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Abstract: Rice seed is a pivotal reproductive organ that directly determines yield and quality. Long
non-coding RNAs (lncRNAs) have been recognized as key regulators in plant development, but the
roles of lncRNAs in rice seed development remain unclear. In this study, we performed a paired-end
RNA sequencing in samples of rice pistils and seeds at three and seven days after pollination (DAP)
respectively. A total of 540 lncRNAs were obtained, among which 482 lncRNAs had significantly
different expression patterns during seed development. Results from semi-qPCR conducted on
15 randomly selected differentially expressed lncRNAs suggested high reliability of the transcriptomic
data. RNA interference of TCONS_00023703, which is predominantly transcribed in developing
seeds, significantly reduced grain length and thousand-grain weight. These results expanded the
dataset of lncRNA in rice and enhanced our understanding of the biological functions of lncRNAs in
rice seed development
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1. Introduction

Long non-coding RNA (lncRNA) refers to transcripts longer than 200 nucleotides and are functional
RNA molecules which have no discernable coding potential [1,2]. In eukaryotes, lncRNA could be
transcribed from either genic or intergenic regions of the genome by RNA polymerase II and III
and shares many common features with messenger RNAs (mRNAs), including 5′ capping, splicing
and polyadenylation [3]. lncRNAs have been classified into three categories based on their genomic
locations and in relation with the protein-coding genes. These include lincRNAs (long intergenic
non-coding RNAs), intronic non-coding RNAs and lncNATs (long nature antisense transcripts) [4].
Previously thought of as meaningless transcriptional noise, lncRNA has now been fully recognized as
an important regulator in diverse biological processes across eukaryotes such as cell cycle regulation,
cellular growth and differentiation [5]. In humans, disorders of lncRNA expression have been associated
with cancer and used as molecular markers in medical diagnosing. HOTAIR encoding an intergenic
lncRNA was a well-documented example which was implicated in breast cancer development [6].
Various regulatory mechanisms have been proposed for the lncRNA function, including epigenetic
modulation, transcriptional regulation, promoter occlusion, genomic imprinting, alternative splicing,
subcellular transport and as a decoy to catch proteins or microRNAs [4].

Given its critical roles in gene regulation, lncRNAs have received much attention in the science
community. For plants, a large number of lncRNAs have also been identified and proved to play crucial
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roles in gene silencing, reproductive development, flowering time regulation, stress responses and
other important developmental pathways [7]. The famous antisense lncRNAs COOLAIR (cold-induced
long antisense intragenic RNAs) was considered to function in vernalization of Arabidopsis through
transcriptional interference [8]. In rice, the Long-Day Specific Male-fertility Associated RNA (LDMAR)
has been proved to be required for normal pollen development under long-day conditions [9].
Additionally, more lncRNAs have been brought to light in plants. However, only a few lncRNAs have
been clarified with a clear regulatory mechanism at present.

Systematic identification of lncRNAs at the genome-wide level is certainly crucial to understanding
their biological functions. Wang et al. [10], using the Reproducibility-based Tiling-array Analysis
Strategy (RepTAS) and strand-specific RNA sequencing (RNA-seq), predicted 37,238 lncNATs
in Arabidopsis and investigated their expression in response to light. Using the directional and
non-directional high-throughput RNA-seq experiments, 27,065 and 22,814 transcripts were identified
in rice and maize, respectively [11]. Strand-specific RNA-seq also revealed 2224 lncRNAs during rice
reproduction [12].

Rice (Oryza sativa L.) is a major food crop and model plant for biological research. As a
reproductive organ of rice, studying seed growth and development is of great significance. In this
study, we performed the paired-end RNA-seq with samples obtained from Nipponbare pistils, seeds
after flowering 3 and 7 days. We systematically identified 540 rice lncRNAs, among which 482 lncRNAs
showed differential expression during seed development. The stage-specific expression patterns of
15 lncRNAs were verified by semi-qRT-PCR. Moreover, an RNA interference (RNAi) mutant of a
seed-specific lncRNA TCONS_00023703 showed significantly reduced grain length and thousand-grain
weight, indicating that lncRNAs participate in the regulation of rice seed development.

2. Materials and Methods

2.1. Plant Materials

All plant samples used in this study were of the rice variety Oryza sativa L. ssp. Japonica cultivar
Nipponbare (NIP). Plants were planted in a paddy field in Hangzhou, Zhejiang Province under normal
conditions. For developing seed collection, each panicle was labelled on the anthesis day. Then, mature
pistils before pollination (termed as 0 days after pollination or DAP) and seeds after pollination at
3 and 7 days (termed as 3 and 7 DAP) were collected manually with glumes removed and frozen
immediately in liquid nitrogen for further analysis. Callus was induced from mature seeds according
to previous reports [13].

2.2. Paired-End RNA Sequencing

Seeds at 0, 3, 7 DAP were used for RNA-seq. Nanodrop (Thermo Fisher, Shanghai, China), Qubit
2.0 (Invitrogen, Carlsbad, CA, USA), and Agilent BioAnalyzer 2100 (Beijing, China) were used to
detect the purity, concentration, and integrity of RNA samples to ensure that transcriptome sequencing
was performed using qualified samples. Complementary DNA (cDNA) library construction and
paired-end sequencing were performed by Biomarker Technologies (Beijing, China). The cDNA library
concentration and insert size were detected using Qubit 2.0 and Agilent BioAnalyzer 2100, respectively.
The effective concentration of the library was accurately quantified using qPCR (Kapa Biosystems,
Woburn, MA, USA) to ensure the library quality. The resulting library was sequenced using an
Illumina Hiseq 2500 device (Illumina, San Diego, CA, USA) that generated the paired-end reads of
100 nucleotides.

2.3. The Long Non-Coding RNAs Prediction

The RNA-seq datasets were aligned to rice genome IRGSP-1.0 with TopHat2 to obtain mapped
reads [14]. Mapped reads were assembled to transcripts using Cufflinks and Scripture [15]. After
discarding known mRNAs and transcripts FPKM < 0.5 (fragments per kilobase of transcript per million
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fragments mapped) with potential coding capacity, the non-coding transcripts longer than 200 bp with
FPKM score ≥ 1.5 were identified as final rice lncRNAs from the samples. The potential coding capacity
of transcripts were screened through CPC (coding potential calculator), CNCI (coding-non-coding
index) and Pfam analysis (https://pfam.xfam.org/). If CPC score < 0, CNCI score < 0 and no Pfam
comparison result, the transcript was identified without coding potential and considered to be
potential lncRNAs.

2.4. Bioinformatic Analysis

The expression level of lncRNAs was measured with FPKM score, and both Fold Change ≥ 2 and
false discovery rate (FDR) < 0.01 served as screening standards of differentially expressed transcripts.
The prediction of target genes is based on distance (less than 10 kb) between lncRNAs and probable
target genes using genome annotation. Gene Ontology (GO) enrichment analysis of target genes was
performed against the Gene Ontology Consortium database (http://geneontology.org/).

2.5. RNA Extraction and Reverse Transcription

Total RNA was extracted from leaf, root, sheath, flower and callus using Trizol (Invitrogen).
The samples of pistil, seeds at 3, 7, 15 DAP were homogenized in sodium dodecyl sulfate (SDS)
RNA-extraction buffer (5 mM EDTA, 150 mM LiCl, 50 mM Tris-HCl, pH 8.0, 1% SDS) and initially
extracted with phenol-chloroform (1:1) before being extracted with Trizol as other tissues [16]. The
extracted RNA was treated with RNase-free DNase I (Takara, Beijing, China) at 37 ◦C for 30 min
and further qualified with agarose gel electrophoresis to ensure no genomic DNA contamination
before reverse transcription. Corresponding 2 µg RNA was reversed transcribed with random primers
using a First Strand cDNA Synthesis Kit ReverTra Ace-α (Toyobo, Osaka, Japan) according to the
manufacturer’s instructions.

2.6. Semi-Quantitative PCR and qRT-PCR Analysis

For semi-quantitative PCR, equal amount of cDNA from different tissues was amplified by
specific reverse transcription (RT) primers then electrophoresed in 1% agarose gel. The amounts of
transcripts were quantified against levels of transcripts from Actin (LOC_Os03g61970). Quantitative
real-time PCR (qRT-PCR) was performed on a CFX96 real-time system (Bio-rad, Hercules, CA, USA)
using Hieff UNICON® Power qPCR SYBR Green Master Mix (Yeasen, Shanghai, China) with three
biological replicates [17]. The specificity of amplified products was inspected by melting curves, and
the expression level was obtained by calculating the 2-∆∆CT values and normalized to Ubiquitin gene
(LOC_Os03g13170) [18]. The relevant primers used in this study were listed in Table S1.

2.7. RNA Interference Vector Construction, Plant Transformation and Phenotype Characterization

To confirm the functions of the identified lncRNA in rice seed development, 203 bp region of
TCONS_00023703 was amplified from NIP genomic DNA and inserted into the RNAi destination vector
pANDA by Gateway® Technology system (pENTRTM/TOPO® Cloning Kit, Gateway® LR Clonase®

II Enzyme mix) according to manufacturer’s instructions (Invitrogen). The recombinant vector was
introduced into NIP to generate knock-down mutants via Agrobacterium tumefaciens-mediated
transformation [13]. At least 100 mature filled grains were used to measure grain length, grain width
and 1000-grain weight using an SC-G Automatic test analyzer (Wseen, Hangzhou, China). Relevant
primers are listed in Table S1.

3. Results

3.1. Genome-Wide Identification of Long Non-Coding RNAs in Rice Developing Seeds

To identify long non-coding transcripts during rice seed development, we performed paired-end
RNA-seq on rice mature pistils before pollination (0 DAP) and seeds at 3, 7 days after pollination
(3 DAP and 7 DAP). Rice seed development starts from the pistils before pollination, further undergoes
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double fertilization, rapid proliferation and differentiation of the embryo, then the endosperm cells
gradually differentiate into aleuronic cells and starch storage cells and finally to mature seeds. Pistils
before pollination and seeds at around 3 and 7 DAP represent the three critical time points before
fertilization, rapid division and differentiation of rice seed, respectively [19]. The experiment finally
yielded 8.03 × 107, 6.59 × 107, 9.06 × 107 clean reads in 0, 3, 7 DAP datasets, respectively (Table
S2). As shown in Figure 1a, all the sequenced data are of high-quality scores and are suitable for
further analysis (Figure 1a). By aligning the sequences to the rice genome IRGSP-1.0 [20], we obtained
19.35 × 107 mapped reads (Table S2). The quality of the mapped data was further evaluated by testing
the (1) randomness of mRNA fragments; (2) length of inserted fragments; (3) degree of saturation of
RNA-seq datasets. Figure 1b–d showed normal inserted fragments size (with a peak of about 150 bp),
high randomness of RNA fragments and saturated number of detected genes (FPKM score ≥1 was
identified as expressed gene), indicating that the transcriptomic library covered most of the genome
and was suitable for the identification of lncRNAs.

Three criteria were used for lncRNAs identification in the current study. Firstly, the known coding
mRNAs (transcripts and their splices) were filtered out from the mapped reads. Secondly, largely
expressed transcripts with length ≥200 bp and FPKM ≥1.5 (calculated using Cufflinks) were selected.
In this step, 45,078 potential lncRNA transcripts were identified. Thirdly, these sequences were further
processed using algorithms CPC, CNCI and Pfam to assure non-existence of protein-coding domains
(Tables S3–S5). At last, we identified a total of 540 highly reliable lncRNAs from rice developing seeds
(Figure 2, Table S6).
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Figure 1. Quality score distribution of each raw data and quality assessment of transcriptome library for
0, 3, 7 days after pollination (DAP) seeds. (a) Quality score distribution of each raw data. The abscissa
is the number of sequencing and the ordinate is the quality score (10, 20, 30, 40 represent probability of
base identification error is 1/10, 1/100, 1/1000, 1/10000, respectively.). The depth of blue color indicates
the base-specific gravity, and the darker the color, the larger the proportion of the bases. (b) Inserted
fragments size of each raw data. (c) Randomness test of RNA fragments. The abscissa is the normalized
messenger RNA (mRNA) position, that is, each mRNA is divided into 100 intervals according to the
length, and then the number and proportion of mapped reads in each interval. (d) Saturation test of
transcriptome sequencing data.
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Figure 2. The Venn diagram of the potential long non-coding RNAs (lncRNA) transcripts screened by
coding potential analysis methods including CNCI (Coding-non-coding index), CPC (Coding potential
calculator), Pfam (Protein family) database analyses.

To study the basic characteristics of lncRNAs, we compared the lncRNAs with mRNAs (Figure 3).
The transcript length of lncRNAs (with peak at 600 nucleotides, ~66% are found within 200–1000
nucleotides (nt), with a mean length of 1147.2 nt) was generally shorter than protein-coding transcripts
(with peak at ≥3000 nucleotides, ~ 13.3% are found within 200–1000 nucleotides, with a mean length
of 2788.7 nt) (Figure 3a). About 74.8% lncRNAs had between one to fourteen exons with the highest
number between one and three (mean of 2.5 and a median of 2), while there are more than 30 exons
in the protein-coding transcripts, and the mean of exon number was 8.8 (median of 7) (Figure 3b). It
could be seen from Figure 3c that almost 64% of lncRNAs are with (less than 100 residues) or without
open reading frame (ORF), and a mean ORF length of 107.8. In contrast, about 85.7% of mRNAs had
longer ORF (more than 100 residues) and a mean ORF length of 241.9. Additionally, in terms of FPKM,
the transcriptional abundance of lncRNAs were significantly lower than that of mRNAs (Figure 3d).

Genes 2020, 11, 243 5 of 12 

 

 
Figure 2. The Venn diagram of the potential long non-coding RNAs (lncRNA) transcripts screened 
by coding potential analysis methods including CNCI (Coding-non-coding index), CPC (Coding 
potential calculator), Pfam (Protein family) database analyses. 

To study the basic characteristics of lncRNAs, we compared the lncRNAs with mRNAs (Figure 
3). The transcript length of lncRNAs (with peak at 600 nucleotides, ~66% are found within 200–1000 
nucleotides (nt), with a mean length of 1147.2 nt) was generally shorter than protein-coding 
transcripts (with peak at ≥3000 nucleotides, ~ 13.3% are found within 200–1000 nucleotides, with a 
mean length of 2788.7 nt) (Figure 3a). About 74.8% lncRNAs had between one to fourteen exons with 
the highest number between one and three (mean of 2.5 and a median of 2), while there are more than 
30 exons in the protein-coding transcripts, and the mean of exon number was 8.8 (median of 7) (Figure 
3b). It could be seen from Figure 3c that almost 64% of lncRNAs are with (less than 100 residues) or 
without open reading frame (ORF), and a mean ORF length of 107.8. In contrast, about 85.7% of 
mRNAs had longer ORF (more than 100 residues) and a mean ORF length of 241.9. Additionally, in 
terms of FPKM, the transcriptional abundance of lncRNAs were significantly lower than that of 
mRNAs (Figure 3d). 

 
Figure 3. Comparative analysis of mRNAs and identified lncRNAs. (a) Comparison of transcript 
lengths of lncRNAs and mRNAs. (b) Comparison of the number of exons of mRNAs and lncRNAs. 
(c) Comparison of the length of open reading frame (ORF) of mRNAs and lncRNAs. (d) Comparison 
of expression levels of mRNAs and lncRNAs. The ordinate indicates the logarithm of the sample 
expression amount FPKM (fragments per kilobase of transcript per million fragments mapped). 

Figure 3. Comparative analysis of mRNAs and identified lncRNAs. (a) Comparison of transcript
lengths of lncRNAs and mRNAs. (b) Comparison of the number of exons of mRNAs and lncRNAs.
(c) Comparison of the length of open reading frame (ORF) of mRNAs and lncRNAs. (d) Comparison
of expression levels of mRNAs and lncRNAs. The ordinate indicates the logarithm of the sample
expression amount FPKM (fragments per kilobase of transcript per million fragments mapped).
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3.2. The Identification and Verification of Differentially Expressed lncRNAs (DELncs)

The FPKM score (Table S7) was used to evaluate the transcriptional abundance of lncRNAs.
DELncs were defined as those lncRNAs with Fold Change ≥ 2 and FDR < 0.01. Out of the 540 lncRNAs,
482 DELncs were differentially expressed among the three seed developing stages (Table S8) (Table 1),
and the hierarchy clustered as shown in Figure 4a. To verify the DELnc pattern, 15 lncRNAs were selected
for semi-quantitative PCR analysis in various tissues and developmental stages (Figure 4b,c). As a result,
we found that the expression patterns of most of the DELncs (TCONS_00020279, TCONS_00082068,
TCONS_00071413, TCONS_00037941, TCONS_00040695, TCONS_00020143) were almost identical to the
transcriptomic data (Figure 4b,c). Other lncRNAs were also highly expressed during seed development
(TCONS_00059921, TCONS_00028756, TCONS_00020276, TCONS_00020277) and even expressed
specifically in rice seeds (TCONS_00069814, TCONS_00095563, TCONS_00027626, TCONS_00095152)
(Figure 4b,c).

Table 1. Statistical table of differentially expressed lncRNAs.

DEG Set DELncs Number Up-Regulated Down-Regulated

0 DAP vs 3 DAP 447 190 257
0 DAP vs 7 DAP 454 218 236
3 DAP vs 7 DAP 440 246 194

Differentially expressed genes (DEG) set: Pairwise comparison of samples of differentially expressed lncRNA;
DELncs number: Number of differentially expressed lncRNAs; Up-regulated: Number of up-regulated lncRNAs;
Down-regulated: Number of down-regulated lncRNAs.
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Figure 4. Differentially expressed lncRNAs. (a) A cluster heatmap illustrating the differentially
expressed lncRNAs of RNA sequencing results in 0, 3, 7 DAP seeds. Colors in the map represent the
level of expression in the sample from the FPKM values (log2FPKM+1). (b) Partial transcriptome results
of identified lncRNAs expression levels. The values are FPKM scores. (c) Validation of expression
patterns of lncRNAs corresponding to the left values in (b) using semi-quantitative PCR. ACTIN was
used as an internal loading control. 0, 3, 7, 15 represent pistil, seeds at 3, 7, 15 days after pollination,
respectively; L: Leaf; R: Root; F: Flower; C: Callus.

As lncRNA regulates target genes through cis-acting, we attempted to identify genes within 10 kb
upstream and downstream of the 421 DELncs, which are likely to be the potential targets (Table S8). The
potential target genes encode proteins with various functions, such as transposon and retrotransposon
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proteins, arginine/serine-rich protein, transcriptional factors, cell number regulator, disease resistance
protein, formin-like protein, Pentatricopeptide repeat-containing protein, and vegetative cell wall
proteins. Furthermore, the target genes of DELncs in groups 0 DAP vs. 3 DAP, 0 DAP vs. 7 DAP
and 3 DAP vs. 7 DAP were analyzed with GO enrichment analysis. The numbers of target genes
classified by GO were 507, 527, 510 in comparison groups 0 DAP vs. 3 DAP, 0 DAP vs. 7 DAP and
3 DAP vs. 7 DAP respectively. GO analysis in these three groups showed that these target genes
were actively affected in most of the categories in the cellular component, molecular function and
biological process (Figure 5). The most highly represented groups were involved in cellular processes,
metabolic processes, catalytic activities, organelles and cell parts in these three groups. These results
suggested that these differentially expressed lncRNAs may participate in seed development by affecting
various pathways.
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3.3. RNA Interference Analysis Reveals the lncRNA Participating in Seed Development

The seed-specific expression pattern of the lncRNAs intrigued us to test their biological functions
in seed development. We generated RNAi lines of three seed-specific lncRNAs, however, lncRNA
TCONS_00023703 attracted our particular interest due to the obvious phenotype in seeds. The expression
patterns of TCONS_00023703 showed that it was highly expressed in developed seeds, especially in
the early stages of seed development (3 and 7 DAP), but hardly expressed in other tissues (Figure 6a).
For three generations (T1–T3), the RNAi mutants of TCONS_00023703 all showed significantly
decreased expression levels and consistent phenotypes including reduced grain length, width and
1000-grain-weight (Figure 6b–e). Target gene prediction analysis of TCONS_00023703 suggested that
LOC_Os11g17480 is a potential target. This gene is located within the 10 kb downstream region of
TCONS_00023703 and is annotated as a dienelactone hydrolase belonging to the Alpha/beta-Hydrolases
subfamily (https://www.uniprot.org/). However, its detailed function in seed development has not
been reported. Moreover, we examined the transcription level of several reported grain-size-related
genes in the wild-type (WT) and TCONS_00023703 RNAi line using qRT-PCR and found that the
expression levels of GS2, GW2, GS5 were significantly up-regulated and OsSPL13 was significantly
down-regulated in TCONS_00023703 compared with WT (Figure 7). In addition, positive regulators
GS3 and qTGW3 were also slightly up-regulated in TCONS_00023703 RNAi plant. These results
indicated that lncRNA TCONS_00023703 functions as a positive regulator in grain size and weight.

https://www.uniprot.org/
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Nipponbare. (b) Grain size in TCONS_00023703 knock-down mutant plants compared with wild-type
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significant decrease in grain length and thousand-grain weight. Data was determined by student’s
t-test to generated p-values. Different letters indicate p < 0.01.
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knock-down mutant. * and ** represent a significant difference between wild type and mutant at the
0.05 and 0.01 level, respectively.
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4. Discussion

Long non-coding RNAs are ubiquitous in eukaryotes, and their functions have been intensively
studied in humans, especially in diseases such as cancer [21,22]. Although plant lncRNA research is
still in its infancy, the rapid development and application of transcriptome technology has led to the
identification of a large number of lncRNAs in plants [23–26]. Many lncRNAs have been found to be
involved in the regulation of important agronomic traits [11], cadmium stress response in root [27],
female reproduction [28], male reproduction [23] and other stress responses [29] in rice. In addition,
578 lncRNAs related to high-temperature-induced grain chalkiness development were identified in
rice spikelets harvested at 10 DAP exposed to high-temperature stress, and expression levels of some
of them were verified by RT-PCR [30]. However, there are no reports regarding the identification of
lncRNAs in rice developing seeds. In our study, three key time points (0, 3, 7 DAP) for early seed
development were obtained as samples for transcriptome sequencing, and a total of 540 lncRNAs were
screened after bioinformatics analysis. To confirm sequencing quality, fifteen lncRNAs were randomly
selected for semi-quantity PCR validation (Figure 4b,c). The results showed that the expression
levels of the lncRNAs are consistent with the transcriptomic data. All of them showed the highest
expression levels in seeds or even in a seed-specific manner (Figure 4b,c). Moreover, a total of 482
lncRNAs are significantly differentially expressed in the three samples, suggesting that lncRNAs may
be an important regulator involved in early seed development (Table 1). Despite the tremendous
progress in the identification of lncRNAs, few of them are functionally characterized thus far. In rice,
a lncRNA LAIR was identified and found to be regulated in grain yield by changing its expression
level [31]. Plants overexpressing LAIR exhibited larger primary panicles and more panicles per plant
while silencing LAIR decreased grain yield [31]. Zhanget al [12] performed RNA sequencing and
identified lncRNAs that are involved in the reproduction of rice, and studied the function of one
lncRNA XLOC_057324 by Tos17 insertion. This lncRNA was specifically expressed in young panicles
and the insertion mutant exhibited early flowering and decreased fertility compared with wild-type
plants. In this study, TCONS_00023703, one of the differentially expressed lncRNAs screened with our
bioinformatics analysis, had its expression pattern verified, and also its function was described using
RNAi analysis in rice. The results revealed that TCONS_00023703 was highly expressed in developing
seeds and its three generations of mutant plants showed a significant decrease in grain length and
1000-grain weight (Figure 6a,e). The above results not only verified the transcriptome results but
also established that lncRNAs can positively regulate rice grain length, which lays the foundation for
further study in regulation mechanism of lncRNAs.

As important yield traits in rice, many genes controlling grain size and weight have been
reported [32–34]. GW2, GS3 and qTGW3 negatively regulated grain size and weight in rice [35,36].
Consistent with this, they were up-regulated in TCONS_00023703 compared with WT (Figure 7) While
OsSPL13, a positive regulator, was significantly down-regulated in TCONS_00023703 RNAi plant.
These implied the reduced grain size in TCONS_00023703 may be related to the altered expression
of these genes (Figure 7). However, GS2 and GS5 were reported to have positively regulated grain
size in rice [37–41]. Contrary to our understanding, these two genes were also up-regulated in
TCONS_00023703 RNAi plant (Figure 7). However, little is known about regulatory mechanisms of
lncRNAs, its accurate regulation mechanism remains to be further studied.

5. Conclusions

In conclusion, a pair-end RNA sequencing of rice pistil, 3 DAP seeds and 7 DAP seeds identified a
total of 540 lncRNAs, of which 482 were differentially expressed among the three developing stages.
The transcriptomic data proved to be highly reliable by semi-quantity PCR analysis of 15 selected
DELncs in various tissues. Knock-down of a DELnc TCONS_00023703 in rice resulted in smaller grain
size and weight when compared with the WT.
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