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ABSTRACT Escherichia coli 4s is a Gram-negative bacterium found in the equine in-
testinal ecosystem alongside diverse other coliform bacteria and bacteriophages.
This announcement describes the complete genome of the T7-like E. coli 4s
podophage Penshul. From its 39,263-bp genome, 54 protein-encoding genes and a
179-bp terminal repeat were predicted.

scherichia coli is a Gram-negative bacterium found living among the intestinal
microbiome of all mammals. Due to multiple protective abilities, including extreme
acid resistance, E. coli colonizes the intestine as a commensal (1). E. coli 4s was isolated
from horse feces and lives among a large diversity of coliform bacteria in the equine gut
ecosystem (2). Enteric bacteriophages significantly influence the bacterial composition
and exert pathogen suppression (2-4). Here, we describe a newly isolated E. coli
podophage called Penshu1.
Penshul was isolated from a filtered (filter size, 0.2 um) wastewater treatment
sample from Bryan, TX, using E. coli 4s as the host (2). The phage was propagated using
the soft-agar overlay method in Luria broth (BD) under aerobic conditions at 37°C (5).
Following isolation, Penshul podophage morphology was observed using 2% (wt/vol)
uranyl acetate negative staining and transmission electron microscopy performed at
the Texas A&M University Microscopy and Imaging Center (6). The phage genomic DNA
was extracted as described previously (shotgun library preparation modification of the
Promega Wizard DNA clean-up system), and libraries were prepared using an Illumina
TruSeq Nano low-throughput kit (7). The DNA was sequenced with an Illumina MiSeq
platform as paired-end 250-bp reads using v2 500-cycle chemistry. The resulting
565,076 sequence reads from the index containing the phage genome were quality
controlled by FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Af-
ter trimming using FastX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/), they
were assembled into a single contig at 376.4-fold coverage using SPAdes v3.5.0 (8). NSV
Contig completion was confirmed by PCR (forward primer, 5'-TGAAGTCTCATGCACTC i By 2019_'C0mp‘ete gémome '
TTTCC-3’; reverse primer, 5'-CCCTCGTCTATCTTGTGGAATC-3’) and by Sanger sequenc- sequence of Escherichia coli podophage Penshul.
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Penshul has a 39,263-bp genome, with a 93.4% coding density and 50.6% G+C
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content. Analysis predicted 54 protein-coding genes, with 30 being assigned a putative
function. The Penshul genome was reopened at T7-like direct terminal repeats of 179
bp predicted by PhageTerm (20). Penshul has its highest identity with several unclas-
sified T7-like phages, including 43 similar proteins and 80.3% nucleotide sequence
identity with Escherichia phage ST31 (GenBank accession number KY962008) and 80.1%
nucleotide sequence identity with Escherichia phage YZ1 (GenBank accession number
MG845865). As for phage T7, Penshul has a slippery sequence in the major capsid
protein (NCBI accession number QEG09806) that can lead to translation by frameshift

of the minor capsid protein (NCBI accession number QEG09807).

Data availability. The genome sequence and associated data for phage Penshul
were deposited under GenBank accession number MK903281, BioProject accession
number PRINA222858, SRA accession number SRR8893626, and BioSample accession
number SAMN11414580.
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