
Contents lists available at ScienceDirect

Data in Brief

Data in Brief 22 (2019) 605–619
https://d
2352-34
(http://c

DOI
n Corr
nn Cor

999 Xue
E-m
journal homepage: www.elsevier.com/locate/dib
Data Article
Image and data processing algorithms for
identifying cell-bound membrane vesicle
trajectories and movement information

Ye Xu a, Wendiao Zhang a, Yong Chen a,n, Wenzhe Shan a,b,nn

a Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University,
Nanchang, Jiangxi 330031, PR China
b Department of Civil Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China
a r t i c l e i n f o

Article history:
Received 24 November 2018
Received in revised form
20 December 2018
Accepted 21 December 2018
Available online 28 December 2018
oi.org/10.1016/j.dib.2018.12.076
09/& 2019 The Authors. Published by Else
reativecommons.org/licenses/by/4.0/).

of original article: https://doi.org/10.1016/j
esponding author.
responding author at: Nanoscale Science an
fu Ave. Honggutan District, Nanchang, Jiang
ail addresses: tychen@ncu.edu.cn (Y. Chen)
a b s t r a c t

This DIB article provides details about the trajectory identification
and data processing algorithms used in the article “Dynamic
single-vesicle tracking of cell-bound membrane vesicles on resting,
activated, and cytoskeleton-disrupted cells” (Zhang et al.) [1]. The
algorithm identifies vesicles on cell membranes from series of
undyed grayscale images captured by the confocal microscope
based on contrast differences and then trajectories of vesicles
are obtained by analyzing their positions in consecutive images.
Once the trajectories have been obtained, other quantitative
movement information, such as moving speed, direction and
acceleration, are derived by standard dynamic relations.

& 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
vier Inc. This is an open access article under the CC BY license

.bbamem.2018.10.013

d Technology Laboratory, Institute for Advanced Study, Nanchang University,
xi 330031, PR China.
, shan@ncu.edu.cn (W. Shan).

www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
https://doi.org/10.1016/j.dib.2018.12.076
https://doi.org/10.1016/j.dib.2018.12.076
https://doi.org/10.1016/j.dib.2018.12.076
http://dx.doi.org/10.1016/j.bbamem.2018.10.013
http://dx.doi.org/10.1016/j.bbamem.2018.10.013
http://dx.doi.org/10.1016/j.bbamem.2018.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2018.12.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2018.12.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2018.12.076&domain=pdf
mailto:tychen@ncu.edu.cn
mailto:shan@ncu.edu.cn
https://doi.org/10.1016/j.dib.2018.12.076


Y. Xu et al. / Data in Brief 22 (2019) 605–619606
Specifications table
S
M
T
H
D
E

E

D
D
R

ubject area
 Biology, Image processing

ore specific subject area
 Point-like feature identification and trajectory tracing

ype of data
 Images, Computer algorithms, Source code

ow data was acquired
 Confocal Microscope, In-house MATLAB program

ata format
 Analyzed

xperimental factors
 The image processing algorithms introduced are implemented in

MATLAB. The raw images processed by the program are undyed grayscale
images captured by the Confocal microscope.
xperimental features
 In-house developed image processing algorithm for identifying positions
and trajectories of undyed point-like features from series of raw images,
as well as obtaining their moving status (velocity, moving range, etc.).
ata source location
 Nanchang, Jiangxi Province, China

ata accessibility
 Algorithms, equations and codes are presented in this article.

elated research article
 W. Zhang, Y. Xu, G. Chen, K. Wang, W. Shan, Y. Chen, Dynamic single-

vesicle tracking of cell-bound membrane vesicles on resting, activated,
and cytoskeleton-disrupted cells, BBA-Biomembranes, 1861(1):26–33 [1].
Value of the data

� Algorithms and source code are provided and can be used for identifying multiple point-like
features on grayscale raw images (dyeing is not required for the experiment).

� Algorithms and source code are provided and can be used for identifying the moving trajectories of
multiple point-like features from series of grayscale raw images (dyeing is not required for
the experiment).

� Algorithms and source code are provided and can be used to calculate the movement information,
e.g. velocity and moving range, from identified trajectories of moving point-like features.
1. Data

Three types of data are used in the article [1] for analyzing the moving status of vesicles on cell
membranes: mean velocity, moving range (displacement) and population of vesicles on different cell
samples. These three types of data are obtained from their positions and trajectories (TRJ) extracted
from series of raw images captured by the confocal microscope (CM). This report presents algorithmic
and implementation details about our in-house developed programs using MATLAB, which is used
for extracting the TRJs from unmarked raw images, as well as obtaining the abovementioned data
from the TRJs. The following key algorithms are explained in the next section: vesicle-identification,
trajectory-tracing and postprocess for additional movement information. Source codes of corre-
sponding algorithms are provided (code 1–code 14), as well.
2. Experimental design, materials and methods

2.1. Algorithm for the vesicle-identification

First, the pixel data are extracted from raw images that are in the RGB format, where each pixel
contains three color-data [red, green, blue], ranging from 0 to 254. Since images captured by the CM
are stored in the grayscale-style, the three color-data are identical for each pixel and we can take an
arbitrary one for the image processing. The source code for this step is given in Code 1.



Y. Xu et al. / Data in Brief 22 (2019) 605–619 607
After the raw data extraction, the so-called Laplacian of Gaussian (LOG) algorithm, which is a
standard image-processing algorithm for boundary identification, is used to isolate pixel groups
corresponding to vesicles. The raw image data corresponds to redness (brightness in red) of each pixel
and the LOG values of pixels corresponding to vesicles will be significantly higher than the rest of the
image. Therefore, a lower bound can be used to isolate the pixels corresponding to vesicles from
the rest of the image. Such lower bound is obtained by comparing the filtered results with human-eye
observations in a try-and-error manner. The filtered image data is than normalized back into the
grayscale format, so that each pixel will be assigned a value ranging from 0 to 1.After the normal-
ization, the pixel data is then converted into the black-and-white style so that those corresponding to
vesicles will have the value of 1 and the rest pixels will have the value of 0, ready for the next step.
The additional lower-bound filter mentioned above also guarantees the boundary for vesicles which
are close to each other will have their boundaries set to zero. The source code for this step is given in
Code 2.
After applying the LOG filter and converting the pixel data into the black-and-white style, the
filtered pixel data will look like a group of white blobs with approximately the same size



Y. Xu et al. / Data in Brief 22 (2019) 605–619608
corresponding to the vesicles in a black background, a recursive algorithm which checks the neigh-
boring pixels is then applied to identify and store them in a more organized format and their centers
are then computed and used as the positions of vesicles which will be used later for the trajectory-
identification and postprocess. In addition to center coordinates, the size of each blob (number of
pixels) will also be counted so that and additional lower bound can be defined to filter out noise blobs
whose size are significantly smaller than actual vesicles. Such lower bound should be approximately
the number of pixels of the smallest vesicle, which is identified by human-eye observations. The
source code for this step is given in Code 3.
With all the steps above, the vesicle positions in all the images are then ready to be identified, or
more specifically, by applying step 2 and step 3 to the pixel data read from all raw images in step 1,
whose details are given in Code 4.



Y. Xu et al. / Data in Brief 22 (2019) 605–619 609
2.2. Algorithm for trajectory tracing

From human-eye observations, the number of vesicles in each image can be different and their
movements can be categorized into the following five types:

1. Move and oscillate within a small region;
2. Move in a very large region with large speed;
3. Some vesicles vanish;
4. Multiple vesicles merge into a single one;
5. Some new vesicles emerge.

In accordance, four types of trajectories must be allowed for the tracing algorithm:

� Complete trajectories: traced through the entire series of images
� Incomplete trajectories: only traced in a portion of consecutive images
� Branched trajectories: a single trajectory expands into multiple branches at certain step
� Merged trajectories: multiple trajectories merge into one at certain step.

Therefore, the number of trajectories is most likely NOT equal to the number of vesicles and a
relatively complicated data structure is defined for storing and manipulating the trajectory data. In
this DIB, it is given the name TRJ, which is a compound data structure containing the following
members:

� TRJ.counter: the number of trajectories stored;
� TRJ.pos: array of pointers that access the data of each trajectory;
� TRJ.nframe: number of images used for tracing trajectories;
� TRJ.dat: group of trajectory data. The information of each trajectory in stored in a three-column

matrix as: [iframe, pid1, pid2], where iframe is the index of the current image, pid1 is the index of
vesicle in the previous image and pid2 is the index of vesicle in the current image. Such type of



Y. Xu et al. / Data in Brief 22 (2019) 605–619610
data structure is used because vesicles in each image are identified by the same algorithm
mentioned above and therefore vesicles with same indices in different images are most likely not
the same.

The schematic of the TRJ structure is illustrated in Fig. 1.
For the tracing process, the following methods are defined for TRJ:

1. Initialization: initialize the data structure and allocate memory.
2. New: add a new trajectory.
3. Tails: get the tails of all live trajectories, which are equal to the locations of their local pointers
during the tracing process. A live trajectory means its end has not been identified yet, and the
judging criteria is (pid2 4 0 in Fig. 1) for its current segment, so that it is considered as ‘alive’ for
the tracing process. Within this method, trajectories with identical tails will be identified, which
corresponds to the merging scenario mentioned above, and those with the same tail will be
compared by their lengths, where only the longest will be kept alive while the rest will be killed
(considered as merged), as illustrated in Fig. 2.

The source code for the ‘Tails’ method is given in Code 7.



Y. Xu et al. / Data in Brief 22 (2019) 605–619 611
4. Insertion: append new segments to live trajectories. If no corresponding live trajectories are found
for certain new segments, new trajectories will be created, using them as the head segments. The
criteria for identifying segments of new trajectories is: pid1 ¼¼ 0 and pid2 4 0, as shown in Fig. 1,
and the source code for this method is given in Code 8.



Fig. 3. Distance matrix used for determining closest vesicles/bubbles in two consecutive images.

Fig. 1. Schematic illustration of the compound data structure storing trajectories (TRJ).

Fig. 2. Merging of trajectories.

Fig. 4. Branching of a trajectory.

Y. Xu et al. / Data in Brief 22 (2019) 605–619612



Y. Xu et al. / Data in Brief 22 (2019) 605–619 613
5. Coordinates Extraction: extract coordinates by vesicle indices and image indices. Since only vesicle
indices and image indices are stored in the TRJ data structure, such coordinate extraction method must
be defined to get the actual coordinates of vesicles along their trajectories, using the results obtained
from the vesicle-identification process. The source code for this method is given in Code 9.
Limited by experiment conditions, vesicles cannot be individually tagged and traced by techniques
other than visually comparing their positions in consecutive images. Therefore, the criteria for
identifying two vesicles in two consecutive images belonging to the same trajectory are:

� These two vesicles are closest to each other than the rest;
� Their distance should be smaller than a given cutoff distance that corresponds to the maximum

moving distance of a vesicle for the time interval between two consecutive images.

The closest vesicles in two consecutive images are determined by using the distance matrix shown in
Fig. 3, where distances between all pairs of vesicles in two images are computed and stored. Minimum
values are taken for each row and each column and the corresponding column index and row index are
stored as well. Taking the rowminimum is equivalent to finding the closest vesicles in the current frame
to the previous frame, while taking the columnminimum determines the closest vesicles in the previous



Y. Xu et al. / Data in Brief 22 (2019) 605–619614
frame to the current frame. If the obtained minimum distance is less than the cutoff distance, then it is
considered as a valid value. The results can be categorized into the following five types:

1. Regular movement: A vesicle in the current frame is the closest neighbor to a unique vesicle in the
previous frame and vise versa. In the distance matrix, a unique row minimum can be found at the
corresponding column;

2. Merging: A vesicle in the current frame is the closest neighbor to more than one vesicles in the
previous frame (as illustrated in Fig. 2); In the distance matrix, more than one row minimums will
be found at the corresponding column;

3. Branching: A vesicle in the previous frame is the closest neighbor to more than one vesicles in the
current frame (as illustrated in Fig. 4); In the distance matrix, more than one column minimums
will be found at the corresponding row;

4. End of a trajectory: For a vesicle in the previous frame, no vesicle in the current frame can be
considered as a valid neighbor (distance too large).

5. Begin of a new trajectory: For a vesicle in the current frame, no vesicle in the previous frame can
be considered as a valid neighbor (distance too large).

The source code for identifying the connectivity of vesicles identified in two consecutive images is
given in Code 10.



Y. Xu et al. / Data in Brief 22 (2019) 605–619 615
Based on human-eye observations of raw images, the speed of vesicles can vary significantly. Some
vesicles can move much faster than others, while the speed of the same vesicle can also sometimes
change significantly during a time period. Therefore, a single cutoff distance for the connectivity
search can be inconvenient. A small cutoff distance can improve the accuracy of the tracing algorithm
for slow vesicles, but very likely miss many fast ones, while a large cutoff distance will decrease the
accuracy of the algorithm for vesicles close to each other (mixing-up). Hence, an improved algorithm
based on Code 10 is used for searching the connectivity between two groups of points. For the new
algorithm, multiple cutoff distances ranging from a minimum value to a maximum value are used,
and the implementation is given in Code 11.
Trajectories of vesicles can then be traced using the methods introduced above (Code 5–Code 9), as
well as the connectivity search algorithms (Code 10–Code 11), and stored in the TRJ data structure.



Y. Xu et al. / Data in Brief 22 (2019) 605–619616
The implementation for the combined tracing algorithm is given in Code 12.
To improve the efficiency of the program, the TRJ data needs to be initialized with an over-
estimated number of possible trajectories. Therefore, a trimming function should be used after the
tracing process to free unused memory, whose implementation is given in Code 13.



Y. Xu et al. / Data in Brief 22 (2019) 605–619 617
2.3. Postprocess for trajectories

The postprocess for trajectories includes visualization and calculation of extra information such as
velocity, speed, moving range (displacement), etc. from the obtained vesicle positions and trajectory
data. The design of the TRJ data structure illustrated in Fig. 1 is for the convenience of the tracing
process, but its direct usage for the postprocess is not efficient. Instead, we designed a trajectory
matrix that can be extracted from the TRJ data after the identification process for the postprocess. The
schematic of the matrix structure is shown in Fig. 5. And the MATLAB code for extracting the matrix is
given in Code 14.
The sequential coordinates of vesicles corresponding to each trajectory can be easily obtained by
using the trajectory matrix, together with the coordinate generation code given by Code 9. Then the
velocity, speed and moving range (displacement), as well as other kinds of movement information
can be readily derived. In addition, by counting the number of non-zero elements in each row of the
trajectory matrix, the life (how many images a trajectory lasts) of each trajectory can be obtained,
which can be used for controlling the quality of trajectories used for calculating statistical



Fig. 5. Trajectory matrix used for the postprocess, where elements are indices of identified vesicles in each image whose index
is the column number, while the row number is the index of trajectories. A trajectory started with the first non-zero vesicle
index and ended with the last non-zero index. In the above example, the 1st and 2nd trajectories merged at the 3rd frame,
while the 2nd trajectory branched to the last trajectory at the 4th frame.

Y. Xu et al. / Data in Brief 22 (2019) 605–619618
information. For example, adding a lower-bound filter to the trajectory life can allow us to exclude
short-lived trajectories most likely caused by image noises.

The velocity of a vesicle along a trajectory is computed by

v! nð Þ ¼

x! nþ1ð Þ� x!ðnÞ
Δt ; n¼ 1

x! nþ1ð Þ� x!ðn�1Þ
2Δt ; 1onoN_img

x! nð Þ� x!ðn�1Þ
Δt ; n¼N_img

8>>>>><
>>>>>:

where v! nð Þ is the velocity at the time corresponding to the image of index n, x!ðnÞ is the vesicle
position, Δt is the time interval between two consecutive images and N_img is the number of images.
The speed is by definition the magnitude of the velocity, namely

v nð Þ ¼
��� v! nð Þ

���
The traveling distance of a vesicle along its trajectory is computed by

s nð Þ ¼
0; n¼ 1Xn
i ¼ 2

‖ x! ið Þ� x!ði�1Þ‖; nrN_img

8><
>:

The moving range (displacement) of a vesicle along its trajectory is defined by

RðnÞ ¼
0; n¼ 1
maxf‖ x!ðiÞ� x!ð1Þ‖j1o irn; nrN_img

(

Implementations for calculating the above variables are quite straightforward and are therefore
omitted here.
Acknowledgements

This study was supported by the National Natural Science Foundation of China (31760320), the
Natural Science Foundation of Jiangxi Province of China (20161ACB20001, 20171BAB211014).



Y. Xu et al. / Data in Brief 22 (2019) 605–619 619
Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at https://doi.org/
10.1016/j.dib.2018.12.076.
Reference

[1] W. Zhang, Y. Xu, G. Chen, K. Wang, W. Shan, Y. Chen, Dynamic single-vesicle tracking of cell-bound membrane vesicles on
resting, activated, and cytoskeleton-disrupted cells, BBA-Biomembr., vol. 1861(1), pp. 26–33.

https://doi.org/10.1016/j.dib.2018.12.076
https://doi.org/10.1016/j.dib.2018.12.076

	Image and data processing algorithms for identifying cell-bound membrane vesicle trajectories and movement information
	Specifications table
	Value of the data
	Data
	Experimental design, materials and methods
	Algorithm for the vesicle-identification
	Algorithm for trajectory tracing
	Postprocess for trajectories

	Acknowledgements
	Supplementary material
	Reference




