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Abstract: Neurons are permanent cells whose key feature is information transmission via chemical
and electrical signals. Therefore, a finely tuned homeostasis is necessary to maintain function and
preserve neuronal lifelong survival. The cytoskeleton, and in particular microtubules, are far from
being inert actors in the maintenance of this complex cellular equilibrium, and they participate in
the mobilization of molecular cargos and organelles, thus influencing neuronal migration, neuritis
growth and synaptic transmission. Notably, alterations of cytoskeletal dynamics have been linked
to alterations of neuronal excitability. In this review, we discuss the characteristics of the neuronal
cytoskeleton and provide insights into alterations of this component leading to human diseases,
addressing how these might affect excitability/synaptic activity, as well as neuronal functioning. We
also provide an overview of the microscopic approaches to visualize and assess the cytoskeleton,
with a specific focus on mitochondrial trafficking.
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1. Introduction

Neurons are perennial cells entitled to signal transmission, and their morphological
and functional organization is suited to this task. In fact, neurons have developed a very
polarized structure (with different functions for dendrites and axons) and have a key
physiological feature, excitability, which allows them to build networks exploited for signal
transmission [1]. As perennial cells [2], unable to replicate and stuck in the G0 phase of
the cell cycle [3], this polarized structure and the correct neuronal functioning should be
tightly controlled and preserved, with multiple checkpoint mechanisms and a relevant
energy consumption.

2. Neurons and Their Cytoskeleton

Neurons are able to build a very complex and specialized network, where synapses
are pivotal for signal transmission, and it is essential that all the cellular components
(neurotransmitter vesicles, voltage-gated channels, etc.) produced in the soma can reach
dendrites and axons [4]. Since this task is energy-consuming, mitochondria play a crucial
role [5]. Moreover, to maintain neuronal functioning each cellular compartment must be
easily reached, and the different components of the neuronal cytoskeleton are responsible
for this [6–8]. Briefly, there are three main components in the cytoskeleton: microtubules,
microfilaments, and intermediate filaments [6]. Microtubules are composed by the assembly
of dimeric units of α- and β- tubulin that form cylindrical structures of about 25 nm of
diameter. Microfilaments are polymers of the monomeric protein actin, with a diameter
of about 7 nm, while intermediate filaments differ from one cell to another, and they have
a diameter of about 10 nm [7]. These components are responsible for both the structural
integrity of the cell and for dynamic events such as axonal transport.
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Microtubules and microfilaments are very dynamic structures, able to change their
composition and assembly in response to cellular needs, and perturbations in functioning
are at the basis of several human diseases, as exemplified in subsequent Section 5.

Both microtubules and microfilaments are polarized polymers with a plus-end and a
minus-end, and they are essential for the elongation of dendrites and axons [6–8]. Moreover,
microtubules are important to determine neurons’ polarity. During the early stages of
development, neurons have a rounded shape, which is progressively modified allowing
elongation of long axons, and finally the appearance of an arborized dendritic tree [7,8].
Although microtubules support elongation of both axons and dendrites, there is a difference
in their organization. In particular, in the axon, the minus-ends of microtubules are always
oriented toward the cell body, while the plus-ends toward the periphery. On the contrary,
in the dendrites, the microtubule polarity is not so strictly determined [6–8]. The different
microtubule organization contributes to determining the fate of the neurite (being a dendrite
versus an axon) [9,10]. Actin microfilaments concur with this process too [6–8,11]. The
microfilaments network is a very dynamic structure composed by actin polymers, able to
interact with different associated actin binding proteins. They enable the formation of two
different structures: actin-rings and actin patches [8]. Ring-like structures are responsible
for the mechanical support and for the distribution of important membrane proteins, such
as voltage-gated channels [12] and ionic pumps, in order to create an electrochemical
gradient between the two sides of the plasmalemma. On the contrary, actin patches seem
to be important in anchoring vesicles and organelles [13].

Besides neuronal shape and polarity, microtubules are also in charge of transporting
molecules and organelles from the cell body to the periphery (anterograde transport), and
vice versa (retrograde transport) [14–16]. Anterograde transport depends on kinesins,
motor proteins that move toward the plus-end of microtubules and it is crucial to the
distribution of proteins customized at the level of the soma (such as neurotransmitters and
other synaptic components) towards the periphery; it can be distinguished into fast and
slow types [14]. Dynein is the motor protein responsible for retrograde transport, which is
exclusively a fast transport which allows the neuron body to receive stimuli coming from
its terminal endings [14]. The retrograde transport is also involved in neuronal survival,
allowing a feedback signal to the neuron body via neurotrophic factors [14,15]. Table 1
gives an overview of the cytoskeleton’s role in protein trafficking.

Table 1. The role of the cytoskeleton in protein trafficking and anchoring.

Class of Transport Protein Transport Substrates

Myosin
They move specifically along actin filaments.
They are involved
in contractile forces and short-range transport [17].

Myosin Va is involved in localization of proteins to the
somatodendritic compartment and in regulating transport
of mRNAs, dense core vesicles, mitochondria and
neurofilaments. It is involved in the localization of axonal
proteins and modulates mitochondrial movements. More
study is needed to fully elucidate these roles and determine
their functional significance [18].

Dyneins

They move along the microtubule cytoskeleton
to facilitate
long-range transport [17].
Retrograde transport [19].

It requires the dynein activator, dynactin, that binds
directly to dynein and also binds directly to microtubules
via Cytoskeletal Associated Protein-Glycine-rich
domain [20,21].

Kinesin

They move along the microtubule cytoskeleton to
facilitate
long-range transport [17].
Anterograde transport [19].

Kinesin-1 family drive the transport of a wide range of
cargos, including vesicles, organelles, proteins, and RNA
particles.
Kinesin-2 family drive fodrin-positive plasma membrane
precursors, N-cadherin and β-catenin, choline
acetyltransferase, and Rab7-positive late
endosome-lysosome compartments.
Kinesin-3 family drive the motility of synaptic vesicle
precursors and dense core vesicles [20,21].
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The cytoskeleton is essential for the proper functioning of mitochondria [4,5], that
are crucial elements for neurons, which are high energy-demanding cells. Mitochondria
are pivotal for cell bioenergetics, and in fully differentiated neurons they are entitled to
efficiently produce ATP via OXPHOS, thanks to ETP and ATP synthase [22]. However,
mitochondria are also involved in other fundamental neuronal processes, such as calcium
signaling, trafficking and apoptosis, exploiting their communication with endoplasmic
reticulum and lysosomes [23]. To fulfil their role, mitochondria are entitled to a lively
and dynamic trafficking, which makes their interaction with the cytoskeleton fundamen-
tal. In particular, axons and the presynaptic area have relevant energetic demands and
require a balanced regulation of calcium ions, provided by mitochondrial trafficking and
functioning [24]. To allow mitochondria to move back and forward, or even stop in a
precise area [5,25], the role of microtubule motors is essential, and they are scaffolded on
mitochondria via the interaction between Miro proteins and the motor-biding proteins
TRAK and metaxins (MTX) [24,26]. Miro proteins are calcium-sensitive GTPase which are
located in the outer membrane of mitochondria and are in charge of both long-distance
mitochondrial transportation and mitochondrial anchoring in sites where high local en-
ergy levels are required [27] TRAK1 and TRAK2 are dynein-activating adaptors [26,28,29]
which are also able to bind kinesin [26,30] and it was shown in vitro that they are able to
activate kinesin and dynein motility [26,29,31,32]. MTX are proteins located in the outer
mitochondrial membrane that were first described as being involved in protein importing
in mitochondria [33,34]; however, it was later demonstrated that they are also a core com-
ponent of mitochondrial adaptor complexes [35]. In line with this observation, TRAK1/2 or
MTX1/2 knockdown in human neurons alters both anterograde and retrograde mitochon-
drial motility [35]. If transportation is important, the same is also true for mitochondrial
docking, particularly in the presynaptic sites [5,25]. Local anchoring is obtained via as-
sociations with the microtubule or actin cytoskeleton [36,37]. At the presynaptic level,
syntaphilin can stop mitochondrial transportation, acting as a microtubule-binding pro-
tein, either associating with mitochondrial outer membrane and/or sterically inhibiting
kinesin interaction with microtubules [36,37]. Moreover, local energy demands can promote
mitochondrial halting: if there is a local increase in glucose concentrations, TRAK 1/2
O-GlcNAlation takes place resulting in TRAK1 interaction with the acting-binding protein
FHL2 [38]. Another possible mechanism is related to the effects of calcium on Miro; calcium
binding reduces transport, even if the exact sequence of actions that lead to this effect is still
a matter of debate [39]. These strategies to mobilize/dock mitochondria are not a specific
feature of mitochondria, but it is part of the general mechanism neurons undertake to
mobilize vesicles [40] and organelles; similar mechanisms were in fact described for other
subcellular components as observed in old studies on the giant squid axon [41–43].

3. Cytoskeleton, Neuronal Excitability and Ion Channels

As anticipated, one of the key neuronal features is the ability to transmit a signal.
Briefly, a stimulus, able to evoke an action potential (AP) determines a membrane voltage
gradient able to propagate through the axon thanks to stereotyped phenomena occurring
with a perfectly timed and ordered activation of voltage-gated ion-channels (i.e., sodium
and potassium ones), at the cost of energy granted by the transmembrane ATPase Na+/K+
pump [44]. The membrane gradient potential made up by the Na+/K+ pump is the essen-
tial precondition for signal transmission, together with the constant availability of ATP
molecules, as an ATPase pump. Since neurons cannot stock glucose (differently, for instance,
from muscle cells which can store it as glycogen), they are strongly dependent on the blood
flow to obtain ATP. Moreover, to maximize the ATP production from glucose, neurons must
exploit oxidative phosphorylation, meaning that they also need both O2, again through the
blood flow, and a high number of mitochondria to achieve an adequate level of energy pro-
duction [44]. Therefore, for signal transmission, the aforementioned role of the cytoskeleton
in supervising mitochondrial functioning and axonal transport is crucial. However, the
cytoskeleton plays an even more dynamic role in neuronal transmission given some no-
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table interactions with ion channels and receptors involved in AP generation/propagation
and synaptic transmission. In particular, actin is a pivotal element not only for structural
stability but also for the regulation of ion channels, transporters, and receptors modulat-
ing their expression on cellular surface and/or intracellular trafficking [45]. Notably, the
relationship works also on the reverse: several ion channels have been demonstrated to
influence cortical actin networks (e.g., voltage-gated potassium channels) [45]. An overview
of the basic element and mechanisms related to neuronal excitability is presented here,
laying the ground for the exploration in future research related to human diseases, as better
exemplified in Section 5. Ion channel trafficking and clustering is crucial in the generation
of AP, in particular at the axonal initial segment (i.e., a 10–60 um unmyelinated located
at the proximal axon/soma interface) and at the node of Ranvier, as well as the synaptic
membrane. In fact, the axon hillock is not involved in AP initiation and, therefore, the
spatial localization at the level of the axonal initial segment and at the node, guaranteed by
the mechanical and transport functions of the cytoskeleton network, plays a pivotal role in
the generation of the AP. Ankyrins and actin-spectrin cytoskeleton are in charge of this task,
with a contribution from the adaptor proteins (e.g., ankyrin G, syntrophin) and adhesion
molecules [46,47]. As sodium and potassium voltage-operated ion channels (Na-VOC and
K-VOC, respectively) are pivotal in AP generation [48], a more detailed insights on their
relationship with the cytoskeleton is necessary. Na-VOC channel clustering, in sites of AP
initiation, is established by specific membrane cytoskeleton actin-spectrin modules [49–51];
the former is linked to an adaptor, the ankyrin-G, that connects the actin-spectrin modules
to Na-VOC channels, neurofascin 186 (a L1 family cell adhesion molecule), and K-VOC
subunits, KCNQ2 and KCNQ3 [52–54]. The presence of KCNQ2 and KCNQ3, guaranteed
by the cytoskeleton, is fundamental to modulate excitability at the axonal initial segment
and at the node of Ranvier [55–57]. The relevance of Na-VOC and K-VOC localization
and, therefore, their correct functioning in these sites, is supported by the observation
that mutations leading to altered Na-VOC and K-VOC channels at axonal initial segment
disrupt neuronal excitability; a fair example of this dysfunction is given by recurrent epilep-
tic seizures in case their anatomical configuration is altered [58,59]. Data emerged from
in vitro and in vivo studies elucidated the molecular mechanisms by which ankyrin-G
clusters mammalian K-VOC and Na-VOC, the latter being characterized by cytoplasmic
anchor motifs which are crucial for their localization at the axonal initial segment [53,60,61].
Ankyrin-G is characterized by a membrane interaction domain (24 solenoidal ankyrin
repeats are described) and it was suggested via mutagenesis experiments that ankyrin-G
repeats 13–15 are responsible for the interaction with the Na-VOC anchor [60–62]. A similar
interaction was suggested for K-VOC3 anchor sequences [50,54,58]. Most notably, in the
peripheral nervous system, clustering at nodal level has been strongly linked to gliomedin
secreted by Schwann cells, and the axonal cell adhesion molecule neurofascin-186 [63,64].
Only after this initial event, cytoskeletal and scaffolding proteins ankyrin, as well as βIV
spectrin, are recruited to nodes to allow channels binding necessary for AP [60]. The axonal
initial segment molecular composition is fairly similar to the node and these similarities
suggested that their formation might be the same [65], with the difference that in this case
the extracellular matrix is thought to contribute, thanks to a specialized brevican-containing
matrix. Alternatively, ankyrin-G was once again suggested as crucial [53,60,61], and its role
is further supported by experimental evidence since ankyrin-G lacking mice showed a de-
ranged axonal initial segment ion channel clustering in Purkinje cells [53,66]. Nevertheless,
other components seem to be implicated since βIV spectrin loss was also linked to altered
axonal initial segment clustering [67].

Apart from Na-VOC and K-VOC, other channels/transporters have a lively relation-
ship with the cytoskeleton. N-methyl-D-aspartate receptors’ (NMDARs) interaction with
actin is pivotal in synaptic plasticity, which is a pre-requisite, for example, for learning
and memory [68]. Another example is given by voltage-gated calcium channels: actin
cytoskeleton participates in the crosstalk of L-type of these channels and mitochondria,
obtaining a regulation of noradrenergic activity in the locus coeruleus, a fundamental
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relationship for integrative brain functions [69]. Transient receptor potential (TRP) cation
channels, which are involved in Ca2+ signaling, also have a peculiar relationship with the
cytoskeleton which might act as a modulator of TRP, but are modulated by TRP via a down-
stream effect of TRP function [70]. Therefore, the cytoskeleton, and actin in particular, may
represent a underrecognized mechanism of modulation and activation of voltage-gated
and non-voltage-gated ion channels in neurons [45].

4. Microscopic Approaches to Visualize and Assess Cytoskeleton Function

Th cytoskeleton can be assessed microscopically with many different approaches
developed over the years. An overview is given here to present the possible techniques
that could be relevant when designing a research plan aiming at ascertaining the role of
a specific cytoskeleton component and/or cytoskeleton functioning. Light microscopy
was the key technique in earlier studies of cytoskeleton components. The first studies
date back to the 17th century and they generically defined cytoskeleton proteins as a
network of neurofibrils [71]. However, it was not until the 1940s, when immunolabeling
with fluorescent antibodies for light microscopy was introduced [72], that more refined
observations were possible. These were first used to study neuronal cultures and only later
specifically to characterize neuronal cytoskeleton. Antibodies against tubulin and actin
(or fluorescent phalloidin) were introduced to label microtubules and actin filaments in
the processes of neuroblastoma [73]. To highlight the relevance of this advancement, it
should be noted that the restriction of the microtubule-associated protein MAP2 to the
somatodendritic compartment was first demonstrated via tubulin immunolabeling [74].
However, it was only at the end of the 1990s that fixation and staining protocols had reached
the final refinement setting and fluorescent phalloidin, anti-tubulin, and MAP2 antibodies
were used as standard labelling methods [75].

However, light microscopy did not allow an in-depth analysis of the cytoskeleton
due to the intrinsic physical limitation related to the diffraction limit (200 nm). A funda-
mental turning point in the description and comprehension of cytoskeleton structures was
represented by the availability of transmission electron microscopy (TEM) [76]. Since it
uses electrons, rather than light, TEM can overcome the diffraction limit, thus allowing the
actual description of neurofilaments and microtubules. TEM also permitted the descrip-
tion of actin filaments and the axon initial sequence [77]. Unfortunately, even if TEM has
contributed, and still contributes, to the investigation of the neuronal cytoskeleton, it has
some well-known limitations. These are primarily represented by the technical challenges
posed by the fixation process, which can damage these subcellular components [78–80].
Furthermore, proteins associated with the cytoskeleton are not that easily detectable using
TEM. Over the years, technical advancements had allowed the amelioration of morpho-
logical studies in this field; in particular, cryogenic electron microscopy represented a
relevant improvement in preserving samples, since through a rapid freezing process the
natural state of the molecules is better preserved [81,82]. Moreover, immune-electron
microscopy allowed better characterization of single components of the cytoskeleton, even
if the specimen preparation requires a careful and well-conducted procedure.

Subsequently, the development of fluorescent microscopy, and in particular of confocal
microscopy, increased our ability to resolve the cytoskeleton, since cytoskeleton-binding
fluorescent antibodies allow the examination of the cytoskeleton structure, motility, or-
ganelles organization and trafficking along the microtubules. However, this technique
also has some pitfalls that should be acknowledged when selecting a specific experimental
design on the basis of the scientific hypothesis to be tested. When fixation is performed,
potential artifacts should also be weighed in this case. Moreover, the cytoskeleton is very
packed, making difficult to discriminate between single structure, also considering, again,
the diffraction limit of this kind of microscopy.

Since the neuronal cytoskeleton is a dynamic, and not a static complex, an intriguing
advancement in its study was represented by live imaging. Fluorescein phalloidin, a
high-affinity F-actin probe conjugated to the green fluorescent dye, is the gold standard for
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the evaluation of actin filaments in live cells [83], while, for the evaluation of microtubule
dynamics, the end-binding protein (EB1 and EB3) involved in the growth of microtubules’
plus-end, tagged with a green fluorescent protein [84], can be used. Even in these cases,
however, there are difficulties to overcome. The probe could be toxic, or it could be
bundling, somehow altering the polymerization/depolymerization dynamics of the various
structures of the cytoskeleton or modifying the binding site of proteins associated with the
cytoskeleton [85–88].

Over the last decade, many techniques at the forefront super-resolution allowed us to
further deepen our understanding of the cytoskeleton and the dynamics between its com-
ponents and the associated proteins. All the super-resolution techniques share the capacity
to break the light diffraction barrier, reaching, in some cases, resolution limits down to a few
tens of nanometers [89]. They can generally be divided into two major groups: (i) patterned
light illumination techniques with stimulated emission depletion (STED) and structured
illumination microscopy (SIM), and (ii) localization-based techniques with stochastic op-
tical reconstruction microscopy (STORM) and photoactivation localization microscopy
(PALM). Each of these techniques has allowed the characterization of important aspects of
cytoskeletal organization: SIM has been used to detect dynamic changes in cytoskeleton
architecture) [90], while STORM, using a phalloidin probe, permits the reconsideration
of actin organization in axons, where a ring-like structure wraps them every 180–190 nm,
but not in the dendrites [12]. The same organization can be detected with STED in living
neurons [91]. STORM was also used to underline the dynamics of neurofilaments in the
axons, showing that neurofilaments, even if they have been considered stable structures,
also undergo continuous turnover based on actin-dependent retrograde flow and antero-
grade and retrograde microtubule-dependent transports [92,93]. With PALM technique,
it has been possible to visualize microtubule organization and to ascertain their role in
organelle movement in living cells [89]. These techniques, together with the development
of specific (and also transgenic) probes for the cytoskeleton, will allow us to investigate
the cytoskeleton with unprecedented spatial and temporal resolution, thus pushing the
limit forward to the nanoscale. Table 2 summarizes the main super-resolution microscopy
techniques characteristics, with their advantages and disadvantages.

Table 2. Super Resolution techniques overview.

Super Resolution Techniques Resolution Further Insights into Advantages Disadvantages References

SIM 1 100–250 nm Dynamic changes in
cytoskeleton architecture.

Conventional
fluorophores
Multiple fluorophores

Reduced resolution.
Longer processing time. [90,94,95]

STED 2 50–80 nm

Cell matrix interactions.
Periodic ring structure of actin
in neurons.
Actin dynamics in dendritic spine
in living neurons.
Intermediate filaments network.
Microtubule in primary cilia.

Generic dye
Speed of acquisition
No need for
complex analysis

Photobleaching.
High-energy laser, often
not compatible with
living cells.

[90,94,96]

STORM 3 20–50 nm

Actin organization in
cytoskeleton.
Cell junctions (integrin
keratin, plectin).
Microtubule organization.

Very high
resolutionSingle
fluorophore, specific

Low temporal resolution.
Low acquisition speed.
Phototoxicity.
Complex post-acquisition.
Need of special
fluorophores.

[90,94,96,97]

PALM 4 20–50 nm

Mitochondrial proteins.
Microtubule organization and
role in organelle movement in
living cells.
Interaction with kinesin motor
proteins in neurons.

Very high
resolutionSingle
fluorophore, specific

Low temporal resolution.
Low acquisition speed.
Phototoxicity.
Complex post-acquisition.
Need of special
fluorophores.

[90,94,97]

1 Structured Illumination Microscopy. 2 Stimulated Emission Depletion. 3 Stochastic Optical Reconstruction
Microscopy. 4 Photoactivation Localization Microscopy.

Among the super resolution techniques, STED might greatly benefit from the use
of transgenic approaches. STED nanoscopy enabled a super resolution fluorescence mi-



Cells 2022, 11, 2499 7 of 18

croscopy in living brain slices [98,99] and in the brains of anesthetized live mice [100–103],
using the overexpression of fluorescent proteins to mark the actin network. However,
this procedure increases the risk of tissue photodamage. To overcome this possible bias,
transgenic animals can be used, as demonstrated by Masch et al. [104], and the molecular
specificity of a genetically encoded self-labeling enzyme tag can be exploited after fusion
with the protein of interest, combining it with the superior photophysical performance of
organic fluorophores.

Concerning the cytoskeleton function, there is increasing interest regarding its involve-
ment in organelle transport, in particular mitochondria. Light microscopy with the use of
fluorescent probes can evidence how mitochondria move along axons [105–107]. The fluo-
rescent probes are inserted in the cells under investigation by transfection or MitoTracker
dye, an easy and ready-to-use probe that accumulates in mitochondria through membrane
potential. When analyzing mitochondrial movement along the axon, the percentage of
stationary and in-motion mitochondria must be taken into account, since typically 60% are
stationary [108,109]. In-motion mitochondria are nearly equally divided between those
that move anterogradely or retrogradely. However, in the visualization of mitochondrial
trafficking, a high-throughput, dynamic and long-term analysis of the cellular events can
be achieved via holotomographic microscopy, which enables non-invasive visualization
and quanti-fication of living cells without compromising cell integrity. Holotomographic
microscopy is a novel approach that combines holography and tomography technologies,
enabling the study of cells and thin tissue slices via three-dimensional images [110]. These
images are obtained by exploiting the specific refraction index (RI) of each structure/cell,
an intrinsic optical parameter that is pivotal for this technique. The holographic technique
exploits two major light parameters (i.e., amplitude and phase) and captures light infor-
mation scattered from each sample at once; therefore, an optical phase delay takes place
when light passes through the object under study, which is highly related to the specimen
thickness and to the distribution of its RI values. The holography technique measures
this phase delay, giving an indirect clue as to the object’s inner composition [111]. The
next step is the optical diffraction tomography that reconstructs the 3D distribution of RI
values; this returns the structural and chemical characterization of the specimen. As a
consequence, a quantitative and label-free analysis of volume and subcellular components
on live unstained cells and tissue slices is possible [112,113], and dry mass, morphology,
and dynamics of the cellular membrane, as well as protein content, can be evaluated
too [114]. Holotomographic microscopy can be particularly suitable for mitochondrial
trafficking studies, allowing a label-free alternative, ensuring the capture of the behavior
of mitochondria at high frequencies and for unlimited periods of time. Of course, it is
not a direct visualization of the cytoskeleton, but it is a simple and indirect measure of its
functioning via one of its essential tasks, i.e., mitochondrial motility. On the other hand,
the absence of specific probes could make it harder to clearly identify subcellular structures
(unless they are easily recognizable, such as lipid droplets). In Figure 1, we present selected
time frames of Supplementary Video S1 that we obtained as representative images of a
physiological mitochondrial motility study obtained with this approach. Mitochondria
(shown in bright white and indicated by white arrows in the image) were recognized via
their RI and followed (e.g., tracked) over time and space in our sample.
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Figure 1. Mitochondrial trafficking with holotomographic microscopy. Each panel (panel (A–C))
enables us to follow different mitochondria at different time frames (time frame is stated in the
upper left corner of each image). White arrows point out single mitochondria in each frame (images
obtained with Nanolive holotomographic microscope).

5. Examples of Human Pathology Related to Cytoskeleton Dysfunction

Given the high relevance of the cytoskeleton for neuronal physiology and survival, it is
far from surprising that its perturbations can cause human diseases. Here, we will present
some significant examples highlighting the role of cytoskeleton alterations in epilepsy,
cognitive dysfunction and intellectual disability, and peripheral neuropathies (PNs).

5.1. Epilepsy

Epilepsy is the first condition that can be easily associated with a disruption of one
of the fundamental properties of neurons, i.e., excitability and the fine tuning that should
be maintained over it. Epilepsy is defined as a propensity to develop seizures, which
are abnormal, hypersynchronous discharges of cortical neurons [115]. Worldwide, it is
estimated that 50 million people are affected by this condition, affecting both children
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and adults [116]. Ion channels are certainly the simplest targets to think of as the primum
movens of epilepsy, given their role in AP generation, and, in fact, many antiepileptic
drugs (AEDs) are ion channel modulators [117,118]. However, the neuronal cytoskeleton
should also be considered, and microtubules are key players in the bioelectric properties
of neurons since they can resemble wires, able to transmit and amplify electric signals
via the flow of ions [119], and, therefore, they might be a novel druggable target and a
specific molecular component to be investigated in pathogenetic studies. Epilepsy can arise
as a consequence of altered neuronal development (for example related to microtubules’
dysfunction) or altered axonal transport, and cytoskeleton modulation might be, in the
next years, a possible strategy to modulate altered neuronal excitability.

Despite the fact that the effects of microtubule dynamics on neural excitability and
synaptic transmission have been suggested in the past [120,121], only more recently have
microtubule dynamics been more closely linked to the generation of chronic epilepsy [122].
Altered neuronal excitability can be due to microtubule impairment during the develop-
ment of synapses, in which finely regulated mechanisms such as phosphorylation, acetyla-
tion, tyrosination, and glutathionylation are necessary [123]. When alterations take place in
this process, the result is a perturbed neuronal network, leading to cognitive deficits and
neurodevelopmental disorders such as microencephaly, lissencephaly, polymicrogyria, and
infantile epileptic syndromes [123,124]. Therefore, microtubule functioning is a possible
pathway to be investigated in models of hereditary epilepsy. On a similar ground, another
condition can also be enlisted, even if not strictly for its direct link between hyperexcitability
and the cytoskeleton: the juvenile myoclonic epilepsy. This disorder is related to mutations
of the EFHC1 protein, which is crucial in cell division, accumulating at the centrosome dur-
ing interphase. A colocalization of EFHC1 with alpha-tubulin at the mitotic spindle occurs,
suggesting a possible interaction with microtubules during brain development leading
to neurological disturbances typical of this syndrome. Moreover, in neurons, EFHC1 is
localized at soma and dendrites and its overexpression in mouse hippocampal primary
culture neurons induces apoptosis [125]; this pro-apoptotic effects of EFHC1 is linked to an
enhanced Ca2+ influx through R-type voltage dependent Ca2+ channel (Cav2.3).

Considering axonal transport, there is a specific family of proteins that can predispose
to epilepsy: kinesins. They undergo modifications during neurodevelopment leading
to hyperexcitability in the case of loss of neuronal kinesin heavy chain KIF5A. Xia et al.
described effects on excitability in Cre-recombinase transgene mice with direct inactivation
of KIF5A in neurons postnatally (KIF5A mutants die immediately after birth): 75% of
mutant mice exhibited seizures and died at 3 weeks of age [126]. Nakajima et al. were
able to link KIF5A alterations to seizures onset, in fact, due to impaired GABA receptor-
mediated synaptic transmission, causing loss of the inhibitory regulation KIF5A has on
neural transmission [127].

Notably, post-natal changes in the cytoskeleton might also play a pivotal role in
epilepsy. As an example, brain-derived neurotrophic factor (BDNF, a neurotrophin able to
actively modulated the mature nervous system [128]) alterations were related to seizure
onset due to possible effects on microtubules. BDNF is suggested to be released into mature
synapses during theta activity with local effects on actin cytoskeleton, similar to those
that take place during neuronal development [129]. However, the exact role of BDNF in
epilepsy is not fully understood. There is conflicting evidence on the role of BDNF, since
it was described as enhancing neuronal survival and growth factor in epileptic rats [130],
but it has also been implicated in the pathogenesis of hippocampal hyperexcitability and
epilepsy when over-expressed [121].

The crucial role of microtubules in epilepsy is further evidenced in experimental
studies showing the positive effect of microtubule-modulating agents on seizures. Xu
and collaborators [122] studied microtubule dynamic in 30 human epileptic tissues and in
two different chronic epilepsy rat models. In human specimens Tyr-tubulin presented an
elevated expression in the neocortex and microtubule dynamics was dysregulated. The
same alterations were found in the rat model where it was also demonstrated that the
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administration of a microtubule modulating agent (noscapine, which reduces the dynamics
of microtubules by increasing the stopping time of microtubules [131]) attenuated the
progression of chronic epilepsy and, by contrast, the microtubule-depolymerizing agent
colchicine aggravated the progression of chronic epilepsy. Wu and colleagues [132], in a rat
model of recurrent epilepsy, observed both α- and β-tubulin downregulation, as well as
hippocampal neuron loss, in animals with recurrent seizures, thus reinforcing the role of
microtubule system in epilepsy. The presented examples, therefore, support, once again, the
idea that for a proper neuronal functioning (e.g., excitability) physiological microtubules
are a crucial and not optional.

5.2. Intellectutal Disability (ID)

Another nosographic entity where cytoskeleton alterations may play a crucial and still
underexplored role is ID, which is defined as a pathological condition characterized by
limited intellectual functioning and adaptive behaviors, affecting 1–3% of the world’s pop-
ulation, lacking of an efficacious pharmacological treatment [133]. Further investigations
on the role of the cytoskeleton in this regard may shed light not only on the mechanisms
leading to this condition, but also define potential precision medicine strategies (e.g., tar-
geted therapies). Similar to epilepsy, a crucial step in ID is neurodevelopment, and the
cytoskeleton (particularly the actin component) can, of course, be one of the key players.
Cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction, has been
linked to ID. In particular, cytoskeleton alterations during neuronal development leading
to altered neuronal migration, neuritogenesis, and synaptic plasticity were demonstrated
in Down syndrome (DS), Rett syndrome, Fragile X syndrome (FXS), and autism spec-
trum disorder (ASD). In DS patients, the regulators of actin filament polymerization and
branching, CDC42 and WASP, have been implicated as relevant, conditioning alterations
in protein–protein interaction, leading to ID [134]. Actin polymerization was reduced,
with the possible result of altered dendritic spine morphology and density [135]. In line
with this observation, the triplication of the DYRK1A gene encoding proline-directed
serine/threonine kinase, located in the critical region of Down syndrome (DS), causes
cytoskeleton alteration (primarily involving actin) which was linked to ID [136]. Simi-
larly, actin regulation was demonstrated as being altered in FXS, with an impairment in
cytoskeleton constitution [137]. In Rett syndrome, transcriptomic analysis was carried out
on preclinical models evidencing dysregulation in cytoskeleton dynamics, actin polymer-
ization, and focal adhesion [138]. Finally, in ASD, a dysfunction of Rho GTPases signaling
was described as relevant in its pathogenesis, and nearly 20 genes encoding Rho GTPases
regulators and effectors have been reported as ASD risk factors [139]. On a similar ground,
actin regulation in stem cells from ASD patients demonstrated altered dynamics of filament
reconstruction upon activation of the Rho GTPases RAC1, CDC42, or RHOA, resulting in
shorter and less arborized neurites [140]. Therefore, further studies aiming at exploring
actin/cytoskeleton modulation in ID field might be suggested.

5.3. Peripheral Neuropathies (PN)

PN is a large category under which different diseases affecting the peripheral nervous
system are grouped together, encompassing both hereditary and acquired conditions. On
the basis of the affected components, patients can develop dysfunction related to sensory
(i.e., sensory perception alterations and/or neuropathic pain), motor (i.e., weakness and
wasting) and/or autonomic dysfunctions. In hereditary PNs, alterations in cytoskeletal
components are a relevant occurrence, related to malfunctioning of cytoskeletal proteins
themselves. Charcot–Marie–Tooth (CMT) disease is the most common inherited PN. Ge-
netic and phenotypical heterogeneity is high, but CMT can be mainly divided into more
common sub-forms based on the clinical and instrumental findings: demyelinating type
(CMT1), axonal type (CMT2), and intermediate types (CMTI) [141]. We list here some
examples of CMT in which the cytoskeleton is involved in disease onset. Tubulinopathies
(i.e., mutations in beta-tubulin) are related to mutations of TUBB3 genes, leading to a
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reduction in kinesin localization to microtubule plus-ends, altering axonal transport, and
microtubule overstabilization and increased depolymerization [142]. The formin family
can also be enlisted (they are proteins involved in direct the elongation of unbranched actin
filaments) [143]: when INF2 gene is mutated, a dominant-CMTI type E-form can arise [144].
Mutations in the NEFL gene can lead to several different axonal CMT subtypes (CMT2).
Both dominant conditions causing aggregation and recessive mutations resulting in loss-of-
function were described [145–147], and the affected domains can vary resulting in different
pathological effects. Small heat shock proteins (sHSP), HSPB1 in particular, are associated
with cytoskeletal abnormalities related to neuromuscular diseases [148,149]. Dominant
mutations in HSPB1 are associated with CMT type 2F and distal hereditary motor neuropa-
thy (dHMN) [150]; the S135F mutation leading to a higher affinity of HSPB1 for tubulin
overstabilizing microtubules determines neuropathies affecting axonal transport [150].

Another relevant nosographic entity linking PNs and cytoskeleton alteration is re-
lated to iatrogenic neuropathies due to chemotherapy agents (the so-called chemotherapy-
induced peripheral neurotoxicity, CIPN), that once again shows the pivotal role of cy-
toskeleton functions in neuronal survival. Among the different chemotherapy drugs,
there are some classes that primarily target the cytoskeleton: vinca alkaloids, taxanes,
epothilones and proteasome inhibitors. Although CIPN mechanisms are still not com-
pletely understood [151] for the aforementioned drug classes, cytoskeleton disturbances
have been suggested to be pivotal. Proteasome inhibitors (most notably bortezomib) lead
to increased tubulin polymerization resulting in microtubule stabilization that impairs
neuronal functions [152]. Vinca alkaloids were shown to be associated with dysfunctional
axonal transport, presumably because they prevent microtubule polymerization [153]. In-
stead, taxanes and epothilones can impair the neuronal metabolism acting with an opposite
mechanism, i.e., the hyperstabilization of microtubules [154,155].

6. Cytoskeleton Components as a Possible Biomarker for Human Pathology? The Virtuous
Example of Neurofilament Light Chain

Cytoskeleton components can also be relevant in biomarker discovery, since, as neu-
ronal disturbances are present, it is likely that key structural elements of the cytoskeleton
are released by injured neurons and undergo detectable changes in their biological fluid
levels. Among cytoskeleton components, neurofilaments (Nf) have raised interest in the
last few years. Nf are part of the class IV of the intermediate filaments, and comprehends
Nf light chain (NfL), Nf middle chain (NfM), Nf heavy chain (NfH) [156,157]. Nf are sparse
and tortuous in the soma and in the dendrites, whereas they are numerous, mainly straight,
long and unbranched in axons [158]. Notably, Nf are even more abundant in large myeli-
nated axons and are highly organized [159]. Given their spatial distribution in neurons, Nf
can be released from damaged or diseased axons in significant amounts into blood, and
cerebrospinal fluid or serum could be therefore proposed as potential biomarkers of axonal
injury, axonal loss, and neuronal death. Among the different types of Nf, NfL seems to be
the most promising as potential biomarkers, since they are released by damaged central
and peripheral nervous system axons in interstitial fluids [160] and the development of the
ultrasensitive Simoa technique allows us to easily measure their levels not only in the cere-
brospinal fluid, but also in more convenient serum/plasma samples [161,162]. NfL were
already tested in various neurological disturbances affecting both central and peripheral
nervous systems [160–169], even if they have not yet entered in routine clinical practice.
As a significant example of the virtuous exploitation of NfL testing that might reach a
clinical use, we will rely on a specific disease, i.e., CIPN. To verify that a sound biological
rationale was present, NfL levels were initially tested in animal models with promising
results. First, NfL were tested in a rodent CIPN model of vincristine-induced neuropa-
thy: a steady, and significant increase during the course of chemotherapy administration
(1 month) was demonstrated, leading to a final four-fold increase compared to control
animals. This remarkable increase in NfL levels corresponded to a severe axonopathy in
peripheral nerves as well as to a loss of intraepidermal nerve fibers, matched by behavioral,
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neurophysiological alterations [164]. Subsequently, to further explore NfL use in detect-
ing axonal damage, the same group compared serum NfL levels in animals chronically
treated with cisplatin and paclitaxel; the former drug primarily targeting the dorsal root
ganglia neurons with axonal damage as a secondary event, whereas the latter induces
primary axonopathy [154,170]. Serum NfL measurements correlated with the different
severity of axonal damage in the two selected models, since both drugs induced serum
NfL increase, but higher levels were observed in the paclitaxel-treated group; moreover,
earlier alterations were seen in this group, with the magnitude of the NfL increase matching
the different severity of morphological and functional alterations. On the basis of these
results, NfL were then tentatively tested in a clinical setting and very recently some groups
suggested their use at the bedside. Karteri et al. [171] prospectively followed up 59 patients
treated with paclitaxel measuring serum NfL before starting chemotherapy, after 2 and
3 weekly courses, and at the end of chemotherapy (12 weekly cycles in total), a significant
longitudinal increase was observed and NfL levels were significantly higher in patients
affected by more severe toxicity. Huehnchen et al. [172] monitored NfL levels in a cohort of
31 patients treated with paclitaxel and compared NfL levels with healthy control (n = 6) and
breast cancer patients not treated with chemotherapy (n = 25); they observed a specificity
and sensibility higher than 80%, giving promising results even if the low number of subjects
included in the analysis make a validation necessary in larger cohorts. In any case, this
course of action, from bench to bedside with a strong sound methodological approach, is
the one to be followed to evaluate and validate other biomarkers that rely on the fact that
many human diseases are due to alterations related to the cytoskeleton.

7. Concluding Remarks

The lively role of the cytoskeleton in neurons makes its components crucial both in
physiological and in pathological settings. Therefore, they can be both a matter of investiga-
tion for studies aiming at dissecting diseases mechanisms, but also for the identification of
reliable, clinically-relevant biomarkers for human pathologies, as well as the identification
of new, potentially druggable targets.
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