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Abstract

Introduction:As new late-onset Alzheimer’s disease (LOAD) genetic risk loci are iden-

tified andbrain cell–type specific omics data becomes available, there is an unmet need

for a bioinformatics framework to prioritize genes and variants for testing in single-cell

molecular profiling experiments and validation using disease models and gene editing

technologies. Prior work has characterized and prioritized active enhancers located

in LOAD-genome-wide association study (GWAS) regions and their potential interac-

tions with candidate genes. The current study extends this work by focusing on single

nucleotide polymorphisms (SNPs) within these LOAD enhancers and their impact on

altering transcription factor (TF) binding. The proposed bioinformatics pipeline pro-

gresses from SNPs located in LOAD-GWAS regions to a filtered set of candidate reg-

ulatory SNPs that have a predicted strong effect on TF binding.

Methods:Active enhancerswithin LOAD-associated regionswere identified and SNPs

located in the enhancers were catalogued. SNPs that disrupt TF binding sites were pri-

oritized and the respective TFswere filtered to include only those thatwere expressed

in brain tissues relevant to LOAD. The TFs binding to the corresponding sequence was

further confirmed by ChIP-seq signals. Finally, the high-priority candidate SNPs were

evaluated as expression quantitative trait loci (eQTLs) in disease-relevant tissues.

Results: We catalogued 61 strong enhancers in LOAD-GWAS regions encompassing

326 SNPs and 104TF binding sites. Seventy-seven and 78 of the TFswere expressed in

brain and monocytes, respectively, out of which 19 TF-binding sites showed ChIP-seq

signals. Eleven SNPs were found to interrupt with TF binding out of which three SNPs

were also significant eQTL.

Discussion: This study provides a framework to catalogue noncoding variations in

enhancers located in LOAD-GWAS loci and characterize their likelihood to perturb

TF binding. The approach integrates multiple data types to characterize and priori-

tize SNPs for putative regulatory functionusing single-cellmulti-omics assays andgene

editing.
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1 INTRODUCTION

Large multi-center genome-wide association studies (GWAS) have

identified associations between numerous genomic loci and late-onset

Alzheimer’s disease (LOAD).1–6 One of the latest published GWAS

meta-analyses reported a total of 25 LOAD-GWAS regions7 and the

most recent unpublished works have further expanded the number

of LOAD associations to 75 loci.8 The majority of LOAD-GWAS–

associated single nucleotide polymorphisms (SNPs) are located in non-

coding regions of the genome, which makes it difficult to assign the

causal variants and genes.9 Indeed, the major challenge in the post-

GWAS era is translating genetic risk of LOAD into causal variants (risk

or protective) and their target genes.9 Resolving this gap will provide

mechanistic insights and progress the identification of new drug tar-

gets for LOAD.

Disease-associated noncoding regions are enriched with regula-

tory elements and thus noncoding genetic variants may mediate their

effects through dysregulation of gene expression10 by mechanisms

such as changes in transcription factor binding (gain or loss) or disrup-

tion of regulatory element accessibility and function.11 Consistently,

differential gene expression in LOAD versus healthy controls is well

established.12–14 Moreover, expression quantitative trait loci (eQTL)

studies in brain tissues from cognitively normal15 and LOAD16–19 sam-

ples reported overlap with LOAD-GWAS loci. Finally, integration of

findings from LOADepigenome-wide association andGWAS identified

a number of shared loci.20–27

The present study builds on our prior work in which we developed

a bioinformatics strategy to identify candidate LOAD causal genes in

LOAD-GWAS regions.28 This previous work, which used publicly avail-

able functional genomic datasets, identified active enhancers in ≈1Mb

LOAD-associated regions and inferred their target genes based on 3D

interactions between the annotated enhancer and gene promoter. The

current study extended this bioinformatics framework to identify can-

didate LOAD regulatory SNPs. The developed pipeline herein predicts

the impact of enhancer SNPswithin LOAD-GWASregionson transcrip-

tion factor (TF) binding sites with the goal to catalogue and prioritize

candidate LOADfunctional SNPs.As shown inFigure1,we startedwith

defined active enhancers within LOAD-associated regions28 and cat-

alogued all SNPs that mapped within the enhancers. We next priori-

tized the SNPs that disrupt TF binding sites; the respective TFs were

filtered to include only those that were expressed in brain tissues rel-

evant to LOAD (frontal cortex, temporal cortex, hippocampus) and/or

monocytes and when available the TFs binding to the corresponding

sequence were confirmed by ChIP-seq signals.29,30 The resulting top

prioritized SNPs are strong candidates with likely transcriptional reg-

ulatory roles and were further evaluated as eQTLs in disease-relevant

tissues (Figure 1).

Integrationof our bioinformatics tools could pinpoint candidate reg-

ulatory SNPs and causal genes with the putative transcription factors

that mediate their effect for further validation in laboratory-based

experimentation using in vitro and in vivomodel systems.

2 METHODS

2.1 Cataloguing SNPs in LOAD-defined enhancers

The approach for identifying active enhancers in LOADGWAS regions

is described in detail in Lutz et al.28 In brief, the region tagged by each

LOAD-SNP was initially defined by anchoring the center of the region

on the GWAS SNP and extending 500 kb in each direction to cover a

1Mb locus. Genes on the boundary of the 1Mb region were examined

and the locus extended to cover the full length of the gene if the bound-

ary intersects within a gene. Chromatin state segmentation data from

the Roadmap Consortium31 was used to list active enhancers identi-

fied in brain regions affected in LOAD: hippocampus middle, inferior

temporal lobe, and mid frontal lobe. The chromatin state segmenta-

tion was derived from a common set of states across the specific cell

types by computationally integrating ChIP-seq data for six core marks

(H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3)

+ H3K27ac using a hidden Markov model (HMM). For the current

study, the recent LOADGWAS data reported by Kunkle et al.7 defined

theLOAD-associated loci. SNPs locatedwithin theenhancerswere cat-

alogued using the UCSC Table Browser32,33 to load data for SNPs with

global minor allele frequencies > 0.01 from dbSNP version 150 for all

genetic enhancer regions identified.

2.2 Predicting TF binding sites affected by SNPs
in LOAD enhancers

Prediction of TF binding sites was performed at two different

steps in the bioinformatics pipeline. The software package/algorithm

motifbreakR34 was used to estimate or predict whether the sequence

surrounding a SNP matches to specific TF binding sites, and how one

allele of the SNP relative to the other affects the strength of the TF

binding site (gain or loss of the TF binding affinity). MotifbreakR can

predict effects for novel or previously described variants in public

databases. For our study, we used the information content (ic) algo-

rithm and position weight matrices from Homer, HOCOMOCO, Fac-

torbook, and ENCODE.

In the first step of the bioinformatics pipeline, each SNP from the

catalogue we generated for LOAD-GWAS enhancers was evaluated

for the potential to disrupt/gain TF binding sites using a predicted P
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value < 1 × 10−4. For the second step, after all filtering steps are com-

pleted, the remaining SNPs are evaluated for impact on specific TF

binding with calculation of a permutation P value, score for impact on

binding, and assessment of loss or gain of a binding site based on the

motifbreakR calculations.

2.3 Evaluation of candidate transcription factors
and their binding sites in LOAD enhancers

All TF binding sites with a predicted P value < 1 × 10−4 were further

evaluated as follows: (1) all respective TFs were listed and filtered by

expression in relevant tissues, that is, brain andmonocytes, and (2) con-

firmation of the TF binding site within the LOAD defined enhancers by

ChIP-seq data.

2.3.1 Expression in brain tissues and monocytes

Expression in brain tissues was interrogated using GTEx Gene V8

(August 2019) GRCh37/hg19. The UCSC Table Browser33 was used to

download the GTEx expression data for the candidate TFs. The ana-

lyzed brain tissues included cortex, frontal cortex, and hippocampus.

Median expression level in transcripts per million was computed per

TF/per tissue. The scorewas derived from totalmedian of all categories

TF/per tissue and was log-transformed and scaled to a range of 0 to

1000. To quantify whether an expression signal was significant, mean

scores for each TF per brain tissue were obtained and the lower quar-

tile was calculated and used as a threshold value. For each TF of inter-

est, if the mean score was greater than this threshold, we noted that

the TFwas expressed in the specific brain tissue.

Expression in monocytes was obtained from the Cardiogenics

data.35 To quantify whether a monocyte expression signal was signif-

icant, mean scores for each TF were obtained and the lower quartile

was calculated and used as a threshold value. For each TF of interest, if

the mean score was greater than this threshold, we noted that the TF

was expressed inmonocytes.

2.3.2 ChIP-seq data

ChIP-seq data from ENCODE29,30 (March 2012 Freeze) was used

to confirm the likelihood of each TF to bind at the predicted site

within the LOAD-associated enhancer. TF ChIP-seq Uniform Peaks

from ENCODE/Analysis were downloaded using the UCSC Table

Browser.32,33 The data represents peak calls (regions of enrichment)

that were generated by the ENCODE Analysis Working Group (AWG)

based on a uniform processing pipeline developed for the ENCODE

Integrative Analysis effort.29 ChIP-seq scores were assigned to peaks

by multiplying the input signal values by a normalization factor cal-

culated as the ratio of the maximum score value (1000) to the signal

value at 1 standard deviation (SD) from the mean, with values exceed-

ing1000cappedat1000. This provided theeffect of distributing scores

RESEARCH-IN-CONTEXT

1. Systematic review: The authors reviewed the Literature

using PubMed, meeting abstracts, and presentations and

downloaded publicly available datasets. The goal of the

work is to link candidate regulatory single nucleotide

polymorphisms (SNPs) with putative transcription fac-

tors and to pinpoint the causal genes through which they

mediate their pathogenic effect for further validation in

laboratory-based experiments.

2. Interpretation: Our findings supported the concept that

late-onset Alzheimer’s disease (LOAD)-associated vari-

ants are likely markers for the actual functional vari-

ants and that the interpretation of genome-wide associ-

ation study (GWAS) discoveries requires the integration

functional genomic datasets and information related to

the dysfunction of regulatory elements in the context of

LOAD. This study extended prior work with enhancers

in LOAD GWAS regions to include the effect on puta-

tive transcription factor binding sites. The bioinformatics

pipeline is used to characterize several LOAD GWAS loci

including apolipoprotein E.

3. Future directions: Future work will focus on (1) exam-

ining non-SNP variations (deletions, insertions, indels)

using a similar bioinformatics pipeline and (2) using cell-

type–specific single nucleus datasets such as parallel

snRNA-seq and snATAC-seq. Furthermore, alternative

approaches for evaluation of transcription factor binding

site affinity will be tested.

up to the mean plus one 1 SD across the score range but assigning all

above to themaximumscore. Presenceof aTF in theChIP-seqdatawas

confirmed if a score was reported for any of the 91 cell types. To quan-

tifywhether aChIP-seq signal was statistically significant, mean scores

for each gene across tissue sources were obtained and the lower quar-

tile was calculated and used as a threshold value. For each TF of inter-

est, if the mean score was greater than this threshold, we noted that a

positive ChIP-seq signal was present.

2.4 eQTL analysis

eQTL analysis was performed using the GTEx Portal36,37 to visualize

and quantify eQTLs for specific SNPs. We performed eQTL analysis

using GTEx expression data for the following tissues: brain (hippocam-

pus, frontal cortex, cerebellum, cortex, and caudate), tibial nerve, and

monocytes.While the primary eQTL analysis was done in these tissues,

we also tested for significant eQTL signals in cultured fibroblasts due

to the availability of results for many SNPs in GTEx.
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F IGURE 1 A schematic of the bioinformatics pipeline. Flowchart illustrating the analytical scheme used to progress from SNPs located in
enhancers within LOADGWAS regions to a filtered set of SNPs that have a predictive regulatory effect on transcription in disease relevant tissues.
eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LOAD, late-onset Alzheimer’s disease; SNP, single nucleotide
polymorphism; TF, transcription factor
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2.5 Genome version and coordinates

All genomic data and coordinates are based on the February 2009 ver-

sion of the genome: hg19, GRCh37.

3 RESULTS

3.1 Bioinformatics pipeline to identify
transcriptional regulatory SNPs in genetic enhancers
within LOAD GWAS regions in disease relevant
tissues

The bioinformatics pipeline illustrated in Figure 1 shows the specific

analysis steps to progress from SNPs located in LOADGWAS regions7

to a filtered set of SNPs that have a putative regulatory effect on tran-

scription in LOAD-relevant tissues.

We identified 61 strong enhancers in the 25 LOAD GWAS loci

reported by Kunkle et al.7 (Table S1 in supporting information). This

recent GWAS extended the set of LOAD-associated loci and enhancers

from the 2013 International Genomics of Alzheimer’s Disease Project

LOAD GWAS1 used in our earlier study28 by inclusion of five new

genome-wide significant loci. Note that as new LOAD GWAS are com-

pleted, the analytical pipeline developed in this study can easily be

applied to any set of resulting loci.

We then generated a catalogue of SNPs that mapped to the

enhancers and found a total of 323 common variants (minor allele fre-

quency > 0.01 [dbSNP version 150]; Table S2 in supporting informa-

tion). We filtered the list by applying motifbreakR and found that 11

SNPs are predicted to affect the binding of 104 TFs (threshold P < 1

× 10−4). Of note, a SNP potentially can interrupt (gain or loss) bind-

ing at multiple TF binding sites. The complete list of SNPs, all corre-

sponding TFs, the specific binding sequence matched, the position of

the SNP within the motif, and the statistical results for themotifbreakR

binding disruption scores for the SNP alternate and reference alleles

are provided in Table S3 in supporting information. We examined the

expression of these TFs in brain tissues relevant to LOAD pathology

(frontal cortex, temporal cortex, hippocampus) and/or monocytes as a

surrogate for microglia. Out of 104 TFs, 77 and 78 were expressed in

brain and monocytes, respectively, including 34 TFs expressed in both

brain tissues andmonocytes. Expressionplots inbrain tissueandmono-

cytes of all TFs considered in the analysis are shown in Figure S1 in sup-

porting information. Next, we used the ChIP-seq data from ENCODE

to confirm evidence for binding of each of these TFs to its putative

genomic locus within LOAD enhancer. However, ChIP-seq data was

available only for 24 of the 34 candidate TFs out of which 19 showed

a signal above baseline in the ChIP-Seq data (Table S4 in supporting

information). The impact of SNPs overlapping the binding sites of this

set of 19 TFs was further evaluated using motifbreakR and resulted in

a filtered list of 11 LOAD enhancer regulatory SNPs showing a strong,

statistically significant effect on TF binding.We characterized the link-

age structure between the alleles of the enhancer SNP and the alleles

of the LOAD GWAS SNP to determine the direction of the effect on

TF binding (loss or gain) in relation to the LOAD risk allele. The direc-

tion (loss or gain) and statistical analysis of the regulatory SNP effect

on TF binding affinity, along with the corresponding LOADGWAS SNP

and the linkage disequilibrium (LD) between the regulatory and the

GWAS SNPs are summarized in Table 1. For the two apolipoprotein E

(APOE) enhancer SNPs (rs1065853 and rs10414043) Table 1 informed

the linkage disequilibrium with each of the two coding SNPs that com-

prise the APOE haplotype (rs7412 and rs429358), that is, four pairs,

allowing for the possibility of linkage between each enhancer SNP and

each of the two APOE coding SNPs (separated by only 138 bp). The

majority (n = 8) of enhancer SNPs were predicted to have loss of TF

binding while three enhancer SNPs were predicted to gain TFs bind-

ing (Table 1). Comparisonof the effect sizes (beta coefficients) between

the enhancer SNPs and GWAS SNPs showed similar magnitudes. The

bioinformatics pipeline is concluded by eQTL analysis of the candidate

LOAD enhancer regulatory SNPs using GTEx data of disease-relevant

tissues and cell types. Out of the 11 predicted LOAD-enhancer regula-

tory SNPs we found three significant eQTLs in GTEx tissues including

brain caudate, tibial nerve, and cultured fibroblasts (Table S5 in sup-

porting information).

3.2 Implementation of the bioinformatics pipeline
using examples of four LOAD GWAS regions

To demonstrate the utility of the bioinformatics pipeline, we showed

here examples for four LOADGWAS regions.

3.2.1 Identifying enhancer SNPs in LOAD GWAS
regions that disrupt TF binding sites

For eachof the four LOAD-GWAS loci presentedbelow (denotedby the

gene most proximate to the GWAS SNP), we identified the enhancer

proximate to the LOADGWASSNP, catalogued all SNPsmappedwithin

the enhancer region, determined the SNPs that are predicted to dis-

rupt TF binding sites, and indicated their corresponding TFs. Fig-

ures 2–5 visualize the LOAD-GWASextended regions anddepicted the

enhancer and the genomic relationships between theSNP that disrupts

the TF and the LOADGWAS SNP.

SPI1 locus

SNP rs116371174 is located in a predicted active enhancer adja-

cent to the SPI1 gene for three brain tissues, frontal cortex, tem-

poral cortex, and hippocampus (Figure 2). SNP rs116371174 dis-

rupts the binding site of the TF RUNX3 and is also adjacent to the

PU.1 binding site (Figure 2). Although rs116371174 was not pre-

dicted to affect PU.1 binding, the proximity of the two TF bind-

ing sites suggests a possible interaction between the TFs in this

region that may have biological consequences. The GWAS SNP near

the SPI1 gene (rs3740688) is located 41,354 bp from the enhancer

SNP and the LD between these SNPs is non-existent to very weak

(Figure 2).
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TABLE 1 Regulatory SNP effects on transcription factor binding affinity

Enhancer

SNP Chr Location Effect allele

Non

effect

allele Beta Beta SE P value TF

Binding

loss or gain

MotifbreakR

p value

1 rs111378762 6 32,577,504 A G −0.0744 0.0595 0.2108 POU3F1 – 1.59E-02

2 rs10795875 10 11,716,429 A G 0.0055 0.0153 0.7176 SPI1 – 1.56E-04

3 rs11257243 10 11,724,372 A G −0.0194 0.0187 0.2976 IRF5 – 2.74E-03

4 rs10792832 11 85,867,875 A G −0.1195 0.0148 7.56E-16 SPI1 – 1.60E-02

5 rs11234564 11 85,869,944 C G 0.0494 0.0179 0.005818 SP1 – 1.66E-02

6 rs11234565 11 85,870,006 FOXO1 – 1.10E-02

7 rs76292249 11 59,951,740 SPI1 – 2.45E-04

8 rs116371174 11 47,421,694 A G −0.4308 0.4317 0.3182 RUNX3 + 5.83E-02

9 rs10131374 14 92,927,531 A G −0.0403 0.0211 0.05672 E2F1 + 1.28E-02

10 rs1065853 19 45,413,233 NR2F2,

POLR2A,

TEAD4,

TAL1

+ 9.99E-04

11 rs10414043 19 45,415,713 A G 1.1368 0.0201 0 ARNT2 – 2.13E-02

12 rs1065853 19 45,413,233 NR2F2,

POLR2A,

TEAD4,

TAL1

+ 9.99E-04

13 rs10414043 19 45,415,713 A G 1.1368 0.0201 0 ARNT2 – 2.13E-02

GWAS Linkage disequilibrium

SNP Location Gene

Major/

minor

allele

Effect

allele

Non

effect

allele Beta Beta SE P value

Distance

GWAS

SNP to

enhancer

SNP

R2 GWAS

SNP and

enhancer

SNP

Correlated

alleles

enhancer-

GWAS

1 rs9271058 32,575,406 HLA -DRB1 T/A A T 0.094 0.0172 5.14E-08 2098 0.0334

2 rs7920721 11,720,308 ECHDC3 A/G A G −0.0782 0.015 1.94E-07 3879 0.28 G-G, A-A

3 rs7920721 11,720,308 ECHDC3 A/G A G −0.0782 0.015 1.94E-07 4064 0.055

4 rs3851179 85,868,640 PICALM C/T T C −0.1198 0.0148 5.81E-16 765 0.987 A-T, G-C

5 rs3851179 85,868,640 PICALM C/T T C −0.1198 0.0148 5.81E-16 1304 0.132 G-T, C-C

6 rs3851179 85,868,640 PICALM C/T T C −0.1198 0.0148 5.81E-16 1366 0.197 T-T, G-C

7 rs7933202 59,936,926 MS4A6A A/C A C 0.1165 0.0147 2.15E-15 14814 0.001

8 rs3740688 47,380,340 SPI1 T/G T G 0.0935 0.0144 9.7E-11 41354 0.001

9 rs12881735 92,932,828 SLC24A4 T/C T C 0.088 0.0175 4.88E-07 5297 0.048

10 rs429358 45,411,941 APOE T/C T C −1.2017 0.0189 0 1292 0.012

11 rs429358 45,411,941 APOE T/C T C −1.2017 0.0189 0 3772 0.759 G-T, A-C

12 rs7412 45,412,079 APOE C/T T C −0.4673 0.0305 6.4E-53 1154 1 G-C, T-T

13 rs7412 45,412,079 APOE C/T T C −0.4673 0.0305 6.4E-53 3634 0.009

Notes: Effect allele, non-effect allele, beta, standard error for beta, and P value for all SNPs are from the LOAD GWAS reported in Kunkle et al.7 For binding

loss or gain, +/- indicates gain or loss of binding function for the effect allele of the enhancer SNP on the specified transcription factor motif. MotifbreakR P
value estimates the statistical significance of the effect allele to disrupt (gain or loss of binding function) specific motifs in the transcription factor. Correlated

alleles column indicates the specific alleles of the enhancer andGWAS SNPs that are in linkage disequilibrium. All genomic data and coordinates are based on

the February 2009 version of the genome: hg19, GRCh37.

Abbreviations: Chr, chromosome; eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LOAD, late-onset Alzheimer’s disease; SE,

standard error; SNP, single nucleotide polymorphism; TF, transcription factor
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F IGURE 2 Genome browser view of the SPI1 LOADGWAS locus. Tracks include (upper to lower): Chromatin state segmentation information
for brain tissues (brain hippocampusmiddle, brain inferior temporal lobe, brain dorsolateral prefrontal cortex), orange shading indicates active
enhancers (Roadmap); gene structure (UCSC gene); TFs ChIP-seq (ENCODE); TF binding sites in cell-lines; and SNPs position (dbSNP150). The
enhancer SNP (rs11637114) disrupts the RUNX3 TF (circled in blue). The locations of PU.1 binding sites are also highlighted on themap. GWAS,
genome-wide association study; LOAD, late-onset Alzheimer’s disease; SNP, single nucleotide polymorphism

F IGURE 3 Genome browser view of the PICALM LOADGWAS locus. Tracks include (upper to lower): Chromatin state segmentation
information for brain tissues (brain hippocampusmiddle, brain inferior temporal lobe, brain dorsolateral prefrontal cortex), orange shading
indicates active enhancers (Roadmap); gene structure (UCSC gene); TFs ChIP-seq (ENCODE); TF binding sites in cell-lines; and SNP position
(dbSNP150). The enhancer SNP (rs10792832) disrupts the SPI1 TF (circled in blue). GWAS, genome-wide association study; LOAD, late-onset
Alzheimer’s disease; SNP, single nucleotide polymorphism; TF, transcription factor

PICALM locus

The predicted active enhancers in the hippocampus and temporal

cortex near the LOAD associated PICALM gene encompassed SNP

rs10792832 that disrupts the SPI1 TF binding site (encoded the PU.1

TF; Figure 3). The GWAS SNP rs3851179 is located only 765 bp from

the enhancer SNP and there is strong LD (r2= 0.99) between these

SNPs (Figure 3). In addition, two SNPs in this region (rs11234564 and

rs11234565) located within putative strong transcriptional elements
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F IGURE 4 Genome browser view of theMS4A6A LOADGWAS locus. Tracks include (upper to lower): Chromatin state segmentation
information for brain tissues (brain hippocampusmiddle, brain inferior temporal lobe, brain dorsolateral prefrontal cortex), orange shading
indicates active enhancers (Roadmap); gene structure (UCSC gene); TFs ChIP-seq (ENCODE); TF binding sites in cell-lines; and SNPs position
(dbSNP150). The enhancer SNP (rs76292249) disrupts the SPI1 TF (circled in blue). A, UCSC genome browser plot forMS4A6A locus that includes
the GWAS SNP (rs7933202) and the SNP (rs76292249) in the enhancer that disrupts the SPI1 TF. B, Inset shows detail surrounding the enhancer
SNP (rs76292249). GWAS, genome-wide association study; LOAD, late-onset Alzheimer’s disease; SNP, single nucleotide polymorphism; TF,
transcription factor

F IGURE 5 Genome browser view of the of the apolipoprotein E (APOE) locus. The scheme indicated the APOE epsilon haplotype coding SNPs
(rs7412, rs429358) and the SNP in genetic enhancer (rs1065853) for the APOE LOADGWAS locus. Tracks include (upper to lower): Chromatin
state segmentation information for brain tissues (brain hippocampusmiddle, brain inferior temporal lobe, brain dorsolateral prefrontal cortex),
orange shading indicates active enhancers (Roadmap); gene structure (UCSC gene); TFs ChIP-seq (ENCODE); TF binding sites in cell-lines; and
SNPs position (dbSNP150). The enhancer SNP disrupts multiple TFs. A, UCSC genome browser plot for APOE locus that includes the
APOE-haplotype coding SNPs (rs7412, rs429358) and the SNP (rs1065853) in the enhancer that disrupts several TFs including TAL1, TEAD4,
POLR2A, and NR2F2. B, Inset shows detail surrounding the enhancer SNP (rs1065853). GWAS, genome-wide association study; LOAD, late-onset
Alzheimer’s disease; SNP, single nucleotide polymorphism; TF, transcription factor
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in hippocampus, temporal cortex, and prefrontal cortex are predicted

to disrupt the SP1 and FOXO1 TFs, respectively (Table 1). These SNPs

are located 1304 bp and 1366 bp from the GWAS SNP and showed

weak LDwith the GWAS SNP (r2= 0.13 and 0.20 respectively).

MS4A6A

The diagram for the LOAD GWAS (rs7933202) and enhancer

(rs76292249) SNPs that are located near the MS4A6A gene are

shown in Figure 4. The enhancer SNP (rs76292249) is located in a

predicted active enhancer for the hippocampus and disrupts a SPI1 TF

binding site in this gene (Figure 4B). The GWAS SNP (rs7933202) is

located 14,814 bp from the enhancer SNP and the LD between these

SNPs is very weak (r2= 0.001).

APOE

Two SNPs (rs1065853, rs10414043) located in enhancers in the APOE

region are predicted to interrupt the binding sites of multiple TFs

with strong effects (Table 1, Table S3). SNP rs1065853, located in an

active enhancer for the hippocampus, is predicted to interrupt the

binding sites of four TFs including NR2F2, POL2R2A, TEAD4, and

TAL1 (Figure 5). This SNP is located 1154 bp and 1292 bp, respec-

tively, from the two APOE coding SNPs, rs7412 (defined the APOE

ε2 allele) and rs429358 (APOE ε4 allele). The second enhancer SNP,

rs10414043, is located in active enhancers for three brain tissues,

frontal cortex, temporal cortex, and hippocampus (data not shown) and

is predicted to interrupt the ARNT2 TF. This SNP is located 3634 bp

and 3772 bp, respectively, from rs7412 and rs429358. The LD pat-

terns for these enhancer SNPs and the APOE coding SNPs are com-

plex because all are located within 1 to 4 Kb of each other and the

results for all pairs of APOE coding SNPs and enhancer SNPs are

reported in Table 1. Based on the R2 between the APOE coding SNPs

and the enhancer SNPs, themost likely LDpairingwould be rs1065853

with rs7412 (R2
= 1) and between rs10414043 and rs429358

(R2
= 0.8).

3.2.2 The expression of the corresponding TFs in
brain tissues and monocytes

We examined the TF expression data in specific brain tissues (frontal

cortex, temporal cortex, and hippocampus) and monocytes (Figure 6).

For the purpose of implementation of the pipeline, we focused on the

correspondingTFs identified by thebioinformatics pipeline for the four

LOADGWAS examples (described above), that is, SPI1, RUNX3, ARNT2,

NR2F2, POL2R2A, TEAD4, and TAL1. Overall, each of these TFs showed

significantly increased expression above baseline using a definition of

the first quartile of the data for each tissue as baseline. Note that the

expression ofARNT2, corresponding to the enhancer SNP rs10414043

in the APOE region, was extremely high compared to the other exam-

ined TFs in all three brain tissues (Figure 6A-C). In monocytes, the

expression levels of SPI1, SP1 RUNX3, and FOXO1were higher than the

other expressed TFs (Figure 6D).

3.2.3 Evidence of the TFs binding in LOAD
enhancers by ChIP-seq signals

We next evaluated the ChIP-seq uniform peak signals (ENCODE) for

the four LOADGWAS examples’ loci (Figure 7). The score displayed on

the graph is the highest score for any peak contributing to the cluster.

Scores were considered significant if they were above the baseline for

each of these TFs using a definition of the first quartile of the data as

baseline. This step in the analysis pipeline was performed to test for

evidence of a TF binding site in a LOAD enhancer in any tissue or cell

line. The current ENCODE data were limited in terms of coverage of

brain tissue relevant to LOAD. Cell lines highly represented in the data

include MCF-7 and HepG2. Of note, SPI1 showed the highest ChIP-

seq signal scores for LOAD enhancers in both the PICALM andMS4A6A

regions.

3.2.4 eQTL analysis of cis-candidate enhancer
SNPs

We performed eQTL analysis for the enhancer SNPs from the four

examples usingGTEx data, and found significant eQTLs for three SNPs.

rs10792832 in the PICALM region showed a significant eQTL in cul-

tured fibroblasts (Figure 8A), but did not show statistically signifi-

cant eQTLs in single brain tissues (Figure 8B). A significant eQTL for

rs116371174 in the SPI1 locus was identified in the basal ganglia

of the brain (Figure 9A) and in single tissues for other brain regions

(cortex, hypothalamus; Figure 9B). A significant eQTL was found for

rs111378752 in the tibial nerve (Figure 10).

4 DISCUSSION

In this article, we developed a new bioinformatics analysis pipeline

to characterize and prioritize SNPs in enhancers located in LOAD

GWAS regions based on their predicted effect to alter TF bind-

ing sites. Our bioinformatics strategy is based entirely on publicly

available genomic datasets including: genotype data (GWAS results)

and functional genomic datasets such as annotation of enhancer ele-

ments (ENCODE chromatin state), position probability matrices for

TF motifs (ENCODE,29,30 HOMER,38 Factorbook,39 HOCOMOCO40),

gene expression (GTEx portal and Cardiogenetics), and ChIP-seq data.

Here we integrated these datasets and used themotifbreakR algorithm

to construct a comprehensive bioinformatics resource for translating

well-replicated LOAD GWAS regions to mechanistic understanding in

the context of transcriptional regulation and in particular the interac-

tion between enhancer elements and TFs.We illustrated application of

the pipeline using four LOAD-GWAS regions as examples to show the

utility and potential impact of the approach. The exemplars reported in

this study cover a range of LOAD GWAS genes and TFs with prior lit-

erature support for their role in LOAD. Comprehensive reviews of the

GWAS genes and their biological pathways have been published9,41–43
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F IGURE 6 Expression profiles of TFs in specific brain tissues andmonocytes. The TFs presented here were identified to have disrupted
binding site/s in the four examples of LOADGWAS genomic loci (APOE, PICALM, SPI1, andMS4A6A). Calculation of score is described inMethods.
Thematrix under each expression plot identifies each LOADGWAS locus by the name of the proximal gene. A+ symbol in thematrix indicates that
the TF labelled on the X axis (column heading) is expressed at each of the loci (row label at left): (A) brain, temporal cortex; (B) brain, frontal cortex;
(C) brain, hippocampus; (D) monocytes. GWAS, genome-wide association study; LOAD, late-onset Alzheimer’s disease; SNP, single nucleotide
polymorphism; TF, transcription factor

F IGURE 7 ChIP-seq uniform peak signals from ENCODE for the
four examples of LOADGWAS genomic loci (APOE, PICALM, SPI1, and
MS4A6A). Calculation of score is described inMethods. First row of
the X axis indicates transcription factor, second row indicates the
LOADGWAS proximal gene and LOADGWAS SNP. GWAS,
genome-wide association study; LOAD, late-onset Alzheimer’s
disease; SNP, single nucleotide polymorphism; TF, transcription factor

and augment the data reported in the original GWAS studies.1,7,44,45 A

recent computational study examined the effects of 195 LOADGWAS

lead SNPs and 338 proxy SNPs on (1) miRNA binding and protein

phosphorylation, (2) RegulomeDB and 3D SNP scores, (3) gene ontol-

ogy, (4) pathway enrichment, and (5) protein–protein interactions of

126 LOAD-associated genes.46 The authors concluded that specific

genes (APOE, PICALM,MA4A6A) andTFs (TAL1,POL2RA,TEAD4) likely

have functional significance on the development of LOAD pathology.46

These findings are consistent with our results.

Numerous LOAD genetic risk loci have been identified over the

past 12 years via GWAS and the current challenge is to progress to

causal genes and variants. These associated loci are based on marker

or tagging SNPs that are assayed on the GWAS platforms and are

not necessarily the causal variants within the identified risk loci. Here

we developed a pipeline to translate LOAD risk loci into regulatory

variants. Studies from several other groups have provided functional

insights into LOAD GWAS regions. Molecular profiling and integra-

tive multi-omics approaches are the current focus in LOAD genetic

research toward the identification themolecular drivers of LOAD.47–50

Several bioinformatics approaches have been described to study the

functional role of GWAS-enhancer elements and variants on gene

expression and in turn, development or progression of neurodegener-

ative diseases including LOAD. These approaches have included fine

mapping DNA methylation sites in prefrontal cortex neurons from

brains with different degrees of Alzheimer’s disease pathology,51 cat-

aloguing enhancers in LOAD regions and mapping promoter-enhancer

interaction using Circular Chromosomal Conformation Capture (4C)

data to prioritize genes for experimental follow-up,28 and integrat-

ing datasets of enhancer activity, TF binding sites, and eQTL10,52,53 to
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F IGURE 8 eQTL analysis for rs10792832 in the PICALMLOADGWAS locus. A, Expression by rs10792832 genotype in cultured fibroblasts. B,
Single tissue eQTLs for various tissues including brain. eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LOAD,
late-onset Alzheimer’s disease; TF, transcription factor

F IGURE 9 eQTL analysis for rs116371174 in the SPI1 LOADGWAS locus. A, Expression by rs116371174 genotype in brain basal ganglia. B,
Single tissue eQTLs for various tissues including brain. eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LOAD,
late-onset Alzheimer’s disease; TF, transcription factor

characterize the effects of non-coding genetic variation associated

with LOAD risk. A recent study reported non-coding LOAD SNPs that

affect the function of enhancers and in turn impact the expression of

distal genes via chromatin loops.29 Another group integrating LOAD

GWAS results with myeloid epigenomic and transcriptomic datasets

identified links among myeloid enhancer activity, target gene expres-

sion, and LOAD riskmodification.30 A common objective of these stud-

ies with the approach described in this article is to constitute an inter-

mediate step between the genetic association signals and causal biol-

ogy, whether variants, genes, or pathways. This intermediate step can

be balanced between the costs of lab experimental work that will

potentially greatly increase confidence that a variant or gene is causal

for LOAD pathology and the much lower cost, moderate and testable

evidence from bioinformatics analysis based on publicly available

data.

Several TFs identified through our bioinformatics pipelinewere pre-

viously reported in the context of LOAD. In this paragraph, we focus

on the analysis of the APOE region. Interpretation of the enhancer

SNPs that link to the coding ε4 SNP (Table 1) showed that rs10313043

is predicted to cause a loss of binding for the ARNT2 TF while

rs1065853 is predicted to cause a gain of binding function for four

TFs—NR2F2, POLR2A, TEAD4, and TAL1. ARNT2 (aryl-hydrocarbon

receptor nuclear translocator 2) encodes the neuroprotective protein,

aryl hydrocarbon receptor (AHR) expressed almost exclusively in the
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F IGURE 10 eQTL analysis for rs111378762 in the HLA-DRB5 LOADGWAS locus. A, Expression by rs111378762 genotype in tibial nerve. B,
Single tissue eQTLs for various tissues including brain. eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LOAD,
late-onset Alzheimer’s disease; SNP, single nucleotide polymorphism; TF, transcription factor

central nervous system (CNS). A recent study reported higher serum

levels of AHR in the elderly in contrast to young postmortem brain sam-

ples and higher serum levels of AHR in LOAD patients than in other

participants,54 suggesting that AHR contributes to the development of

LOAD through the response of glial cells to a pro-inflammatory envi-

ronment in theCNS.54 Anexample of a TF that gains binding strength is

NRF2. The expression ofNRF2 levelswere decreased in LOAD55,56 and

it was shown to be involved in the modulation of oxidative stress, neu-

roinflammation, mitochondrial function, and ferroptosis in LOAD, with

the suggstionas apotential target to treat LOAD.57 NRF2was shown to

regulate the expression of antioxidant genes that could potentially pro-

tect neurons from oxidative stress, an early pathophysiological factor

for LOAD.56,58 The overall beneficial effect of increased NRF2 expres-

sion for LOAD pathophysiology corresponded with our finding of pre-

dicted gain of function/binding for NRF2. In addition, a decrease in the

level ofTEADandcomplexesofTEADandYAP (Yes-associatedprotein)

was reported in early stage LOAD leading to increases in intracellular

amyloid beta and in turn neuronal necrosis.59 Finally, POLR2A60 and

TAL161 were also studied in relation to LOAD.

Our study pointed to a group of TFs that are expressed in microglia

and play important roles in the immune system. A prominent example

is the SPI1 gene that encodes PU.1, a TF that is critical for myeloid cell

development and function and is known to regulate microglial inflam-

matory response.62 PU.1 binds to cis-regulatory elements of multi-

ple LOAD-associated genes that are expressed in human myeloid cells

including ABCA7, CD33, MS4A4A, MS4A6A, TREM2, and TYROBP.63

Another example is RUNX3, a hematopoietic stem and progenitor TF

whose level decreases with age in humans.64 RUNX3 plays a role in

neuroinflammation specifically as a critical determinant in microglial

activation. Of note, PU.1, RUNX1 (member of RUNX TF family), and

TAL1 were identified as a subnetwork of transcription factors that are

master regulators of an age-dependent microglial module that regu-

lates microglial homeostasis in the human frontal cortex.61 Our find-

ings support a role for these TFs in the early development of LOAD

mechanistically associated withmicroglial perturbations.

5 LIMITATIONS

The major limitation in the implementation of the bioinformatics

pipeline is the lack of large collections of functional genomic datasets

from LOAD cases, for example, the limited availability of gene expres-

sion data from individuals with LOAD and ChIP-seq data from LOAD-

relevant brain tissues. The examples presented in this article used

gene expression data and epigenomic profiles from bulk brain tissue

samples. As more single-nucleus multi-omics datasets, such as paral-

lel snRNA-seq and snATAC-seq, become available from LOAD patients

andmatched controls, thebioinformatics pipeline couldbeused to gen-

erate amore accurate catalogue of candidate LOADgenes and variants

with an unprecedented cell-type specific precision. We used ChIP-seq

data from various cell lines to confirm presence of a TF binding site;

however, in future studies testing for these sites in LOAD-relevant tis-

sues would provide additional functional support. A second limitation

is that the bioinformatics pipeline is focused on SNP variation. While

we presented the utility of the bioinformatics pipelines in prioritizing

LOAD functional SNPs for validation studies, the pipeline would be

strengthened if it were generalized for other classes of genetic vari-

ants including short structural variants such as deletions/insertions

and repeat variants. Indeed, inclusion of a recently developed function

in themotifbreakRalgorithm intoourbioinformatics pipelinewill enable

the evaluation of indels as causal genetic variants in LOAD. Alterna-

tive approaches for predicting the effects of SNPs on TF binding affin-

ity which utilize previous knowledge of the binding pattern of tran-

scription factors are available, notably the SNP effect matrix pipeline
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that estimates TF binding affinity using ChIP-seq data, providing an

estimate of a transcription factor’s endogenous binding in the

genome.65 Another approach is based on DNase I hypersensitive site

(DNase-seq) data, which represents regions of open chromatin in

which transcription factors are known to function and position weight

matrices.66

6 CONCLUSIONS

In summary, we developed a bioinformatics pipeline to catalogue non-

coding variants in enhancers located in LOAD-GWAS loci and to pri-

oritize them for further validation experiments that will continue to

evolvewith thegenerationof newmulti-omics datasets using advanced

genomic technologies. To show application of the pipeline, examples

were presented of four LOAD-GWAS regions with corresponding lit-

erature, ChIP-seq, and eQTL evidence for the involvement of specific

genes and TFs. Of note, our study identified a group of TFs that are

expressed in microglia and play important roles in the immune system

with potential involvement in the development of LOAD. We also pre-

sented an analysis of TF binding sites that are disrupted by enhancer

SNPs in theAPOE region that has potentially high significance for trans-

lational research in LOAD.
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