in the genome is considerably smaller
(by several orders of magnitude) than in promoter CHi-C. 5C gen-
erates high-resolution chromosomal interaction landscape maps
of megabase-size genomic regions (Dostie et al. 2006; Nora et al.
2012; Sanyal et al. 2012; Phillips-Cremins et al. 2013), but is not
capable of capturing interactions involving DNA sequences out-
side the 5C target region(s).

ChIA-PET (Fullwood et al. 2009) combines antibody-mediat-
ed precipitation with ligation to map chromosomal associations.
This depends on the availability and efficiency of suitable affinity
reagents and restricts bait choice to genomic regions occupied by
a protein of interest. CHi-C on the other hand is relatively unbi-
ased, enabling the comparison of chromosomal interaction pro-
files for genomic regions regardless of cell type or differences in
protein occupancy. Two recent reports use ChIA-PET with an anti-

body against RNA polymerase II (RNAPII) to map interactions for
RNAPII-bound genomic regions, including promoter–enhancer
associations (Kieffer-Kwon et al. 2013; Zhang et al. 2013). Both
studies show pronounced changes in promoter–enhancer con-
tacts between different cell types, consistent with our findings.
However, other findings differ markedly. For example, the stron-
gest ESC promoter–promoter interaction networks between key
developmental genes uncovered by CHi-C were not detected
by RNAPII ChIA-PET (Kieffer-Kwon et al. 2013; Zhang et al.
2013). These ESC promoter networks contain a high proportion
of lowly expressed developmental genes, which is likely to reduce
their capture efficiency in RNAPII ChIA-PET. Our data indicate
that these interaction networks between lowly expressed develop-
mental genes represent a major feature of genome architecture in
pluripotent cells. It remains to be determined whether this spatial
genome arrangement facilitates the coordinated transcriptional
repression of developmental genes to maintain ESC pluripotency,
their coordinated expression during cell lineage commitment, or
both.

A recent study reported a multiplex sequence capture ap-
proach to enrich 3C libraries for promoter interactions (Capture-
C) (Hughes et al. 2014). We found that the percentage of sequence
reads representing genuine chromosomal interactions is about
10-fold higher in CHi-C compared to Capture-C, presumably due
to the fact that genuine ligation junctions are not pre-enriched
in Capture-C. Although the number of promoters we targeted in
promoter CHi-C is almost 50 times higher than in Hughes et al.
(2014), (22,225 versus 455 promoters), the number of informative
sequence reads representing chromosomal interactions per cap-
tured promoter is comparable.

Promoter CHi-C serves as proof of principle methodology to
obtain high-resolution chromosomal interaction maps for a large
number of genomic elements. The design of bait probes for CHi-
C can be easily modified for unbiased targeting of other genomic
regions, such as enhancers, insulators, or genome-wide binding
sites of chromatin proteins.

Regulatory 3D enhancer–promoter circuitry

Our data highlight the enormous complexity of 3D promoter–en-
hancer architecture, with promoters often skipping themost prox-
imal enhancer and often interacting with multiple enhancers.
These results expand upon previous studies, which have detailed
intricate regulatory landscapes at several developmentally regulat-
ed genes (Carvajal et al. 2001; Carter et al. 2002; Jeong et al. 2006;
Kleinjan et al. 2006; Sagai et al. 2009; Montavon et al. 2011;
Marinic et al. 2013), where numerous enhancers with overlapping
tissue-specific activities control gene expression. Notably, the ex-
perimental deletion of some enhancers results in severe develop-
mental abnormalities (Sagai et al. 2005; Attanasio et al. 2013),
whereas in other cases, enhancer deletions have no obvious phe-
notypic consequences (Ahituv et al. 2007) or lead to only subtle
changes of target gene expression levels (Bender et al. 2001;
Anguita et al. 2002; Drissen et al. 2010; Ferreira et al. 2013). Inte-
grating 3D promoter–enhancer connectivity data may help to bet-
ter understand these results.

Our data reveal a positive correlation between the expression
level of promoters and the number of interacting enhancers. This
finding adds weight to the concept of additive effects of enhancer
action and suggests possible models to explain how the activity
from multiple enhancers is integrated for gene expression con-
trol. For example, do multiple enhancers interact with their
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target genes simultaneously, creating amore stable complex, or do
they interact sequentially, increasing the probability that the gene
is in contact with one of the enhancers at any moment in time?
Both scenariosmay result in prolonging transcriptional “on” cycle
of genes (Osborne et al. 2004), by increasing the frequency of tran-
scriptional bursts (Suter et al. 2011), or both. Single-cell approach-
es (Nagano et al. 2013) may help to distinguish between these
possibilities.

Contacts between transcribed genes and enhancers have
been shown to occur at specialized subnuclear compartments
called transcription factories (Osborne et al. 2004; Schoenfelder
et al. 2010). It is therefore conceivable that at least some of the de-
tected promoter contacts are the consequence, rather than the
cause, of spatial proximity between active genes and regulatory el-
ements at shared subnuclear compartments.

We found that only a fraction (∼20%) of interactions uncov-
ered by promoter CHi-C are between promoters and annotated
enhancers. Like all 3C-based assays, promoter CHi-C detects func-
tional interactions and structural interactions, and we cannot
exclude the possibility that some of these interactions are non-
functional, functionally redundant, or that they confer robustness
to gene expression programs in a manner similar to the recently
described shadow enhancers (Hong et al. 2008; Frankel et al.
2010). Nonetheless, the high-resolution data generated by pro-
moter capture Hi-C provides a framework to formulate hypotheses
and to guide the future experimental dissection of promoter–
enhancer circuitry in mammalian genomes, for example by
CRISPR-mediated deletion of regulatory regions (Zhou et al. 2014).

Promoter–promoter 3D interactomes

Our promoter CHi-C data uncovers promoter–promoter networks
that are composed of preferential interactions between genes func-
tioning in related biological pathways and bound by the same
transcription factors, suggesting that these may be spatial net-
works of coregulated genes. Several studies have implicated tran-
scription factors in three-dimensional gene clustering. KLF1 has
been shown to mediate preferential associations between KLF1-
regulated genes in FLCs (Schoenfelder et al. 2010), and a similar
role has been reported for KLF4 in ESCs (Wei et al. 2013). Spatial
clustering has also been reported between the Ifnb gene and
NFKB-bound sites upon virus infection (Apostolou and Thanos
2008), between the Nanog locus and genes bound by pluripotency
factors (Apostolou et al. 2013), for pluripotency factor (NANOG,
POU5F1, and SOX2) binding sites in ESCs (de Wit et al. 2013;
Denholtz et al. 2013), Polycomb-regulated genes (Denholtz et al.
2013), and for NFKB-regulated genes in response to TNF−alpha
stimulation (Papantonis et al. 2010). Notably, experimental re-
moval of a gene from a NFKB-dependent multigene complex was
shown to directly affect the transcription of its interacting genes,
suggesting that coassociation of coregulated genes may contribute
to a hierarchy of gene expression control (Fanucchi et al. 2013).
Thus, 3D promoter interaction networks may not only facilitate
the coordinated expression control of network members, but
also allow for regulatory crosstalk between them.

In summary, in addition to linking genes to their long-range
regulatory elements genome-wide, our results on promoter–pro-
moter networks emphasize the potential of genome organization
in controlling gene expression. The clustering of coregulated genes
at nuclear subcompartments, such as transcription factories or
Polycomb bodies, may create nuclear microenvironments that
are enriched in specific factors to coordinate the expression or

repression of specific groups of genes. How this organization is
achieved is a major outstanding question in genome biology.

Methods

Tissue isolation and cell culture

J1 (129S4/SvJae) murine ESCs were expanded on irradiated prima-
ry embryonic fibroblasts under standard pluripotent conditions
(15%FBS) on tissue culture plates coatedwith 0.1%gelatin. Tohar-
vest the cells and remove contaminating feeder cells, ESCs were
trypsinized and passaged twice for 30 min each.

Fetal livers were dissected from C57BL/6 mouse embryos at
day 14.5 (E14.5) of development. Fetal liver cells were filtered
through a cell strainer (70 μm) and directly fixed in formaldehyde.

Promoter capture Hi-C

Hi-C was performed essentially as described in Belton et al. (2012),
with some modifications (see Supplemental Material). To capture
Hi-C ligation products containing promoter sequences, 500 ng
of Hi-C library DNA was lyophilized using a vacuum concentrator
at 45°C and resuspended in 3.4 µL H2O. Hybridization blockers
(Agilent Technologies) were added to the Hi-C DNA, and hybridi-
zation buffer and capture bait RNA were prepared according to
the manufacturer’s instructions (SureSelect Target Enrichment,
Agilent Technologies). In a PCR machine, the Hi-C library DNA/
hybridization blockers were heated for 5 min at 95°C, before low-
ering the temperature to 65°C. Hi-C library DNA was mixed with
hybridization buffer (prewarmed for 5 min to 65°C), and subse-
quently with the custom-designed capture bait system (pre-
warmed for 3 min to 65°C), consisting of 39,021 biotinylated
RNAs targeting the HindIII restriction fragment ends of 22,225
mouse gene promoters (Agilent Technologies, see Supplemental
Material for capture bait design). After 24 h at 65°C in the PCR
machine, biotin pulldown (MyOne Streptavidin T1 Dynabeads;
Life Technologies) and washes were performed following the
SureSelect Target enrichment protocol (Agilent Technologies).
After the final wash, beads were resuspended in 30 µL NEBuffer
2 without prior DNA elution, and a post-capture PCR (four ampli-
fication cycles using Illumina PE PCR 1.0 and PE PCR 2.0 primers)
was performed on DNA bound to the beads via biotinylated RNA.
Capture Hi-C libraries were paired-end sequenced (HiSeq 1000,
Illumina).

DNA FISH

BAC clones (RP23-162O16 [Slc25a37 locus], RP23-51D11 [Dleu2
locus], RP23-369O11 [Dcaf11 locus], RP23-9O8 [Tbx3 locus],
RP23-438D11 [Fzd10 locus], RP23-431D16 [Uncx locus], RP23-
141E23 [Hist1h4h locus], RP24-239K5 [Vmn1r locus], RP23-
73B14 [Hist1h2ai locus]) were purchased from Life Technologies
or BACPAC Resources (Children’s Hospital Oakland). BAC DNA
was purified using the NucleoBond BAC100 kit (Macherey-
Nagel), and labelled with aminoallyl-dUTP by nick translation.
After purification, 0.5–1 µg labeled BAC DNA was coupled with
Alexa Fluor 488, Alexa Fluor 555, or Alexa Fluor 647 reactive
dyes (Life Technologies) according to the manufacturer’s instruc-
tions, and DNA FISH was performed as described (Nagano et al.
2013) with minor modifications (see Supplemental Material).

Interaction calling

Raw sequencing reads were processed using the HiCUP pipeline,
which maps the ditags against the mouse genome (mm9), filters
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experimental artefacts, such as circularized reads and religa-
tions, and removes duplicate reads (http://www.bioinformatics.
babraham.ac.uk/projects/hicup/). Significantly interacting regions
were called using the GOTHiC BioConductor package (http://www.
bioconductor.org/packages/release/bioc/html/GOTHiC.html). This
assumes that biases occurring in Hi-C-type experiments are cap-
tured in the coverage (total number of readsmapping to a genomic
region), and significantly interacting regions can be separated
from background noise using a cumulative binomial test based
on coverage followed by Benjamini-Hochberg multiple testing
(FDR < 0.05) (Benjamini and Hochberg 1995). Promoter–promoter
and promoter–genome interactions were handled separately. For
promoter–promoter interactions, we calculated a modified null
distribution to account for the nonmultiplicative capture bias in
products targeted by two baits. A random ligation sample (see
Supplemental Methods) was used to build a generalized linear
model. The product and the sum of the coverage values of the
two ends were used as input variables, whereas the interaction fre-
quencies of random ligation events were used as dependent vari-
ables. Predicted interaction frequencies for the actual samples
were calculated from themodel using logit regression. Thenwe ap-
plied the GOTHiC binomial test with this modified background
distribution. Significant interactions were further filtered by re-
moving interactions in which one of the fragments has extremely
high coverage. We kept interactions for which there is at least one
valid ditag with one of the two neighboring fragments to control
for spurious interaction spikes. Promoter–genome interactions
were considered if they were present in both biological replicates
; promoter–promoter interactions were pooled to increase the sen-
sitivity for detecting long-range interactions. Finally, we fitted a
normal distribution to the lower peak of the bimodal average log
observed/expected distribution and used a cutoff at the 95th per-
centile (∼10) to remove weak promoter–genome interactions.

Data access

Raw data and the list of interactions have been submitted to the
EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under ac-
cession number E-MTAB-2414.
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