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Abstract Introduction: Cognitive reserve (CR) and BDNF Val66Met are independently associated with the
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rate of cognitive decline in preclinical Alzheimer’s disease. This study was designed to investigate
the interactive effects of these variables on 36-month cognitive change in cognitively intact older
adults.
Methods: Data for this investigation were obtained from 445 community-residing participants of the
Tasmanian Healthy Brain Project, who underwent genetic screening and annual assessment of
neuropsychological, health, and psychosocial function.
Results: Our main result was that BDNFVal66Met moderated the relationship between baseline CR
and change in executive function performance, in that CR-related differences in function decreased
across the follow-up period in BDNF Val homozygotes, but became more pronounced in BDNFMet
carriers. Similar effects were not observed within the other memory- and language-related cognitive
domains.
Discussion: Inheritance of BDNF Met may be associated with a detrimental influence on the rela-
tionship between CR and cognitive change in cognitively intact older adults, but this effect may be
restricted to the executive function domain.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Current evidence indicates that Alzheimer’s disease (AD)
may develop over the course of multiple decades before
symptoms of dementia emerge [1,2], highlighting the need
for presymptomatic interventions aimed at reducing risk of
disease [3]. This has led to an increased importance in
investigating dementia risk factors in cognitively normal
adults. One recent development in this field has been the
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identification of a role for theBDNFVal66Met polymorphism
in preclinical AD [4,5]; preclinical AD is a proposed disease
state whereby normal cognitive functioning persists in the
presence of AD biomarkers [6]. In healthy individuals with
high brain amyloid b (Ab) load, recent work has found that
BDNF Met is associated with larger declines in multiple
cognitive domains compared with BDNF Val homozygotes
[4]. Carriage of BDNF Met has also been shown to hasten
the onset of clinically significant cognitive impairment
associated with the presence of both apolipoprotein E
(APOE) ε4 and high Ab load [5] and is related to a faster
rate of hippocampal atrophy in high Ab individuals who
already show symptoms of amnestic mild cognitive impair-
ment [7]. These results point to a potential role of BDNF
imer’s Association. This is an open access article under the CC BY-NC-ND
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Val66Met in influencing the speed and severity with which
neuropathology impedes normal cognitive functioning.

One of the other major influences on the association
between neuropathology and level of cognitive function is
cognitive reserve (CR; [8]). Although estimates of cognitive
resilience that incorporate measures of brain integrity,
cognitive integrity, and AD biomarkers may more accurately
predict risk of cognitive decline than CR alone [9], CR has
been implicated in modulating susceptibility to AD pathol-
ogy–related cognitive deficits in preclinical stages [10] and
is thought to exert a substantial effect on later life dementia
risk [11]. The CR hypothesis suggests that individuals who
have engaged in more frequent cognitive stimulation across
the lifespan develop a cognitive and neural reserve that
delays the onset of cognitive impairment from underlying
pathology [12]. CR is typically estimated using proxy
measures of lifetime engagement in cognitive activities,
such as years of education [13], occupational attainment
[14], frequency of participation in cognitively stimulating
leisure activities [15], as well as other nonlifestyle factors,
such as crystallized intelligence [16]. Despite similarities
between the effects of CR and BDNFVal66Met on resilience
and susceptibility to pathology, little is known about the
potential association of CR and variation in the BDNF
Val66Met polymorphism and how these factors may interact
to influence cognitive function.

CR may relate to BDNF Val66Met through a simple
cumulative process of independent effects on the expression
of preclinical cognitive deficits, but CR may also interact
with BDNF Val66Met through the impact of this polymor-
phism on cortical plasticity. For engagement in cognitively
stimulating activities to result in increased neural reserve,
alterations to the structure and/or function of the brain
must occur [17]. An individual who inherits a genetic variant
that is associated with impaired cortical plasticity may then,
hypothetically, experience different cognitive outcomes in
response to the same level of cognitive stimulation as
another individual who did not inherit that variant. BDNF
Val66Met is a polymorphism that may be used to investigate
such hypotheses, as the BDNF Met variant has been associ-
ated with lowered activity-dependent secretion of BDNF
protein [18], in addition to impaired synaptic plasticity and
transmission [19,20]. In support, our recent cross-sectional
study reported that BDNF Val66Met moderates the relation-
ship between CR and older adult executive function [21],
with the predicted positive relationship between CR and
cognitive performance observed within BDNF Val homozy-
gotes but not within BDNF Met carriers.

Although the BDNF Val66Met polymorphism is not
consistently and reliably associated with the cognitive
performance of older adults [22,23], some evidence does
indicate that inheritance of BDNF Met is associated with a
greater detrimental effect of age on memory function [24].
In addition, older carriers of BDNF Met have been reported
to experience both lowered [25], and a faster rate of aging-
related decline in, perceptual speed [26]. Finally, a recent
investigation reported that, although carriage of APOE ε4
was associated with reduced executive function performance
in older cognitively intact individuals, the presence of BDNF
Met was observed to intensify this deficit [27].

The present study was designed to investigate the
independent and interactive effects of variation in BDNF
Val66Met and CR on 36-month cognitive change in a sample
of healthy older adults. We used a comprehensive multivar-
iate estimate of CR that was calculated through a previously
developed factor analysis–derived equation of the construct
[28]. Three hypotheses were tested: (1) lower baseline CR is
associated with a detrimental effect on rate of cognitive
change compared with higher baseline CR; (2) BDNF Met
is associated with a detrimental effect on rate of cognitive
change compared with BDNF Val/Val; (3) the BDNF Val66-
Met polymorphism moderates the extent to which baseline
CR affects rate of cognitive change.
2. Methods

2.1. Participants

Data for this investigation were obtained from 445
participants of the Tasmanian Healthy Brain Project
(THBP), which is an ongoing interventional cohort study
into whether later life tertiary education protects from
aging-related cognitive decline and dementia. The THBP
sample comprised community-residing individuals who
were aged between 50 and 79 years at study entry (recruit-
ment phase: 2011–2014) and who were excluded from
participation if they had a history of any medical, psychiat-
ric, or psychological condition independently associated
with impairments to cognitive function (e.g., dementia,
-multiple sclerosis, previous significant head injury
requiring hospitalization, clinical diagnosis of depression
or anxiety). Of these 445 participants, 29 were excluded
because of having withdrawn from the study before
completing any follow-up testing, and 14 were excluded
because of not being native English speakers. Complete
neuropsychological, genetic, and covariate data were avail-
able for 402 participants at baseline, 343 participants at
12-month follow-up, 338 participants at 24-month follow-
up, and 218 participants at 36-month follow-up. The present
study included 964 person-years of follow-up, which
equated to an average follow-up time of 2.4 years.

Participants from both the THBP experimental group and
the control group were included in this study, with any
potential effect of the intervention statistically adjusted for.
THBP experimental group participants completed at least
12 months of study at the University of Tasmania, Australia,
with a minimum study load of two units of study, at an
undergraduate or postgraduate level, completed in a single
year; control group participants did not complete any
university-level study. Although future THBP research will
aim to provide greater clarification with regard to the cogni-
tive outcomes of the intervention and, in particular, level of
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engagement with the education intervention (e.g., number of
units of university study completed), some preliminary data
relating to course and study enrollment are available.
Specifically, the mean annual equivalent full-time study
load (EFTSL) completed across the follow-up period was
40.93% (SD5 35.01%), with an EFTSL of 100% represent-
ing an annual full-time study load, and an EFTSL of 12.5%
representing the typical study load of a single undergraduate
unit. Although some variance in course enrollments is likely
to occur between time points, in the first year of participa-
tion, approximately half of experimental group participants
were enrolled within the faculty of arts (55.8%), with health
(12.2%) and science (11.2%) faculty enrollments also com-
mon. Greater detail on participant selection and recruitment
is described elsewhere [29]. Demographic and clinical data
for the final sample at baseline are presented in Table 1.
2.2. Procedure

Participants completed comprehensive assessments of
neuropsychological, health, and psychosocial function at
baseline, 12-, 24-, and 36-month follow-up (6one month).
At baseline, symptoms of dementia, symptoms of depression
and anxiety, general health, medical conditions, prescription
medication use, drug and alcohol use, handedness, height,
weight, and marital status were recorded. An experienced
Table 1

Baseline demographic, clinical, and cognitive statistics stratified by BDNF

Val66Met genotype (N 5 402)

Characteristic BDNF Val/Val BDNF Met1 P

Demographic

N (%) 268 (67) 134 (33)

Age (years) 60.47 (6.79) 59.90 (6.44) .423

Female N (%) 181 (68) 88 (66) .395

THBP experimental group

N (%)

206 (77) 103 (77) .547

WTAR premorbid IQ 112.84 (5.19) 112.83 (5.28) .989

Previous education (years) 13.80 (2.69) 14.37 (2.73) .049

Prior cognitive reserve

(Z score)

20.05 (1.01) 0.10 (0.99) .154

Clinical

DRS-2 AEMSS 12.15 (2.08) 11.93 (2.04) .322

HADS anxiety (raw) 5.31 (3.20) 5.04 (2.66) .416

HADS depression (raw) 2.36 (2.30) 2.40 (2.06) .874

Cognitive

Episodic memory (Z score) 20.01 (1.02) 0.02 (0.96) .736

Working memory (Z score) 0.01 (0.99) 20.02 (1.02) .766

Executive function (Z score) 20.02 (1.01) 0.04 (0.98) .588

Language processing (Z score) 0.00 (1.01) 20.01 (0.98) .922

Abbreviations: BDNF, brain-derived neurotrophic factor; THBP, Tasma-

nianHealthy Brain Project;WTAR,Wechsler Test of Adult Reading; DRS-2

AEMSS, age- and education-corrected Mayo Older American Normative

Studies (MOANS) scaled score; HADS, Hospital Anxiety and Depression

Scale.

NOTE. Data represented are mean values (SD) for continuous variables

and proportions for categorical variables. The significance of differences

in means and frequencies were determined through one-way analyses of

variance and chi-square tests, respectively.
neuropsychologist reviewed participant responses on
screening tools to determine participant inclusion. Participants
provided written consent before undertaking the assessments
at each phase. This research was conducted in full compliance
of NHMRC (Australia) Human Research Guidelines and was
overseen by the Human Research Ethics Committee (Tasma-
nia) Network. The research reported complies with the ethical
rules for human experimentation as stated in the Declaration
of Helsinki and complies with APA ethics standards.

2.3. Neuropsychological assessment battery

In the present analyses, standardized tests of episodic
memory (Rey Auditory Verbal Learning Test 1–5 total
recall, Logical Memory I immediate recall, Logical Memory
II delayed recall, CANTAB Paired Associates Learning first
trial memory score); working memory (WAIS Digit Span
total recall, WAIS Letter-Number Sequencing total recall,
CANTAB Spatial Working Memory between errors,
CANTAB Spatial Span length); executive function (Stroop
trial C, CANTAB Rapid Visual Processing A’, Trail Making
Test B); and language processing (WAIS Vocabulary, WAIS
Comprehension, Boston Naming Test) were used (informa-
tion relating to the reliability and validity of these tools is
described in the study by Summers et al. [29]). Trained
assessors performed the assessment of all participants at
each study phase (baseline, 12, 24, 36 months).

2.4. Assessment of baseline cognitive reserve

A previously developed single-point estimate of prior CR
was used [28]. Prior CR is a factor analysis–derived measure
incorporating data from measures of lifetime education,
occupational attainment, intelligence, and participation in
cognitively stimulating leisure activities. This score repre-
sents an individual’s estimated CR at their baseline THBP
assessment. The Wechsler Test of Adult Reading was used
to estimate premorbid intellectual capacity, the Lifetime of
Experiences Questionnaire [30] to quantify history of
complex cognitive engagement, and the Medical Health
Screening questionnaire to record the number of years of
prior formal education.

2.5. Genotyping

DNAwas collected through the donation of saliva sam-
ples using Oragene DNA self-collection kits [31]. APOE
and BDNF Val66Met polymorphisms were determined
through one-step amplified refractory mutation system po-
lymerase chain reaction and subsequent gel electropho-
resis. For APOE, the method described by Donohoe et al.
was followed [32]. For BDNF Val66Met, the method
described by Sheikh and Hayden was followed [33]. In
this study, carriers of BDNF Met included homozygotes
and heterozygotes of the Met allele; BDNF Met homozy-
gotes were not sufficiently prevalent to allow for specific
subgroup analysis.



Table 2

Sample neuropsychological performance stratified by BDNF Val66Met

genotype

Domain Time

BDNF Val/Val BDNF Met1

N Mean SD N Mean SD

Episodic memory (Z score) Baseline 268 20.01 1.02 134 0.02 0.96

12 months 230 0.10 0.98 113 0.07 1.05

24 months 226 0.30 0.99 112 0.33 0.98

36 months 149 0.61 1.00 69 0.47 0.90

Working memory (Z score) Baseline 268 0.01 0.99 134 20.02 1.02

12 months 230 0.06 1.02 113 20.00 1.01

24 months 226 0.09 0.99 112 0.12 0.93

36 months 149 0.12 1.03 69 0.10 1.02

Executive function (Z score) Baseline 268 20.02 1.01 134 0.04 0.98

12 months 230 0.08 1.04 113 0.07 1.13

24 months 226 0.19 1.08 112 0.09 1.22

36 months 149 0.13 1.08 69 0.17 1.12

Language processing (Z score) Baseline 268 0.00 1.01 134 20.01 0.98

12 months 230 0.23 0.90 113 0.02 0.93

24 months 226 0.15 0.95 112 0.15 0.81

36 months 873 0.23 0.90 69 0.28 0.98

Abbreviations: BDNF, brain-derived neurotrophic factor; SD, standard

deviation.
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2.6. Statistical analysis
Scores representing baseline CR were first calculated for

each participant using factor analysis–defined regression
coefficients [28]. To achieve this, Z scores were imputed
into the previously developed equation: CR5 0.370 (Wechs-
ler Test of Adult Reading full-scale IQ) 1 0.408 (prior
education in years) 1 0.567 (Lifetime of Experiences
Questionnaire Young Adulthood Specific) 1 0.565
(Lifetime of Experiences Questionnaire Young Adulthood
Nonspecific) 1 0.630 (Lifetime of Experiences Question-
naire Midlife Nonspecific)1 0.875 (Lifetime of Experiences
Questionnaire Midlife Continuing Education Bonus)1 1.004
(Lifetime of Experiences Questionnaire Midlife Specific). As
the present sample varied marginally from that which was
included within the initial factor analysis sample, baseline
CR scores were standardized after computation. To produce
composite measures of episodic memory, working memory,
executive function, and language processing, we first ensured
that cognitive tests were suitable for domain-specific factor
analyses (Kaiser-Meyer-Olkinmeasure of sampling adequacy
statistic. 0.60; Bartlett’s test of sphericity P, .05; all diag-
onals of anti-image correlation matrices r . 0.5). Factor an-
alyses (principal components extraction method) were then
conducted on raw baseline cognitive test scores (results avail-
able in Supplementary Table 1), with a single component re-
tained to represent each cognitive domain. Baseline
composite scores were generated from the analysis through
the use of standardized regression coefficients; composite
scores for subsequent time points (12-, 24-, 36-month
follow-up) were calculated by multiplying baseline-
referenced cognitive test Z scores by the component score co-
efficients determined through the factor analyses. Scores
within the executive function domain were inverted so that
higher scores represented better performance. Analyses of
variance and chi-square tests were used to determine group
differences in baseline characteristics and cognitive perfor-
mance (Table 1). Missing data were handled through the
use of maximum likelihood estimation methods.

For the main analyses, a series of linear mixed-effects
models (LMMs)were used to assesswhether variation in base-
line CR and BDNF Val66Met, independently or through CR
!BDNFVal66Met interaction, was associated with cognitive
change over a 36-month period. Baseline CR (continuous),
BDNF (0, Val/Val; 1, Met carrier), and time (0, baseline; 1,
12 months; 2, 24 months; 3, 36 months) were the primary pre-
dictors of cognitive performance. To control for any potential
influence of the THBP intervention, THBP group (0, control; 1
experimental) was also used as a predictor. Age at baseline
(centered), gender, APOE, and symptoms of depression and
anxiety were used as covariates. The LMMs were constructed
with the following fixed effects: y5 age at baseline1 gender
1 APOE1 symptoms of depression1 symptoms of anxiety
1 time 1 APOE ! time 1 BDNF 1 baseline CR 1 THBP
group1 BDNF ! baseline CR 1 BDNF ! THBP group1
BDNF! time1 baseline CR! THBP group1 baseline CR
! time1 THBP group! time1 BDNF! baseline CR!
THBP group 1 BDNF ! baseline CR ! time 1 BDNF !
THBP group! time1 baseline CR! THBP group! time.

Participant intercept was included as a random effect.
Models were fitted separately for each cognitive domain
using maximum likelihood estimation and an autoregressive
repeated covariance type. Cohen’s d statistics were calcu-
lated to describe the magnitude of significant effects within
the LMMs. To adjust for multiple comparisons, Bonferroni-
adjusted P values were also calculated (number of separate
LMMs 5 4). All statistical analyses were conducted using
IBM SPSS Statistics v21.
3. Results

3.1. Sample characteristics

Baseline characteristics stratified by BDNF Val66Met
genotype group are displayed in Table 1. Within the demo-
graphic variables, a single significant difference was identi-
fied between groups in previous education (years). Here,
BDNF Met carriers reported more years of education than
BDNFVal homozygotes (Cohen’s d5 0.208). No significant
differences existed between the groups in baseline function
for any cognitive domain. Means and SDs for cognitive
domain scores at each time point stratified by BDNF Val66-
Met genotype are presented in Table 2.
3.2. Predictors of cognitive function and cognitive change

The analyses examined the independent and interactive
effects of baseline CR and BDNF Val66Met on 36-month
change in cognitive performance relating to episodicmemory,
working memory, executive function, and language process-
ing. Mean estimates and differences of predictors stratified
byBDNFVal66Met group are presented in Table 3. Inmodels



Table 3

Mean estimates and estimate differences for 36-month cognitive performance stratified by BDNF Val66Met polymorphism (N 5 402)

Domain Predictor

Mean unadjusted estimate (95% CI) Mean adjusted estimate (95% CI) Difference of adjusted estimates

BDNF Val/Val BDNF Met1 BDNF Val/Val BDNF Met1 P Adjusted P Cohen’s d

Episodic memory CR 0.083 (20.311, 0.476) 0.082 (20.231, 0.395) 0.117 (20.240, 0.473) 0.159 (20.125, 0.444) .816 ..999 20.023

Group 0.111 (20.363, 0.586) 0.405 (0.020, 0.790) 20.017 (20.452, 0.418) 0.158 (20.197, 0.514) .429 ..999 20.070

Time 0.179 (0.068, 0.290) 0.142 (0.051, 0.233) 0.157 (0.046, 0.267) 0.110 (0.017, 0.203) .404 ..999 0.084

CR ! group 20.067 (20.512, 0.379) 20.171 (20.533, 0.190) 0.004 (20.400, 0.407) 20.210 (20.538, 0.117) .297 ..999 0.104

CR ! time 0.017 (20.043, 0.078) 0.058 (20.011, 0.126) 0.020 (20.039, 0.080) 0.063 (20.005, 0.130) .165 .660 20.132

Group ! time 0.013 (20.116, 0.143) 0.006 (20.100, 0.112) 0.017 (20.112, 0.145) 0.016 (20.089, 0.122) .996 ..999 0.000

Working memory CR 0.049 (20.348, 0.447) 0.150 (20.164, 0.464) 0.044 (20.322, 0.410) 0.192 (20.099, 0.482) .428 ..999 20.078

Group 0.123 (20.350, 0.595) 0.407 (0.023, 0.791) 20.022 (20.461, 0.417) 0.241 (20.118, 0.600) .240 .960 20.108

Time 0.043 (20.050, 0.135) 0.025 (20.051, 0.101) 0.035 (20.057, 0.127) 0.015 (20.062, 0.093) .672 ..999 0.041

CR ! group 0.026 (20.426, 0.478) 0.099 (20.265, 0.463) 0.120 (20.297, 0.536) 0.082 (20.254, 0.418) .860 ..999 0.018

CR ! time 0.076 (0.026, 0.126) 0.033 (20.024, 0.090) 0.077 (0.026, 0.127) 0.037 (20.020, 0.094) .117 .468 0.145

Group ! time 20.005 (20.113, 0.103) 0.028 (20.060, 0.116) 20.003 (20.110, 0.105) 0.032 (20.056, 0.120) .528 ..999 20.060

Executive function CR 0.075 (20.341, 0.491) 20.011 (20.341, 0.320) 0.086 (20.277, 0.449) 0.063 (20.227, 0.354) .904 ..999 0.012

Group 0.169 (20.333, 0.672) 0.394 (20.014, 0.803) 20.017 (20.462, 0.428) 0.131 (20.234, 0.495) .516 ..999 20.056

Time 0.046 (20.074, 0.166) 0.013 (20.085, 0.111) 0.027 (20.092, 0.146) 20.016 (20.117, 0.084) .476 ..999 0.070

CR ! group 0.169 (20.301, 0.640) 0.059 (20.323, 0.441) 0.289 (20.121, 0.698) 0.027 (20.307, 0.361) .210 .840 0.126

CR ! time 20.059 (20.123, 0.006) 0.052 (20.022, 0.125) 20.059 (20.123, 0.006) 0.058 (20.015, 0.131) ,.001 .002 20.330

Group ! time 0.021 (20.118, 0.160) 0.030 (20.084, 0.144) 0.025 (20.114, 0.163) 0.040 (20.074, 0.153) .832 ..999 20.021

Language processing CR 0.261 (20.087, 0.610) 0.354 (0.076, 0.631) 0.256 (20.091, 0.603) 0.354 (0.077, 0.631) .580 ..999 20.054

Group 0.083 (20.339, 0.505) 0.345 (0.001, 0.688) 0.056 (20.366, 0.479) 0.317 (20.028, 0.663) .226 .904 20.108

Time 0.018 (20.086, 0.123) 0.039 (20.047, 0.124) 0.014 (20.090, 0.118) 0.036 (20.052, 0.124) .674 ..999 20.041

CR ! group 0.143 (20.251, 0.537) 20.061 (20.381, 0.260) 0.154 (20.240, 0.547) 20.054 (20.373, 0.266) .300 ..999 0.104

CR ! time 20.011 (20.068, 0.046) 0.009 (20.055, 0.074) 20.009 (20.066, 0.047) 0.012 (20.052, 0.076) .464 ..999 20.067

Group ! time 0.039 (20.083, 0.161) 0.033 (20.067, 0.133) 0.043 (20.079, 0.164) 0.038 (20.062, 0.137) .937 ..999 0.008

Abbreviations: CR, cognitive reserve; BDNF, brain-derived neurotrophic factor; LMM, linear mixed-effects model.

NOTE. Adjusted estimates included covariates of age, gender, apolipoprotein E genotype, apolipoprotein E genotype! time, and symptoms of depression and anxiety; adjusted P values represent Bonferroni-

corrected values (number of separate LMMs 5 4).
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Fig. 1. CR and BDNF Val66Met interact to influence change in executive function. Figure shows mean estimated executive function score, stratified by CR

tertile group, for (A) BDNF Val homozygotes and (B) BDNFMet carriers. Performance was estimated by a linear mixed-effects model that included covariates

of Tasmanian Healthy Brain Project group, age, gender, apolipoprotein E genotype, apolipoprotein E genotype! time, and symptoms of depression and anx-

iety. Error bars represent 95% confidence intervals. Abbreviations: BDNF, brain-derived neurotrophic factor; CR, cognitive reserve.
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adjusted for age, gender, APOE, APOE ! time, and
symptoms of depression and anxiety, multiple significant
effects of the predictor variables were identified. Time was
positively associated with episodic memory (adjusted
P , .001), and baseline CR was positively associated with
language processing (adjusted P 5 .004). A baseline
CR ! time interaction was significantly associated with
working memory initially (P 5 .016), but not following
Bonferroni correction (adjusted P 5 .064). However, this
effect was subsumed within a significant baseline CR !
group ! time interaction for working memory (adjusted
P 5 .038, Cohen’s d 5 0.247), whereby the association of
CR on change in performance was different between the
experimental group (estimate 5 0.008, 95% CI 5 20.022,
0.038) and the control group (estimate 5 0.077, 95%
CI 5 0.025, 0.129). Finally, a single significant BDNF !
baseline CR ! time interaction was identified for executive
function (Fig. 1), which indicated that the association of
CR on change in performance was significantly different
between BDNF Val homozygotes and BDNF Met carriers
(Table 3; difference of estimate 5 20.117, 95%
CI 5 20.181, 20.052).
4. Discussion

In this investigation, we examined whether variation in
CR or BDNF Val66Met, either independently or through
CR-gene interaction, affected 36-month cognitive change
in healthy older participants of the Tasmanian Healthy
Brain Project. Although no longitudinal differences
were identified in any cognitive domain between BDNF
Val homozygotes and Met carriers, we found that baseline
CR had a positive association with change in working
memory performance that was stronger in the THBP con-
trol group. We also found that the BDNF Val66Met poly-
morphism interacted with baseline CR to affect 36-month
change in executive function performance, in that CR-
related differences in function decreased across the
follow-up period in BDNF Val homozygotes, but became
more pronounced in BDNF Met carriers. This suggests
that CR may affect the higher order cognitive processing
of aging individuals differently based on variation in
BDNF Val66Met, which is noteworthy given that associ-
ations of CR and cognitive change are typically only
observed in conjunction with the presence of significant
neuropathology [34].

Higher CR is reliably associated with higher cognitive
function in middle and older age, independent of any po-
tential protective effect on age-related decline or demen-
tia risk [35]. The results of our previous cross-sectional
analysis support this, where we found positive relation-
ships between CR and function in multiple cognitive do-
mains [21]. In the present study, we found that CR
exerted an effect on the rate of change in working
memory performance, with higher CR associated with
a greater improvement in performance across the
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36-month follow-up period. However, this modulation of
working memory performance by CR was identified
solely in the subgroup of control participants of the
THBP (N 5 93), and may simply be a result of differ-
ences in demographic and cognitive variables. Should
this effect represent more than a sampling bias, it may
reflect a buffering of negative aging-related memory
changes by CR, although reports are mixed regarding a
role of CR in cognitive aging [36]. This result may also
be due to the use of better cognitive strategies to achieve
greater improvements in functioning over time in individ-
uals with higher CR, as improved cognitive strategy se-
lection is hypothesized to underpin part of the cognitive
benefits of CR [37].

Our most significant finding was an interaction
between BDNF Val66Met and CR in predicting change
in executive function performance. Here, results indicated
that BDNF Val66Met status determined whether CR-
related differences in performance decreased or increased
across the 36-month follow-up period. This effect has
been identified in a previous baseline analysis of this
data set [21], which identified a stronger association of
CR and executive function in BDNF Val homozygotes
than in BDNF Met carriers. Overall, this set of results
suggests that the expected positive association of lifetime
exposure to cognitively stimulating activities and
cognitive performance is weaker in BDNF Met carriers
and that this may culminate in the amplification of
CR-related differences in aging-related cognitive trajec-
tories. Despite this, the present results also indicated
that the influence of any of the included predictors on
36-month cognitive change did not vary by the BDNF
Val66Met polymorphism in the other assessed cognitive
domains (i.e., episodic memory, working memory,
language processing), with negligible or very small effect
sizes identified. Similarities between CR and executive
function may explain why this CR effect was observed
solely in the executive function domain [38], and both
constructs share commonalities in relation to cognitive
flexibility [8,39] and a reliance on frontal lobe activity
[40,41].

Interpretation of the present results should be under-
taken with consideration of the following limitations:
(1) at baseline, our sample consisted of high-
functioning older adults who were well educated and
likely had higher CR than average (mean IQ 5 112.86,
mean years of education completed 5 13.98). Therefore,
our results may not be applicable to wider populations;
(2) APOE has been shown to interact with BDNF
Val66Met in healthy, preclinical, and AD individuals
[5,42,43] but we were not able to include an APOE !
BDNF Val66Met interaction term due to the small
number of cases in the APOE ε4/BDNF Met group;
(3) patterns of aging-related cognitive decline were not
observable in the sample, overall. This may be partly
accounted for by practice effects [44], and similar
patterns of cognitive change in healthy older adults
have been reported in other cohorts, even in the absence
of intervention [45]; (4) the THBP intervention may have
had an influence on the cognitive trajectories described in
our study. However, our analyses included THBP group
interaction terms to adjust for any potential effect of
the intervention, and experimental/control group mem-
bership was evenly distributed across BDNF groups at
baseline.

Independent detrimental effects of BDNF Met on
age-related change in episodic memory [24] and percep-
tual speed [26], which is a cognitive process closely
related to executive function [46], have been reported pre-
viously. In addition, a recent investigation reported that
inheritance of BDNF Met is associated with a steeper
aging-related decline in executive function performance
[27], although the authors only identified this effect in
conjunction with the presence of APOE ε4. Although
we did not find support for the notion that BDNF Met
directly affects cognitive trajectories in older adults, our
results have identified an indirect pathway through which
BDNF Met may exert a negative influence on aging-
related change in the executive function domain. This in-
direct effect may provide one explanation as to why the
BDNF Val66Met polymorphism does not always show
significant associations with older adult cognitive perfor-
mance (e.g., [22,23]).

In conclusion, our results indicate that CR is associated
with performance in multiple cognitive domains in
healthy older adults and interacts with BDNF Val66Met
to influence change in executive function performance.
If future research confirms that BDNF Met confers a sus-
ceptibility to cognitive decline due to low CR, the BDNF
Met carrier group represents a well-defined population
that could be targeted for cognitive stimulation–based in-
terventions aimed at reducing the negative effects of
advancing age on cognitive function and, potentially, the
prevalence of dementia.
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RESEARCH IN CONTEXT

1. Systematic review: Using both PubMed and Google
Scholar, the authors reviewed literature related to in-
dependent and interactive cognitive associations of
cognitive reserve (CR) and the BDNF Val66Met
polymorphism in both aging and dementia.

2. Interpretation: We found that baseline CR interacted
with the BDNFVal66Met polymorphism to influence
patterns of 36-month cognitive change. This suggests
that low CRmay be a risk factor for cognitive decline
in BDNF Met carriers. However, this effect was pre-
sent solely within the executive function domain and
was absent within the episodic memory, working
memory, and language-processing domains.

3. Future directions: Research should investigate
whether cognitive stimulation–based interventions
aimed at reducing cognitive decline and dementia
risk are differentially effective in BDNF Val66Met
polymorphism groups. Furthermore, it is essential
that interactive effects of CR and BDNF Val66Met
are investigated in preclinical and clinical cohorts.
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