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Abstract

There is much interest in characterizing the variation in a human individual, because this may elucidate what contributes
significantly to a person’s phenotype, thereby enabling personalized genomics. We focus here on the variants in a person’s
‘exome,’ which is the set of exons in a genome, because the exome is believed to harbor much of the functional variation.
We provide an analysis of the ,12,500 variants that affect the protein coding portion of an individual’s genome. We
identified ,10,400 nonsynonymous single nucleotide polymorphisms (nsSNPs) in this individual, of which ,15–20% are
rare in the human population. We predict ,1,500 nsSNPs affect protein function and these tend be heterozygous, rare, or
novel. Of the ,700 coding indels, approximately half tend to have lengths that are a multiple of three, which causes
insertions/deletions of amino acids in the corresponding protein, rather than introducing frameshifts. Coding indels also
occur frequently at the termini of genes, so even if an indel causes a frameshift, an alternative start or stop site in the gene
can still be used to make a functional protein. In summary, we reduced the set of ,12,500 nonsilent coding variants by ,8-
fold to a set of variants that are most likely to have major effects on their proteins’ functions. This is our first glimpse of an
individual’s exome and a snapshot of the current state of personalized genomics. The majority of coding variants in this
individual are common and appear to be functionally neutral. Our results also indicate that some variants can be used to
improve the current NCBI human reference genome. As more genomes are sequenced, many rare variants and non-SNP
variants will be discovered. We present an approach to analyze the coding variation in humans by proposing multiple
bioinformatic methods to hone in on possible functional variation.
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Introduction

Genetic variation in the protein-coding portion of genes is of

significant interest in the study of human health. The focus on

coding exons, or the ‘exome’, is due to the common belief that the

exome harbors the most functional variation [1]. This is based on

the observation that mutations that cause Mendelian diseases

occur primarily in genes [1,2]. Mutations that cause amino acid

substitutions, including changes to nonsense codons, in their

respective genes are the most frequent type of disease mutation

(,60%) [1]. In addition, small indels in genes account for almost a

quarter of the mutations in Mendelian disease [1,2]. Meanwhile,

less than 1% of Mendelian disease mutations have been found in

regulatory regions. For complex diseases, such as Alzheimer’s,

obesity, and heart disease, it is unknown how much variation in

genes will contribute to disease, compared to variation in

regulatory regions [3,4].

There have been many efforts to re-sequence genes to identify

and characterize gene variation in humans [5–11]. One of the

proposals of the 1000 Genomes Project, an international

collaboration that aims to sequence one thousand genomes,

focuses specifically on re-sequencing coding exons [12]. Addition-

ally, many groups are developing technology for high-throughput

resequencing of exons [13–15].

Because there has been much progress in sequencing individual

human genomes [16–20], our understanding of functional variation

is an important step towards an era of personalized medicine, where

a doctor could inform patients’ of their disease susceptibilities based

on their genome sequences. If the exome harbors much of the

functional variation responsible for a person’s phenotype, then

identification and characterization of the individual’s variation in the

exome could enable individualized genomics.

In this study, we focus our analysis on the exome of an individual

human by providing a detailed characterization of the variants in

protein-coding regions. We present the analysis of the coding

variants in an exome from a diploid human genome assembly, which

was termed HuRef [16]. This paper analyzes the different types of

nonsilent coding variants. There are ,12,500 coding variants that

change protein sequence in the HuRef genome. We show that most

of the variation in this individual is common and appears to be

functionally neutral. Furthermore, we are able to reduce the

,12,500 coding variants down to ,1,600 variants that potentially

affect protein function and may be involved in phenotypic effects. To

the best of our knowledge, this is the first analysis of the exome of an

individual human, and may serve as a benchmark for future studies

on the variation in human exomes.

There are several aspects to this study. The first is to describe a

snapshot of what personalized genomics means today. If a person

was to have his genome sequenced today, we show what insights

about the individual could be gleaned from the protein coding

component alone. Another aspect is that we can use the HuRef

variants to improve the current NCBI reference genome, which
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will simplify future analysis of additional genomes. The final aspect

is how one could characterize the variation obtained from

sequencing many individual human genomes, and the approaches

that could be developed to mitigate these studies. This is our first

glimpse of an individual’s human genome and as additional

genomes are sequenced, many rare variants and non-SNP variants

will be discovered. From this first exome, we can see what

challenges one might encounter and propose approaches to face

these challenges. Thus we present one approach for the analysis of

coding variation in a human by detecting different trends for each

variant type and demonstrating what phenotypes can be

interpreted with our current knowledge.

Results

Nonsynonymous SNPs
This individual has 10,389 nsSNPs, of which 5,604 are

heterozygous and 4,785 are homozygous (Table 1), where homozy-

gous variants are loci where the alleles differ from the NCBI reference

genome, but are the same within the HuRef assembly. It has been

previously estimated that the number of heterozygous nsSNPs in an

individual ranges from 24,000 to 40,000 [6]; our observed value of

5,604 is much less than this. This estimate was based on the

nonsynonymous substitution rate based on a small number of genes,

and extrapolating this value across all genes. The overestimate is

partly due to the assumption of the human genome having 45,000–

100,000 genes, but even if we assume the human genome has

20,000–30,000 genes, the estimate remains 1.5–26higher than what

we report. Possible explanations for the discrepancy is that the

substitution rate in genes is extremely variable due to differences in

local rates of mutation and recombination [6]. Thus we believe our

number to be more accurate because it examines all genes rather than

extrapolating from a small gene set.

The nsSNPs account for a little more than half of the coding

SNPs in the diploid genome (Table 1). The 1:1 ratio of

nonsynonymous SNPs to synonymous SNPs agrees with previously

published reports [6,8]. Approximately 7% of the nsSNPs were

not found in dbSNP and are thus novel. We expect novel SNPs to

be rare [21–23] and hence observed on a single chromosome in an

individual. This was affirmed with the observation that 72% of the

novel nsSNPs are heterozygous.

Most nsSNPs in an Individual Are Common
We wanted to find nsSNPs in this individual that may be

undergoing negative selection. We use allele frequency in the

human population as an indicator that a variant might be under

negative selection. According to the theory of natural selection,

functionally neutral mutations can reach high minor allele

frequencies, whereas deleterious mutations will be selected against

and remain rare in a population. Rare variants do not necessarily

have to be deleterious; they can be recent mutational events.

Variants that are neutral, slightly deleterious, or under positive

selection can become common in a population.

To see what proportion of nsSNPs may be undergoing negative

selection, we retrieved the allele frequencies of these nsSNPs from

the HapMap Project [24,25] (Figure 1). The majority of HuRef

Figure 1. The allele frequencies of heterozygous and homozy-
gous nsSNPs in HuRef. For heterozygous SNPs, the minor allele
frequency is plotted. For homozygous nsSNPs, the frequency for the
observed allele in HuRef is plotted.
doi:10.1371/journal.pgen.1000160.g001

Author Summary

Characterizing the functional variation in an individual is
an important step towards the era of personalized
medicine. Protein-coding exons are thought to be
especially enriched in functional variation. In 2007, we
published the genome sequence of J. Craig Venter. Here
we analyze the genetic variation of J. Craig Venter’s
exome, focusing on variation in the coding portion of
genes, which is thought to contribute significantly to a
person’s physical make-up. We survey ,12,500 nonsilent
coding variants and, by applying multiple bioinformatic
approaches, we reduce the number of potential pheno-
typic variants by ,8-fold. Our analysis provides a snapshot
of the current state of personalized genomics. We find that
,1% of variants are linked to any known phenotypes; this
demonstrates the dearth of scientific knowledge for
phenotype-genotype associations. However, ,80% of an
individual’s nonsynonymous variants are commonly found
in the human population and, because phenotypic
associations to common variants will be elucidated via
genome-wide association studies over the next few years,
the capability to interpret personalized genomes will
expand and evolve. As sequencing of individual genomes
becomes more prevalent, the bioinformatic approaches
we present in this study can be used as a paradigm to
pursue the study of protein-coding variants for the
genomes of many individuals.

Table 1. Number of coding SNPs in HuRef.

Synonymous 10,413

Heterozygous Novel 551

dbSNP 5,183

Homozygous Novel 98

dbSNP 4,581

Nonsynonymous 10,389

Heterozygous* Novel 557

dbSNP 5,047

Homozygous Novel 215

dbSNP 4,570

*All heterozygous novel nonsynonymous SNPs were manually inspected (see
Methods).

doi:10.1371/journal.pgen.1000160.t001

Genetic Variation in an Individual Human Exome
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nsSNPs with known allele frequencies are common (. = 0.05). For

79% of the homozygous nsSNPs, the NCBI human genome has

the minor allele (MAF,0.5). Therefore, the homozygous nsSNPs

in HuRef tend to represent the major alleles in the human

population and it is likely that the majority of these homozygous

nsSNPs are neutral because they have reached such high

frequencies. Also, 19% of the homozygous alleles in HuRef have

an allele frequency of 1, which suggests that NCBI contains a rare

or erroneous allele at these positions. The majority of HuRef

heterozygous SNPs are also common with only 9% of the nsSNPs

with known allele frequencies being rare (MAF,0.05).

Since we do not have allele frequencies for all the HuRef

nsSNPs, we must estimate the proportion of rare nsSNPs

(MAF,0.05) in this individual. A previous simulation has

estimated that ,28% of heterozygous SNPs in an individual are

rare, but that study made assumptions about human population

size and its growth [26]. For 67% of the nsSNPs with known

HapMap allele frequencies, we know the exact number of rare

nsSNPs (56 homozygous and 326 heterozygous). For the

remaining 33% of nsSNPs with unknown allele frequencies, we

can estimate the proportion of rare nsSNPs based on the

sequencing of a subset of heterozygous novel nsSNPs and the

fraction of rare homozygous SNPs with known allele frequencies

(see Methods). Using this approach, we estimate ,1,600–2,000

rare nsSNPs in this individual’s genome, the lower bound takes

into account the ,25% false positive rate for novel SNPs (see

Methods). We conclude that ,15–20% of the nsSNPs in an

individual are rare, and ,95% of the rare nsSNPs are

heterozygous (see Methods). The number of rare variants found

in this individual may guide our expectations when we sequence

additional genomes in the future.

nsSNPs Likely to Affect Protein Function Tend to be
Heterozygous, Rare, or Novel

We wanted to identify the nsSNPs that may affect protein

function and possibly be involved in human health and

undergoing negative selection. Algorithms exist that predict

whether an amino acid substitution affects protein function based

on sequence conservation and/or structure [27–34]. When

applied to human nsSNPs from re-sequencing projects, 0–30%

of nsSNPs are predicted to affect function [9,31–33,35]. This

range is based on datasets containing a relatively small number of

nsSNPs (,50–600) in a small number of genes (,100–200).

What distinguishes our analysis from previous reports [9,31–

33,35] is that we examine a single individual, rather than a

population of individuals – thus we are establishing a benchmark for

individualized genomics, as opposed to population genetics.

Furthermore, we study all genes, unlike the previous studies that

focused on certain classes of genes that were selected for their

possible relevance in human health. For our study, we use the

algorithm, SIFT (Sorting Intolerant From Tolerant) to determine if a

nsSNP may affect protein function [33]. SIFT takes into account

whether the amino acid change resulting from a nsSNP lies in the

conserved region of the protein and the type of physiochemical

change, and outputs a prediction to whether a nsSNP may affect

protein function. We note that SIFT and other amino acid

substitution prediction algorithms [27–34] only predict whether a

nsSNP affects protein function. These algorithms do not predict

whether a variant alters the processing or stability of transcripts.

Approximately 75% of the HuRef nsSNPs had SIFT predic-

tions (see Methods), and 14% were predicted to impact protein

function (Figure 2). This suggests that the majority of nsSNPs in

this individual are functionally neutral. It also indicates that an

individual has ,1,500 (14% of 10,389) nsSNPs that affect protein

function with deleterious effects, and we are able to confirm a

previous estimate [34]. This previous estimate was obtained by

taking the average nonsynonymous nucleotide substitution rate

(based on a small number of genes) and extrapolating it for all

genes. Meanwhile our estimate is based on the actual number of

observed nsSNPs in an individual.

The ,1,500 nsSNPs predicted to affect protein function are

deleterious in the evolutionary sense with each nsSNP having a

selection coefficient s<1023, on average [34]. A small selection

coefficient suggests that the deleterious nsSNP either has negligible

effects on health, has effects late in life after reproduction has

occurred, or causes a disadvantage in certain environments. We

term the nsSNPs predicted to affect protein function as predicted-

protein-affecting nsSNPs. The other ,9,000 nsSNPs are effec-

tively neutral mutations with 0,s,1024, assuming an effective

population size of 10,000 [36]. Thus, the effects of nsSNPs span a

Figure 2. The percentage of nsSNPs predicted to affect protein function, by category. A higher fraction of heterozygous, novel, and rare
nsSNPs are predicted to affect function compared to homozygous and common nsSNPs. Rare nsSNPs have allele frequencies ,0.05; common nsSNPs
have allele frequencies . = 0.05.
doi:10.1371/journal.pgen.1000160.g002

Genetic Variation in an Individual Human Exome
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spectrum ranging from neutral to mildly deleterious, and the

predicted-protein-affecting nsSNPs tend to be more detrimental.

Heterozygous nsSNPs are two times more likely to be predicted

as protein-affecting compared to the homozygous nsSNPs

(p,0.001; Figure 2). We reason that predicted-protein-affecting

nsSNPs are expected to be selected against and therefore, less

likely to both reach high allele frequencies and be observed in

homozygote form. Rare nsSNPs are also two times more likely to

be predicted as protein-affecting compared to common nsSNPs

(p,0.001; Figure 2) and this trend has been reported previously

[9,10,35]. This suggests that a higher proportion of the rare

nsSNPs are deleterious, and are more likely undergoing negative

selection. Also, a higher percentage of novel nsSNPs and nsSNPs

with unknown allele frequencies are predicted to be protein

affecting compared to all the nsSNPs (Figure 2), but this difference

only holds for the heterozygous SNPs and not the homozygous

nsSNPs (Figure S1; Text S1).

Therefore, novel, rare, and heterozygous nsSNPs are more

likely to affect protein function and cause phenotypic effects. Yet

rare and novel nsSNPs are difficult to characterize because they

are underpowered in whole-genome association studies [4]. Thus,

one of the major challenges in the future of genomics is how to

correlate rare and novel nsSNPs with phenotypes.

SNPs that Cause Premature Termination Codons
There are 105 HuRef SNPs that result in premature

termination codons, or stop codons, in 103 genes, hereafter

referred to as PTC-SNPs. This corresponds to 0.5% of coding

SNPs. These SNPs are expected to result in the loss of their

respective proteins and hence be under strong negative selection.

Yet when we retrieved allele frequencies for PTC-SNPs, all of the

36 PTC-SNPs with known allele frequencies were common, which

shows that not all PTC-SNPs are under strong purifying selection.

We investigate possible reasons for why some PTC-SNPs are not

under strong negative selection and are able to reach high allele

frequencies in the human population. Thirty percent (31/105) of the

PTC-SNPs occur in segmental duplications in the human genome

compared to 9.8% for synonymous SNPs. We assume gene

redundancy would rescue these mutations, although loss of one

copy of a gene can still have quantitative effects [37]. It is also

possible that these PTC-SNPs have been mistakenly mapped due to

the difficulty of assembling highly duplicated regions.

We remove the PTC-SNPs in segmentally duplicated regions

from consideration and 74 PTC-SNPs in 73 genes remain. A

substantial fraction (42%) of the remaining genes with PTC-SNPs

are hypothetical. Hypothetical genes containing common PTC-

SNPs may not be important to the human population, and using

these variants may improve annotation of the human genome. If

the PTC-SNPs in hypothetical genes are removed from consid-

eration, 43 PTC-SNPs in 42 genes remain, and we sought to

characterize these further.

Because we saw that three times as many PTC-SNPs occur in

segmental duplications than expected, we postulated that multiple

copies of a gene may permit the existence of a PTC-SNP. We

examined the size of the gene family for the remaining 42 genes, and

found that the median gene family size is 6, which is higher than the

median gene family size for all genes, which is 2 (p,0.001). Thus,

PTC-SNPs tend to occur in genes that have other homologues

present in the genome, which may rescue the full or partial loss of a

related gene [38]. There are only 9 PTC-SNPs in 8 genes that are

non-hypothetical and unique members of their gene family.

In general, PTC-SNPs tend to occur in hypothetical proteins,

segmentally duplicated regions, and gene families with multiple

members. In the future, we may be able to use these trends to

prioritize which PTC-SNPs are most likely to have functional

consequences. All the PTC SNPs in HuRef can be found in Table

S1, and none are in genes known to be involved in disease.

Coding Indels
Indels are the second most abundant type of genetic variation,

following single nucleotide substitutions and account for almost a

quarter of the genetic variation implicated in disease [2]. Coding

indels can significantly impact their corresponding genes if they

introduce frameshifts that lead to unfinished protein products.

The HuRef genome contains a total of 739 coding indels, which

consists of 281 heterozygous indels and 458 homozygous indels.

To the best of our knowledge, this is the largest set of human

coding indel variants identified to date [39].

We find an enrichment of indels that have sizes that are

multiples of 3 in the HuRef coding indel set (Figure 3). We will

Figure 3. The size distribution of coding indels. Coding indels are predominantly the size of 3n, where n is an integer. 3n coding indels do not
cause frameshifts, whereas non-3n coding indels do.
doi:10.1371/journal.pgen.1000160.g003

Genetic Variation in an Individual Human Exome
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refer to indels that have lengths divisible by 3 as 3n indels and

indels with lengths not divisible by 3 as non-3n indels, where n is an

integer. In coding regions, a non-3n indel would cause a frameshift

that usually leads to a truncated protein product whereas a 3n indel

would cause deletion or insertion of amino acid(s). By comparing the

diversity rates between coding indels and indels genome-wide (Figure

S2), we find that 94% of non-3n coding indels have been eliminated

by natural selection. In contrast, only 46% of 3n coding indels have

been eliminated. This signifies that 3n coding indels are not as

strongly selected against as non-3n indels.

Many of the indels are due to polymorphism in tandem repeat

sequence. Only 6% of coding regions are classified as tandem

repeats, yet 52% (381/739) of all coding indels occur in tandem

repeats. The majority (73%) of the tandem repeats in coding

regions have a periodicity of 3 and account for 66% (252/384) of

the 3n bp coding indels. This suggests that local regions in a

protein coding sequence can be prone to mutation that will either

remove or insert amino acids into the protein product.

In contrast to SNPs, many indels are not validated and their

allele frequencies are unknown due to difficulty in their

ascertainment using either sequencing or genotyping technologies

[39,40]. To validate these indels, we verified if the indel was

confirmed in the chimpanzee genome sequence [41]. We

determined that 24% (181/739) of the coding indels correspond

to the chimpanzee sequence. These indels are likely to be common

in the human population if the indels occurred before the

divergence of chimpanzee and human, although an alternative

possibility is that some of these mutations are recurring events.

This signifies that at least 24% of the HuRef coding indels are real.

We sought explanations of how an individual human genome

could have 739 indels affecting 607 genes, and yet the individual

appears to lack severe phenotypic effects. Small coding indels

(, = 30 bp) account for 84% (621/739) of the indels. In the

following section, we analyze the 621 small coding indels

(, = 30 bp). Large indels are discussed in a later section.

Coding Indels Are Not Randomly Located in Their
Proteins

Many of the small coding indels were located at the N- and C-

termini of their respective proteins. We calculated the relative

position of the indel in the protein by dividing the indel’s position

by the total protein length. With this metric, one would expect that

the indel’s position would be uniformly distributed across the

protein. Instead, indels tend to occur at the N- and C-termini of

their proteins (Figure 4). If a coding indel occurs at the C-terminus

of the protein, it may not affect the function of the protein because

most of the protein product has been translated successfully. If a

coding indel occurs at the N-terminus of the protein, this may be

rescued by a downstream start codon in the coding region (see

Figure S3 for an example). This suggests that indels at the N- and

C-termini of their proteins are functionally neutral and a future

study using these indels to propose alternate start and stop sites

could improve human gene annotation.

Furthermore, a high proportion of homozygous coding indels

were located near an exon boundary. A large proportion of the

small homozygous coding indels were within 10 bp of the exon

boundary: 27% (101/344) compared to 12% (34/277) for small

heterozygous coding indels. Close inspection of the homozygous

indels near exon boundaries showed that these indels were near

small introns and the HuRef allele corrects the NCBI reference

genome to provide a better gene model. Figure 5 shows an

example where a 1-bp homozygous coding insertion borders a

2 bp intron, so rather than causing a frameshift, the small intron is

replaced by an amino acid. Incorporating the homozygous indel

from HuRef likely produces the correct protein sequence.

Therefore, it is very likely that the HuRef assembly has the

correct sequence, and could potentially be used to correct gene

structures that were based on the NCBI human genome. Many of

these small homozygous indels within 10 bp of an exon boundary

were also found in chimp (61% (62/101)), further evidence that

these indels are the ancestral alleles and likely to be accurate.

We re-sequenced seven homozygous non-3n indels that were

either near exon boundaries (4), and/or confirmed by chimp (4),

and/or at the N-terminus of a protein (1) (see Methods). These

non-3n indels would supposedly cause frameshifts, yet all seven

indels were found to be common (MAF.0.05) and four were

determined to have an allele frequency of 1 (Table S2). This

indicates that NCBI has a rare or erroneous allele at these

positions and suggests that homozygous indels located at certain

locations may correct the NCBI genome sequence.

We assume that indels near protein termini and near exon

boundaries are functionally neutral. Removing these indels from

the indel set reduces the entire set by 45%, with 342 indels

remaining. Of the remaining indels, the fraction of indels that have

length 3n increases from 49% (303/621) to 60% (205/342). This

suggests that while the termini of a protein may be able to tolerate

the presence of non-3n bp indels, elsewhere in a protein there is a

greater preference for 3n indels.

We categorize the remaining indels by their 3n and non-3n

lengths. Whereas 35% (71/205) of 3n indels are found in

hypothetical proteins, 56% (77/137) of non-3n indels are found in

hypothetical proteins (p,0.001). This suggests that non-3n indels

occur in genes that can tolerate deleterious mutations, which may be

pseudogenes or genes under weak selective constraints and we may

be able to use these variants to identify genes that are likely not

important for human health. We also noticed that the 3n coding

indels that are not in tandem repeats tend to avoid regions of the

protein that are highly conserved (Figure S4).

In summary, many of the indels are located at exon boundaries

or protein termini and these are likely to be functionally neutral.

The remaining coding indels typically have sizes of 3n, and those

that do not tend to occur in hypothetical proteins. To the best of

our knowledge, these trends have not been previously reported,

Figure 4. Location of coding indels. On the x-axis is the relative
protein location of the coding indel, which is the first amino acid
position of the indel divided by the protein length. A relative protein
location near zero indicates that the indel is located near the N-
terminus of the protein and a relative protein location near one
indicates that the indel is located near the C-terminus of the protein.
Indels occur frequently at the N- and C-termini of proteins.
doi:10.1371/journal.pgen.1000160.g004

Genetic Variation in an Individual Human Exome
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and this suggests that a substantial fraction of coding indels are

functionally neutral. In the future, we can use the HuRef indels to

improve gene annotation and our observations to develop a

method that distinguishes between functional and neutral indels.

Genes with Missing or Partial Exons
We sought to understand genes missing large regions of coding

sequence, leading to a gene and/or exon deletion that would

render the gene non-functional. Therefore, we focused on

deletions of coding sequence in this analysis. We will discuss

newly observed genes and insertions of coding sequence in existing

genes in a future manuscript.

We identified 1,454 exons in 1,046 genes where at least half of

the coding exon’s sequence was missing from the HuRef assembly.

Further investigation showed that genes with ‘‘missing’’ exons are

most likely due to low coverage or assembly issues with repetitive

regions rather than the human individual truly missing part of a

gene (see Methods and Text S1; Figure S5). This was confirmed by

resequencing a subset of the missing exons in the HuRef sample

and validating that in fact, most of the ‘‘missing exons’’ are present

in the HuRef sample (see Methods and Text S1).

Variants in Disease Genes and their Associated
Phenotypes

We examined the HuRef variants in genes known to be involved

in disease (based on the OMIM database [42]) to make

correlations between the HuRef variation and possible pheno-

types. There are a total of 682 nsSNPs in 443 disease genes (Table

S3). The allele frequency distribution and fraction of predicted-

protein affecting SNPs are similar to non-disease genes (Figure S6).

We examined the nsSNPs from dbSNP [43] that were found in

the disease database OMIM [42] (see Text S1). Using this

approach, seven HuRef nsSNPs were found to be associated with

disease (Table 2). The HuRef individual is heterozygous for all

seven SNPs and most of these disease-associated SNPs are

common in the population. It may be considered surprising that

these nsSNPs are common since they were found in the OMIM

disease database. This is due to the fact that we looked for overlap

with nsSNPs that are in both OMIM and dbSNP, and dbSNP

tends to be biased for common SNPs [21].

From these seven variants, one could simplistically infer that the

HuRef individual has an increased risk for eating disorder (BDNF),

1.5-fold reduced risk to multiple myeloma (LIG4), an increased risk

to prostate cancer which can be rescued by taking vitamin E

supplements (SOD2), and allergic tendencies (SPINK5) (Table 2).

Some of the SNPs have known interactions with environmental

factors (SOD2 and BDNF in Table 2). However, the published risks

for these variants are from population-based studies, and may not

apply to this specific individual because it does not take into account

other interacting genetic loci and his environment [44–47].

Therefore, Table 2 does not show exact risks for this individual

and predicting the phenotype or lack of phenotype of this individual

is premature. These variants, like many of the risk variants being

uncovered by genome-wide association studies, have low risks and

we may not have a clear understanding of their clinical utility until all

the relevant factors (both genetic and environmental) for a particular

disease have been elucidated [44–47].

These seven well-studied examples demonstrate the complexity

of trying to interpret variants and their impact, but there are still

many variants in this individual that are uncharacterized. For the

682 nsSNPs in 443 disease genes, 27 are rare (MAF,0.05), 18 are

novel, and 81 are predicted to affect function (Table S3).

Interpretation of these variants is difficult because of the absence

of literature for many of the observed variants. One challenge is

that these variants, even if they affect protein function, could be

phenotypically neutral in certain contexts (see SOD2 and BDNF

in Table 2 and [48]). Also, even if there is evidence that a nsSNP is

under negative selection (e.g. predicted to affect function and/or

rare), it is not straightforward to interpret a possible phenotype

because mutations at different locations in the same gene can have

different effects [49]. The difficulty of inferring phenotypic

consequences from a variant is depicted in the following example.

rs562556, which is homozygous in HuRef and has an unknown

minor allele frequency, introduces the amino acid substitution

V474I in PCSK9, and this amino acid substitution is predicted to

affect protein function. Because defects in PCSK9 cause familial

hypercholesterolemia (OMIM:607786), one could speculate that

this SNP could affect the donor’s cholesterol levels. However,

extensive functional studies of this variant and others are necessary

before any conclusions can be made. Because only 1% (7/682) of

the nsSNPs in disease genes in this individual human have been

well-characterized, this indicates that we are only at the beginning

of relating genotypes to phenotypes, even for the well-character-

ized disease genes.

Figure 5. An example of a homozygous indel located near an exon boundary. The HuRef assembly has a homozygous insertion of A at
chr11: 44881936. This insertion resides inside a coding exon of the gene TP53I11, but is near a 2 bp intron. With this new base inserted, a single
amino acid is introduced into the protein sequence, which is the more likely scenario instead of a 2 bp intron.
doi:10.1371/journal.pgen.1000160.g005
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There were 28 indels in 26 disease genes (Table S4). Only 3 out

of the 28 indels have lengths that are not multiples of 3n, and

would cause frameshifts. Two of these indels appear to be

annotation issues and are likely to be functionally neutral (see Text

S1). The third indel is in ACOX2. This protein is involved in lipid

metabolism, and patients with Zellweger syndrome lack this

protein [50]. Because the indel is heterozygous in the HuRef

individual and one functional copy is present, the individual may

not be adversely affected by this mutation.

For the remaining 25 indels with length 3n in 23 disease genes,

84% were in tandem repeats. Some of these genes are known to

cause disease due to polyglutamine and polyalanine repeat

expansions (AR, ATXN2, ATXN3, HD, TBP). For these genes,

we confirmed that the number of repeats in the HuRef genome

falls within the range of what is observed for unaffected

individuals. In addition, this individual is heterozygous for a 24-

bp duplication in the CHIT1 gene, which activates a cryptic 39

splice site and causes chitinase deficiency [51]. Even though the

indel produces a nonfunctional protein, the indel is observed at an

allele frequency of 23% in the general population. One possibility

for its high incidence is that this indel may provide a selective

advantage against fungal pathogens [51].

Selective Constraints on the Human Genome
To examine selective constraints on different regions across the

genome, we estimated the diversity rate h (see Methods). We

calculate the diversity rates for regions throughout the entire

genome as well as calculating the diversity values for genic regions

(Table 3). Values of h tend to be negatively correlated with the

strength of selection, where low values of h tend to indicate strong

selective pressures, while high values do not. The order of h is:

coding in disease genes,coding,conserved noncoding intro-

nic,splice sites,39UTR<59UTR<conserved noncoding inter-

genic,promoter,introns,repeats. This indicates that coding

Table 2. HuRef nsSNPs with known disease associations.

SNPa Gene Genotype-Phenotypeb

rs6265 BDNF MAF = 0.18

V74M Increased risk for eating disorder OR = 1.6 [84]

Met/Met: Inferior episodic memory [85]

Met/Met: Later onset of Parkinson’s disease [86]

Met: In bipolar patients, less adaptive to change [87]

Predicted to affect protein function.d

rs1800556 ACADS MAF = 0.17

R171W ACADS with 171W has residual activity (45%). Because this is polymorphic in the control population, this is a predisposition
allele that can cause SCAD deficiency if additional factors are present [88].

Predicted to affect protein function.c

rs1805389 LIG4 MAF = 0.02; MAF = 0.07 in [89]

A3V 1.5-fold reduction in risk of developing multiple myeloma for heterozygotes [89].

Predicted to be functionally neutral.d

rs13073139 BTD MAF = 0.17 [90]

A171T Biotinidase deficiency, asymptomatic in heterozygous form [91]. A171T is in linkage disequilibrium with D444H and D444H
results in 48% of normal enzyme activity. We confirmed that HuRef is heterozygous for D444H. It is unknown whether A171T
produces nonfunctional enzyme.

A171T is predicted to be functionally neutral.

D444H is predicted to affect protein function.c

rs2303067 SPINK5 MAF = 0.48. Associated with allergies, atopic dermatitis, asthma, and total serum IgE. Paternally derived alleles tended to be
less often associated with disease than maternal alleles [92]

E422K Predicted to be functionally neutral.d

rs11556045 HEXB MAF = 0.22. Observed in a patient with juvenile Sandhoff disease, but the patient had another mutation which activated a
cryptic splice site. This SNP is unlikely to be the causative variant. [93]

K121R Predicted to be functionally neutral.

rs4880 SOD2 MAF = 0.44. Risk of prostate cancer depends on genotype, vitamin E uptake, and smoking status. For the heterozygote, there
is an increased risk of prostate cancer. Val/Val: OR = 1. Val/Ala OR = 1.17 Ala/Ala = 1.28

A16V This risk is increased with smoking and low vitamin E uptake [94].

Within hereditary haemochromatosis patients, carriers of the Val allele have a higher prevalence of cardiomyopathy [95].

Mutant protein has 30–40% lower activity.

Predicted to be functionally neutral.c

aAll of these SNPs were heterozygous in HuRef.
bOR = odds ratio. We note that these associations should be interpreted with caution because there are disagreements in the published literature [94,96–98]. Additional

genotype-phenotype relationships for this individual can also be found in Table 13 of [16].
cThree nsSNPs have been shown to cause reduced protein activity. Of these, two are predicted to affect function.
dThree nsSNPs associated with disease but for which enzymatic assays have not yet been carried out (to the best of our knowledge) and are presumed to be involved in

disease. It is possible that these nsSNPs are not the etiological variants but instead they could be in linkage disequilibrium with the etiological variants. One of these
three nsSNPs is predicted to affect protein function.

doi:10.1371/journal.pgen.1000160.t002
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regions in disease regions are the most selectively constrained

regions and repeats are the least. Some diversity values and trends

have been reported in previous publications [6–8,52,53], and our

results are in agreement with these values. However, to our

knowledge this is the first study with such an extensive list of

regions. We also find indels are significantly under-represented in

coding regions; there is a 43:1 SNP:indel ratio for coding regions

compared to a 7:1 SNP:indel ratio genome-wide. It is reasonable

to observe stronger selection against indels in coding regions where

they can introduce frameshifts.

We further explored if the observed HuRef variation could

indicate whether certain genes were under stronger selective

constraints than others. We identified 538 genes containing

common nsSNPs located in conserved regions of the protein and

are predicted to affect protein function. We called this set of genes

the Commonly-Affected genes. In parallel, we identified 79 genes

containing rare nsSNPs predicted to affect protein function, and

we termed this set the Rarely-Affected genes.

We hypothesized that Commonly-Affected genes would be

under weaker selective constraints since predicted-protein-affect-

ing SNPs, common in the human population, were found in these

genes. Ka/Ks, is a metric used to quantify selection of a gene and is

calculated as the ratio of the nonsynonymous (amino-acid

affecting) substitution rate to the synonymous substitution rate. A

high Ka/Ks ratio indicates that a gene is undergoing weak

selection, although positive selection is also a possibility if Ka/Ks is

.1 across the entire gene or part of the gene [54]. We observe that

the Commonly-Affected genes tend to have higher Ka/Ks ratios

than the Rarely-Affected genes (p = 0.09; Figure 6). This suggests

that Commonly-Affected genes may not be under strong selective

constraints. Presumably, mutations affecting gene function in the

Commonly-Affected genes will not have significant consequences

on human health, which is why these predicted-protein-affecting

nsSNPs can rise to high allele frequencies. In support of this

hypothesis, the Commonly-Affected genes are dominated by

olfactory receptors (78/538) which is consistent with the previous

observation that humans do not depend on olfaction to the same

extent as other species [55].

In the future, extending this type of analysis to nsSNPs from

HapMap or additional human genomes may allow identification

of additional Commonly-Affected genes. This could help improve

the scientific community’s knowledge of the human genome by

identifying which genes may not play an important role in human

health if mutated.

Comparing Individual Genomes
We also compared the genome properties of Dr. James Watson

[20] to those of Dr. Craig Venter. SNP diversity rates based on Dr.

Watson’s genome are slightly elevated compared to Dr. Craig

Venter’s (Table 3), but in general, follow a similar trend as stated

previously. The one exception is simple repeats, which have a 2-

fold higher SNP diversity rate in Dr. Watson compared to Dr.

Venter; this may be due to differences between sequencing

technologies.

Table 3. Diversity Rates for Autosomal Chromosomes.

SNP Diversity
(61024)a (based
on Dr. Venter’s
genome)

Indel Diversity
(61024)b (based
on Dr. Venter’s
genome)

SNP Diversity
(61024)c (based
on Dr. Watson’s
genome)

Total 6.2 0.9 6.5

Gene Regions

CDS 3.6 0.08 Filtered: 0.09 4.0

CDS of disease
genes

2.9 0.06 Filtered: 0.04 3.0

Constitutive exons 3.5 0.08 Filtered: 0.08 4.0

Alternative exons 4.6 0.1 Filtered: 0.06 4.8

59UTR 4.4 0.3 4.9

39UTR 4.7 0.7 5.1

Splice sites 4.0 0.6 4.6

Promoter ( 1 kb
upstream)

5.4 0.8 6.1

Introns 5.6 0.9 6.2

Conserved Elements

All 4.3 0.5 4.9

Intronic conserved 3.8 0.5 4.3

Intergenic
conserved

4.7 0.5 5.2

Repeats

All 6.6 1.2 7.5

Alu 7.2 2.6 7.5

MIR 5.6 0.3 6.1

MER 6.3 0.5 7.0

LTR 7.2 0.4 8.0

L1 6.6 0.6 7.2

L2 5.6 0.4 6.3

Simple repeats
(xxx)n

8.8 15 19

aThe diversity rates based on Dr. Venter’s and Dr. Watson’s genomes are
probably underestimated by ,25%, the percentage of heterozygotes missed
due to low read coverage [16,20].

bFor coding indels, we show the diversity values before and after filtering. Some
diversity values for indels are higher after filtering because homozygous indels
were re-classified as heterozygous indels.

cFor Dr. Watson’s genome, we assume that the entire genome was covered by
reads, which will also lead to an underestimate (see Methods). There is a large
difference between the diversity values for Dr. Watson’s and Dr. Venter’s
genome for simple repeats. This may be due to the methodological differences
between Sanger and 454 technologies.

doi:10.1371/journal.pgen.1000160.t003

Figure 6. The Ka/Ks ratios of Commonly-Affected genes and
Rarely-Affected Genes. Commonly-Affected genes have a higher Ka/
Ks ratio than Rarely-Affected genes, which suggests that Commonly-
Affected genes are under weaker selection.
doi:10.1371/journal.pgen.1000160.g006
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Of the 3.1 million SNPs in Dr. Venter’s genome that map to the

NCBI genome, 56% are shared with Dr. Watson. There are

606,719 and the 288,723 novel SNPs that map to the NCBI

human genome in Dr. Watson’s and Dr. Venter’s genomes,

respectively. One possible reason for the smaller number of novel

SNPs in Dr. Venter’s genome is because Dr. Venter’s genome is

partially represented in the Celera human genome assembly

[16,56], and variants have been mined from the Celera assembly

and subsequently deposited in dbSNP [57]. Of the novel SNPs,

only 32,528 SNPs are shared between the two individuals. This

demonstrates the value of sequencing additional human genomes

to discover novel variants.

We compare the number of nsSNPs and coding indels between

the two exomes (Table 4). Similar numbers of nonsynonymous

variants are detected in both individuals. However, 14% and 20%

of nsSNPs are predicted to affect function in Dr. Venter’s and Dr.

Watson’s exomes, respectively. One possible reason for this

difference could reside in the different prediction algorithms

employed [20,30,33]. Future analyses that use a standardized

approach may clarify this apparent difference. The number of

indels in Dr. Watson’s genome is less than half of the number of

indels we observe in HuRef (Table 4), most likely because 1 bp

indels were discarded [20]. As more individuals are sequenced,

scientists will be able to establish general trends and the average

values for metrics that characterize a human individual’s genome.

Discussion

Coding exons are believed to be rich in functional variation

because many coding mutations have been found to cause

phenotypic effects [58]. As a result, re-sequencing projects tend

to focus on coding regions [5–11], multiple technologies that

specifically target the exome are being developed [13–15,58], and

the 1000 Genomes Project may specifically target the exome [12].

This motivated us to focus on the variation in an individual’s

exome to see what insights could be gleaned. Protein-coding exons

are thought to amount to a little less than half of the functional

portion of the genome; noncoding highly conserved regions

constitute the other half [59–62]. We did not analyze noncoding

variants even though they can be involved in disease [3,63–66]

because exons are the best characterized regions that correlate to

phenotypes and it is difficult to characterize the impact of

noncoding variants at this time. As our understanding of non-genic

regions increases, so can we expand our interpretation since the

data for this individual’s entire genome is available.

Personalized Genomics Today
This is the first study of an individual’s exome and we establish

what one may expect to observe from the variation in the exome of

an individual. We show that the majority of coding variants in a

human are neutral or nearly neutral. This is not unexpected, since

we know that this genome creates an individual who has survived

past 60 years of age. We also find that within an individual, the

basic principles of genetics are followed. Additionally, we

examined the variation in genes known to be involved in disease,

and found no indication that the individual should have a severe

disease, which matches the phenotype currently known.

Despite having a human’s complete genome sequence, we are

only at the tip of the iceberg for understanding how an individual’s

genotype and phenotype are related. One significant challenge is

that the phenotypic effects of the majority of genes are unknown.

Currently, only 7% of genes are annotated with OMIM disease

associations so that it is difficult to predict the phenotypic effects of

variants for a large proportion of genes. If one is to rank genes by

importance and effect on phenotype, then based on the results of

this study, one might consider that genes containing PTC-SNPs,

frameshifting indels, and damaging nsSNPs that are common in

the human population to be under weak selection, and variants in

these genes may not be as relevant to human health. Several

groups have used gene ontology, literature, and other sources to

predict potential disease genes [67,68], we propose that one can

also use observed human variation to increase our understanding

of the human genome.

Even if a gene is known to be involved in disease, it is difficult to

understand if a variant in the gene will have a phenotypic effect.

We found that 99% of the nsSNPs in disease genes could not be

characterized by current literature. Different mutations in the

same gene can cause different phenotypic effects [49], thus making

it difficult to interpret possible phenotypes. Furthermore, some

variants have phenotypic effects only under certain environments

(see SOD2 and BDNF in Table 2 and [48]). Also, when looking at

complex phenotypes, multiple variants in coding and non-coding

regions are likely to be involved [63–66]. This genetic complexity,

as well as exposure to various environmental factors, will need to

be taken into account in assessing risk for various diseases.

How can geneticists start to grasp the significance of phenotype-

genotype correlations? This question is especially relevant to

companies offering personalized genomics to their consumers (e.g.

23andMe, Navigenics, deCODE Genetics). When looking

amongst the human population, there are many rare SNPs, but

when looking at a single human individual, the majority of the

SNPs are common [6,69,70], and in this study we estimate that

.80% of the nsSNPs in an individual are common. Therefore,

understanding which common variants are involved in common

disease will greatly benefit an individual, because common variants

account for a significant fraction of the variation in each human.

Recent genome-wide association studies have identified common

variants implicated in disease [71–73] and these studies will

continue to find common disease-associated variants in the near

Table 4. Characterization of Dr. Venter’s and Dr. Watson’s exomes. Numbers for Dr. Watson’s exome are taken from [20].

Dr. Venter’s Exome Dr. Watson’s Exome

Total Number of Nonsynonymous SNPs 10,389 10,569

Number of Novel Nonsynonymous SNPs 772 (7% of total nsSNPs) 1,573 (15% of total nsSNPs)

% nsSNPs predicted to affect protein function* 14% (7,781 predicted on) 20% (3,898 predicted on)

Number of Coding Indels 739 345**

*Different prediction algorithms were used [30,33], and this may account for the difference between the two exomes.
**Indels of size 2 bp and greater were considered; 1 bp indels were discarded. If we removed 1 bp indels from Dr. Venter’s exome in order to compare with Dr. Watson’s

exome, Dr. Venter would have 423 coding indels.
doi:10.1371/journal.pgen.1000160.t004
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future. These discoveries will be valuable for interpreting a large

proportion of an individual’s genome. However, one should be

cautious in the interpretation of these variants because variants

with low associated risks may not necessarily have good

predictability in the clinical setting [44,45].

In contrast, rare variants are harder to study because genome-

wide association studies are insufficiently powered to detect rare

variants [4]. We found that a higher fraction of rare nsSNPs were

predicted to affect protein function compared to common nsSNPs,

in agreement with previous studies [9,10,35]. This suggests that a

small proportion of a large number of common variants and a

larger proportion of a small number of rare variants will contribute

to the health of a human individual. Genome-wide association

studies tend not to have the power to detect rare etiological

variants [4] so that predicting whether a rare mutation in an

individual causes disease without any other phenotypic informa-

tion is extremely difficult. Therefore, one of the major future

challenges in personalized genomics is the interpretation of the

effects of rare variants found in an individual, especially if this

information will be relayed back to the individual and could

impact the person’s lifestyle.

In addition to interpretation and analysis, much effort was

expended in ensuring that a variant was authentic (see Methods).

There could be unintended negative consequences for telling a

person that they have a disease variant, when in actuality the

variant could be detected in error. Common reasons for our false

positive variant calls were technical sequencing error, low

sequence coverage, and low-complexity sequence. When inter-

preting an individual’s genome that can potentially impact a

person’s lifestyle, manual curation, editing, and verification by

other technologies seems prudent.

Improving the Currently Available Reference Human
Genome Sequence

The human genome sequence has had a significant impact on

research since its availability in 2001 [56,74], but our analysis

suggests that rare or erroneous alleles may have been incorporated

into the NCBI human genome sequence, and that this sequence

can be corrected and improved. Because one of the goals of the

1000 Genomes Project is to improve the human reference

sequence [75], our study points to where such improvements

can be made. We find that ,80% of the homozygous SNPs in

HuRef tend to be the major allele in the population (Figure 1), and

,20% of the homozygous HuRef nsSNPs had allele frequencies

equal to 1. Thus, at the majority of HuRef homozygous positions,

the NCBI human reference sequence has the minor allele. If the

scientific community sequenced many individuals, it could

determine the major allele at each position in the genome. If the

major allele was incorporated into the coding sequence, and this

was used in subsequent gene prediction models, then the

predominant form of the protein in the human population would

be represented instead of a rarer form. Also, by using the common

allele instead of the sometimes rarer NCBI allele, the number of

perceived variation would be reduced when comparing human

genomes. For example, if the NCBI human genome sequence

were to incorporate the major allele and HuRef was then

compared to this modified NCBI genome sequence, then we

estimate the new number of HuRef homozygous SNPs genome-

wide would be ,300,000 (0.2 * 1.45 million [16]) and the number

of total variants between HuRef and the modified NCBI would

reduce from 4.1 million [16] to 3 million. Similarly, if we remove

the homozygous nsSNPs that correspond to the common allele in

European population (AF.0.5), then the fraction of rare nsSNPs

increases by 6%. This demonstrates the importance of the human

genome reference sequence for the evaluation of variation in

individual human genomes.

The scientific community could also make use of coding indel

variation to correct and improve gene annotation. Indels near

exon boundaries appear to provide the correct gene models to give

the appropriate protein product (Figure 5, for example) [76]. Gene

annotation for translation starts and stops can be further refined

based on our observation that coding indels are found frequently

at the N- or C-termini of their proteins. Frameshifting-indels at the

N-termini of proteins could indicate that a translation start site

further downstream may be the true start codon, or at least an

alternative start codon can still yield a functional protein. Indels

such as these may be polymorphic and so accounting for these

indels could simplify future analyses on exomes as they could be

quickly regarded as functionally neutral and reduce the total

number of indels that need to be analyzed.

We also observed a trend where common predicted-protein-

affecting nsSNPs, PTC-SNPs and frameshift-inducing indels tend

to occur in hypothetical genes. This suggests that these genes are

not under strong selective pressures and mutations in these genes

may not be relevant in the human population. Future studies with

more human sequences identifying additional nonfunctional

mutations in genes would help us confirm whether these genes

are essential.

Sequencing of Many Human Genomes
Our exome analysis is currently limited to one individual.

However, there will be significant benefits from sequencing many

individuals whose phenotypes are known. One can envision

collecting the genetic variation from these genomes and grouping

individuals based on their respective phenotypes. Then for each

phenotype, one may discover the genes which are involved in

disease by looking collectively at the rare and common variants

[11,77,78]. The analysis can also be strengthened by analyzing

pathways instead of individual genes [78].

Furthermore, whole genome sequencing means we need not be

limited to the exome. Using whole genomes, one could look for

clustered mutations in conserved regulatory elements, especially

since many association studies have found disease-associated loci

in non-coding regions [63–66]. To assess the role of noncoding

variation, we examined HuRef variation in and around genes

involved in the melanoma pathway because the HuRef donor has

reported a case of melanoma (Figure S7). We found that the

majority of the variants occurred in conserved noncoding regions.

This suggests that it may be insufficient to sequence just the exome

and it is important to understand all types of variation, coding and

noncoding, as well as interactions with the environment when

studying phenotypes.

Conclusion
We have filtered the initial set of ,12,500 coding variants that

affect protein sequence to a substantially smaller set that are most

likely to have major effects on gene function (Figure 7). The trends

that we have detected suggest we can reduce the number of

putative functional coding variants by ,8-fold and will provide a

future guide for how one can analyze coding variants when

additional human genomes are sequenced in the future.

Additionally, the variants found here and in future studies may

be used to improve our understanding of the human genome by

correcting gene annotation and identifying genes not likely to be

relevant to human health. We anticipate that this study will help

guide the scientific community’s expectations and experimental

design in future genome sequencing projects.
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Methods

Variant Set
We used the filtered variant set as described in [16]. We define

homozygous variants as loci where the alleles differ from the NCBI

reference genome, but are the same within the HuRef assembly.

This variant set was used to generate the diversity values in Table 3.

For all other sections in this manuscript, quality inspection of

variants was performed. To assure the quality of novel coding

variants, we inspected manually the sequencing traces of novel

heterozygous nsSNPs, all heterozygous PTC-SNPs, and all coding

indels less than 20 bp in length. The sequence traces for these coding

variants were extracted and three people independently reviewed the

traces, by examining the quality of the traces and determining

whether the variant was correctly called. If at least two people

confirmed the existence of the variant, the variant was deemed

acceptable, otherwise the variant was discarded. 35% (424/1196) of

the novel heterozygous nsSNPs, 12% (9/73) of the heterozygous

PTC-SNPs, and 33% (355/1088) of the coding indels were

discarded. This may suggest that a significant fraction of the variants

reported in [16] are dubious. However, this analysis is restricted to

coding variation which is known to be under strong selection

compared to the rest of the genome. Hence, there will be fewer real

variants in coding regions and a higher proportion of the novel

coding variants will be false positives. 20% (123/611) of the

homozygous indels were reclassified as heterozygous because there

was trace evidence for a second allele.

The importance of filtering is demonstrated with the following

observation. Manual inspection reduces the number of novel

nsSNPs by a third, but especially filters out a higher proportion of

predicted-protein-affecting nsSNPs. Prior to filtering, the number

of novel heterozygous predicted-protein-affecting nsSNPs is 195,

after filtering this is more than halved to 89 novel nsSNPs

predicted to affect protein function.

SNP Characterization
SNPs not found in dbSNP v. 126 [43] were designated as novel.

All allele frequencies were based on the CEU samples genotyped

from the HapMap Project [24,25], unless otherwise stated. Allele

frequencies for 72% (3429/4785) of the homozygous nsSNPs and

63% (3544/5604) of the heterozygous nsSNPs were obtained. For

heterozygous SNPs, we report the minor allele frequency (MAF).

For homozygous SNPs, we report the CEU allele frequency of the

allele observed in the HuRef genome. We define common SNPs as

SNPs with allele frequencies . = 0.05 and rare SNPs with allele

frequencies ,0.05.

The amino acid changes resulting from coding variants were

determined by SNPClassifier, an internally developed software

tool. The HuRef variants, their alleles, and positions in genomic

coordinates, are provided as input into SNPClassifier. Annotation

is automatically retrieved from Ensembl and is used to assign

variants to defined gene categories. Variants in or near genes can

be subtyped as: promoter (1 kb upstream of the transcription start

site), intronic, 59 UTR, 39UTR, coding, or downstream of the

transcript (1 kb). Coding SNPs are designated either as synony-

mous or nonsynonymous and coding indels are designated as

either frameshift or amino acid insertions/deletions. The resulting

Figure 7. A summary of the nonsilent coding variants and their observed trends.
doi:10.1371/journal.pgen.1000160.g007
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protein product from coding indels that introduce frameshifts is

also output.

SIFT predictions for nonsynonymous SNPs were obtained by

using SIFT 2.1.1 [33]. The protein sequences containing

nonsynonymous SNPs were searched against SwissProt-Trembl

54. Confidence in predictions is measured by the median sequence

information, we used a cutoff of 3.5 for confidence. Approximately

75% (7,781/ 10,389) of the nsSNPs had SIFT predictions, the

remaining 25% did not have a sufficient number of homologous

sequences that are needed for prediction.

Estimating Number of Rare NsSNPs
We estimate the number of rare nsSNPs with allele frequency

(AF) ,0.05 in an individual. For the 67% nsSNPs with known AFs

from the HapMap Project, there are 56 rare homozygous nsSNPs

and 326 rare heterozygous nsSNPs. For the 1,356 homozygous

nsSNPs with unknown AFs, the percentage predicted to affect

function is similar to that seen for homozygous SNPs with known

AFs (Figure S1). If the homozygous nsSNPs had a higher

proportion rare SNPs, then a higher fraction should be

predicted-protein-affecting but because they are similar, we

assume that the homozygous nsSNPs with unknown AFs have a

similar proportion of rare SNPs as the homozygous nsSNPs with

known AFs. Because 1.6% (56/3429) of the homozygous nsSNPs

with known AFs are rare, we estimate ,22 (1.6% * 1,356) of the

homozygous nsSNPs with unknown AF are rare, so in addition to

the 56 rare homozygous nsSNPs with known AF, there is a total of

,80 rare homozygous nsSNPs in this individual. For heterozygous

nsSNPs, there are 326 heterozygous rare nsSNPs with known

MAF, and 2,060 heterozygous nsSNPs with unknown MAF. From

sequencing, as much as a quarter of the heterozygous nsSNPs with

unknown MAF could be false positives, although this estimate is

likely to be an upper bound (see Sequencing for Variant

Validation in Methods). Therefore the range of novel heterozy-

gous nsSNPs falls within ,1,550–2,060. We also ascertained from

sequencing that ,75% of the heterozygous novel nsSNPs are rare.

Therefore, we estimate that ,1,200–1,550 of the heterozygous

nsSNPs with unknown MAFs are rare and in total, there are

,1,500–1,900 rare heterozygous nsSNPs. Thus, we estimate

,1,600–2,000 rare nsSNPs in this individual’s genome, and

,95% of the rare nsSNPs are in heterozygous state.

Indel Characterization
For an indel’s location, we calculated the relative position of the

indel in the protein by taking the first amino acid position affected

by the indel. We divided the position by the total length of the

protein, so that a relative protein position value close to 0 indicates

that the indel affects the N-terminus of the protein, and a relative

protein position value close to 1 indicates that the indel affects the

C-terminus of the protein. We designate that an indel affects the

N-terminus of a protein if the relative protein position is between 0

and 0.1; an indel affects the C-terminus of a protein if the relative

protein position is between 0.9 and 1.0. Thus, an indel is said to

affect the N-terminus or C-terminus of the protein if it lies within

the first 10% or last 10% of the open reading frame, respectively.

To examine whether an indel occurs in a conserved region of

the protein, the sequence alignment of the protein sequence with

homologues from other organisms were retrieved from Ensembl.

At every position in the protein alignment, sequence conservation

was calculated [79]. The conservation value at the indel’s position

is compared with all other positions, and the percentile rank is

calculated. If the number of sequences in the alignment was less

than 10, the data point was removed.

Genes Missing Exons
The HuRef assembly was mapped by an assembly-to-assembly

comparison to the NCBI build 36 human reference genome [16].

Regions in NCBI reference that were missing in the human

diploid assembly were identified. We intersected the missing

regions with coding exons greater than 50 bp in length and

ensured that at least 50% of the exon was missing from the HuRef

assembly in order to consider the exon. To double-check that the

missing sequence was not in unassembled sequence, we searched

the exonic sequence using MEGABLAST [80] against the HuRef

assembled sequence and the unassembled singletons. MEGA-

BLAST hits greater than 95% identify and with 50 bp minimum

length were kept. We decided exons were not truly missing if

.90% of its length were covered by these MEGABLAST hits.

The final set consisted of 1,454 exons in 1,046 genes.

We removed the genes located on sex chromosomes because the

sex chromosomes are known to have low coverage [16]. After

removing these genes, there were 719 genes with 880 missing or

partial exons. To investigate read depth for this set of exons, we re-

mapped all untrimmed reads from [16] to the set of exons using

‘snapper’ (http://kmer.wiki.sourceforge.net/), a seed-and-extend

mapper. All 20-mer seeds were extended, and any alignments over

94% identity were reported. As a control, we also remapped reads

to a set of exons that were randomly selected from all exons.

Whereas the control exons show a normal distribution with the

median number of reads centering at 7.6, the missing exons show a

bimodal distribution with either very few reads or many reads

(Figure S5b). This reflects that genes with ‘‘missing’’ exons are

most likely due to assembly issues with repetitive regions or low

coverage. 66% of the ‘‘missing’’ exons have an average read depth

of less than 2 reads, which emphasizes the importance of adequate

coverage in a human genome.

Sequencing for Variant Validation
We generated PCR primers to 15 regions in 12 genes with

‘missing exons’, 9 PTC-SNPs, 15 coding indels, and 26 novel

heterozygous nsSNPs (Table S2). These 65 PCR primers

consistently amplified their cognate genomic regions in 46

unrelated CEU individuals and the HuRef sample. The DNA

for the HuRef sample was extracted from whole blood (see

Methods in [16]). We sequenced the PCR products using Sanger

dideoxy sequencing (see [16] for sequencing protocol). The 46

unrelated CEU individuals were part of the HapMap CEU panel,

and their Coriell identifiers are provided in Table S2.

Of the 26 heterozygous novel nsSNPs, 6 failed to be confirmed

in the HuRef sample and instead matched the NCBI allele. There

was also 1 nsSNP that failed to be confirmed in the HuRef sample

but was observed in other samples and this was considered to be a

false negative. This suggests that the false positive error for

HuRef’s novel nsSNPs is ,25% (23% = 6/26). This estimate is

likely to be an upper bound due to the following reason. The 26

nsSNPs occurred in non-hypothetical genes, and nsSNPs in

hypothetical genes may be under little or no selective pressures

compared to nsSNPs in non-hypothetical proteins and the former

can reach high allele frequencies. Hence, this false positive error

may be inflated. For the novel nsSNPs that we could confirm in

HuRef, the mean MAF of the novel SNPs was 0.09 and 74% (14/

19) of the SNPs were rare (MAF,0.05).

For the PCR products spanning missing exons, 14 regions from

11 genes were successfully amplified in the HuRef sample and this

confirmed that HuRef is not missing exons for these genes (Table

S2). In the 12th gene PRED58, a 66 bp coding deletion in HuRef

was observed but this was seen in all other DNA samples,

suggesting that NCBI has the rare or erroneous allele.

Genetic Variation in an Individual Human Exome
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Genome Annotation
All genome coordinates are with respect to NCBI build 36 and

all gene designations are with respect to Ensembl v. 41. A gene was

considered hypothetical if in its gene description, it had no

description or was described as an ‘‘open reading frame’’, an ‘‘orf’’

which signifies an open reading frame, a cDNA clone, putative,

probable, uncharacterized, ‘‘similar to’’ another protein, a

pseudogene, a fragment, hypothetical, a novel protein, novel

transcript, or if it was invalid as described in Clamp et al. [81].

Under this classification, there were 20,561 non-hypothetical

genes and 10,624 hypothetical genes consisting of 29,401,727 bp

and 6,176,706 bp respectively. Ka/Ks is the ratio of the

nonsynonymous substitution rate to the synonymous substitution

rate. Ka/Ks values based on human-mouse orthologous gene pairs

were retrieved from Ensembl Biomart. In Table 3, constitutive

exons are those coding exons that are expressed in 100% of the

transcripts for its given gene. If a coding exon was present in

,50% of the transcripts, it was designated as an alternative exon.

Splice sites include the 20 bp within exon boundaries (10 bp

intronic, 10 bp exonic for each exon boundary).

Segmental duplication regions were taken from the UCSC

genomicSuperDups file (.1 kb length, .90% identity). Tandem-

RepeatFinder [82] was used to designate tandem repeats using the

parameters match = 2, mismatch = 5, delta = 5, PM = 75, PI = 20,

minscore = 35.

Non-genic conserved regions were taken from phastConsEle-

ments17way that were . = 50 bp in length. If any part of the

PHAST region intersected with coding, 59UTR, and/or 39UTR,

the PHAST conserved element was removed. Therefore, the

conserved regions in Table 3 were not overlapping or bordering

coding, 59UTR, or 39UTR regions.

Sequence Diversity
We estimate diversity h [83] as h= K/aL, where a~

Pn

i~2

1
i{1ð Þ. K

is the number of variants identified, L is the number of base pairs,

and n is the number of alleles. For indels, K is the number of indel

events. In the case of a single diploid genome, n = 2, so a reduces

to 1. Then h= K/L which is simply the number of heterozygous

variants divided by the length sequenced. The 95% confidence

interval for h is [0, h+2h] or [0, 3h], as calculated in [16].

Diversity values were calculated for the various types of regions

listed in Table 3 and the counts for these values can be found in

Table S5. We also attempted to look at the diversity values for

gene ontology categories, but were unable to do so because of the

low numbers of coding variants per gene (data not shown).

Diversity values for Dr. James Watson’s genome were calculated

using the 1.86 million heterozygous SNPs reported in [20]. For the

denominator L, we assumed the entire chromosome was covered by

reads and used the chromosome lengths from the UCSC genome

browser. If this assumption is not true, then an inflated L will

underestimate h. Diversity values for indels were not calculated

because indel data was not available for Dr. Watson’s genome.

Supporting Information

Figure S1 Protein-affecting predictions for nsSNPs that are

novel or in dbSNP with unknown allele frequencies. When

categorized by zygosity, the percentage of predicted-protein-

affecting nsSNPs is similar between the different categories for

homozygous nsSNPs, but not for the heterozygous nsSNPs.

Found at: doi:10.1371/journal.pgen.1000160.s001 (0.25 MB TIF)

Figure S2 Diversity rates for indels, based on size.

Found at: doi:10.1371/journal.pgen.1000160.s002 (0.12 MB TIF)

Figure S3 An example of an indel that occurs at the N-terminus

of the gene MTCH1. This indel occurs in the first exon, about

30 bp after the translation start site. A start codon just downstream

of the indel may serve as an alternative translation start site. Thus,

the indel may be functionally neutral.

Found at: doi:10.1371/journal.pgen.1000160.s003 (0.17 MB TIF)

Figure S4 Conservation of coding indels with size 3n that are

not located at the N- or C-termini of the protein, near exon

boundaries, or in tandem repeats. The x-axis is the percentile of

amino acid conservation at the indel’s location relative to all of the

positions in the protein. A low percentile indicates that the indel is

located at a nonconserved position in the protein. A high

percentile indicates that the indel is located at a conserved

position, relative to all other positions in the protein.

Found at: doi:10.1371/journal.pgen.1000160.s004 (0.21 MB TIF)

Figure S5 A) The proportion of exons in copy number regions,

tandem repeats, and RepeatMasker regions. The solid bars

represent the percentages observed for exons missing from the

HuRef assembly; the hatched bars represents the percentages

observed for all exons. B) The coverage of exons missing from the

HuRef assembly (solid line) has a bimodal distribution. As a

control, the coverage of exons randomly selected from all exons is

shown (dashed line) and is normally distributed.

Found at: doi:10.1371/journal.pgen.1000160.s005 (0.28 MB TIF)

Figure S6 A) Comparison of the allele frequencies for nsSNPs in

disease genes versus nsSNPs in all genes. The distributions are

similar and not significantly different (p = 0.97). B) The percentage

of nsSNPs predicted to affect protein function in disease genes is

similar to nsSNPs in all genes.

Found at: doi:10.1371/journal.pgen.1000160.s006 (0.31 MB TIF)

Figure S7 Genes involved in the melanoma pathway [99], overlaid

with HuRef variants. For each gene symbol, a pie chart represents the

HuRef variants found in or within 1 kb of the gene. Variants that

were in coding, UTR, and conserved regions were counted. If a gene

has no pie chart, no variants were found in these regions. The size of

the pie chart corresponds to the number of variants, and colors

correspond to the fraction of variants for each type. Of the 67 variants

found in/near these genes, only 1 was nonsynonymous. The nsSNP

was in TP53, and it is frequent in the CEU population (MAF = 0.23).

63% of the variants were in conserved regions.

Found at: doi:10.1371/journal.pgen.1000160.s007 (0.49 MB TIF)

Table S1 Pre-termination codon SNPs.

Found at: doi:10.1371/journal.pgen.1000160.s008 (0.06 MB XLS)

Table S2 Variants validated by targeted resequencing.

Found at: doi:10.1371/journal.pgen.1000160.s009 (0.03 MB XLS)

Table S3 nsSNPs in disease genes.

Found at: doi:10.1371/journal.pgen.1000160.s010 (0.40 MB XLS)

Table S4 Indels in disease genes.

Found at: doi:10.1371/journal.pgen.1000160.s011 (0.03 MB XLS)

Table S5 Diversity rates.

Found at: doi:10.1371/journal.pgen.1000160.s012 (0.04 MB XLS)

Text S1 Supplemental text.

Found at: doi:10.1371/journal.pgen.1000160.s013 (0.03 MB DOC)
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