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A cold precipitable fibrin-precursor, designated cryoprofibrin, was separated 
from the plasma of endotoxin-treated rabbits, and shown on the basis of its 
peptide composition to correspond to a product of limited action of thrombin 
on fibrinogen (1). The present communication is concerned with the stability 
and the mechanism of formation of cryoprofibrin. The studies were undertaken 
principally to evaluate the proposed utility of cryoprofibrin in determining 
intravascular deposition of fibrin. 

Two moles of each of the peptide residues called cofibrins A and B or fibrinopep- 
tides A and B are liberated from the fibrinogen molecule by action of thrombin (2--4), 
and the altered fibrinogen polymerizes to form fibrin. Fibrinopeptide B is liberated at 
considerably slower rate than A (1, 3-7). Liberation of B does not appear necessary 
for production of fibrin, but may contribute to side by side aggregation of fibrin 
strands (3). Cryoprofibrin contains one-half as much fibrinopeptide A but as much B 
as does fibrinogen. Since fibrin can be produced by liberation of fibrinopeptide A alone, 
cryoprofibrin differs only in content of fibrinopeptide A and solubility from fibrin that 
would be produced by limited action of thrombin on fibrinogen. 

In dilute solution fibrinogen tends to dissociate into subunlts that are approximately 
one-third the size usually found to be characteristic of the fibrinogen molecule (8). 
Cryoprofibrin might consist of a complex between subunits of both native fibrinogen 
containing fibrinopeptide A and altered fibrinogen lacking it. Our studies indicate that 
in the presence of low concentrations of fibrinogen cryoprofibrin decomposes to form 
fibrinogen and fibrin in equimolecular proportions. The fibrin separating from cryo- 
profibrin seems to result from polymerization of altered fibrinogen lacking fibrino- 
peptide A, while the native fibrinogen remains in solution. This separation is reversible, 
the fibrin being depolymerized and solubilized in presence of excess fibrinogen to form 
cryoprofibrin. 

The formation of cryoprofibrin was studied in relation to both the production 
of fibrin and the thrombin-catalyzed liberation of fibrinopeptides. Results of 

* Supported in part by a grant No. 1707 from the Cleveland Area Heart Society, and by a 
training grant HTS-5216 from the National Heart Institute, Public Health Service, Bethesda. 

:~ Presented in part at the 6th Annual Meeting of the Biophysical Society, February, 1962, 
Washington, D. C. 

687 



688 CRYOPRO~'IBRIN IN ~IBRINOGEN-FIBRIN CONVERSION 

these  s tud ies  c o n f o r m e d  w i t h  two  a l t e r n a t e  poss ib i l i t ies  for  t he  m e c h a n i s m  b y  

w h i c h  n a t i v e  a n d  a l t e r ed  f ib r inogen  c o m b i n e  to  f o r m  c ryoprof ib r in ,  a n d  sug- 

ges t ed  t h a t  i n t r a v a s c u l a r  depos i t i on  of f ibr in  m a y  be  d e t e r m i n e d  b y  t he  re la-  

t ive  c o n c e n t r a t i o n s  of c ryop ro f ib r in  a n d  f ib r inogen  in p l a sma .  

Materials and Methods 

Rabbit fibrinogen was freshly prepared as follows: I t  was (a) precipitated as Cohn fraction 
I from fresh citrated plasma (9), (b) washed with glycine solution as specifically prepared 
by Blombt~ck and Blombtick (10), (c) dissolved at concentrations ranging from 2 to 6 mg/ml 
in a 0.136 ~ ammonium acetate and 0.015 ~ tosyl-L-arginine methyl ester hydrochloride 
(TAME) 1 solution, (d) stored at 0°C for 5 to 18 hours to remove cryoprofibrin, (e) precipi- 
tated by adding one-third volume of saturated ammonium sulfate, (f) washed with the giycine 
solution to remove ammonium sulfate and TAME, and (g) dissolved in either 0.15 M ammo- 
nium acetate at pH 6.8 or in 0.15 ~ saline containing one-tenth volume of 0.15 ~ sodium bar- 
bital at pH 7.4. The preparation formed a single sharp boundary in the analytical ultracen- 
trifuge, and contained less than 4 per cent non-coagulable protein precipitable with 5 per 
cent trichloracetic acid. The fibrinogen was converted to fibrin for assay as previously de- 
scribed (1). 

Bovine thrombin was derived from the Parke, Davis & Company product, and was puri- 
fied ten times further by the method of Rasmussen (11). There was a marked tendency for 
substantial amounts of the purified thrombin to become absorbed from dilute solutions on to 
glass surfaces, as described by Rasmussen. I t  was n~t  possible to designate the absolute 
thrombin concentration used in various experiments, because the amount adsorbed was 
dependent on the manner in which the stock solution was diluted. The amount of thrombin 
used is designated in terms of arbitrary units calculated on the basis of its original concentra- 
tion in NIH units and its dilution. Experimental error in comparative serial experiments was 
minimized by using the same stock of diluted thrombin solution and pipette in each reaction. 

Tosyl-T.-arginine methyl ester hydrochloride at 0.015 ~ concentration was used to stop 
reactions between thrombin and fibrinogen by competitive inhibition. Use of TAME as a 
competitive inhibitor of thrombin was described by Sherry and Troll (12), and by Ehrenpreis, 
Laskowski, Donnelly, and Scheraga (13). I t  was estimated from the data of Sherry and 
Troll that  at  least 95 per cent inhibition of action of thrombin on fibrinogen was affected by 
the 0.015 ~ TAME. The degree of inhibition was found to be sufficient, largely because in- 
hibited reaction mixtures were kept at 0°C except for a relatively short 10 minute period used 
for centrifugation. Decreased recovery of fibrin clot from calibrated solutions of bovine 
fibrin was observed by Ehrenpreis et oL (13) to result from use of 0.04 ~ TAME. We found 
that  0.015 M TAME did not inhibit polymerization of radioiodized rabbit fibrin in solutions 
containing 0.135 M ammonium acetate and 0.05 ~ sodium bromide. 

Fibrin was separated at 37°C as insoluble coagulum from reaction mixtures, and was 
washed with the 0.136 M ammonium acetate and 0.015 ~¢ TAME solution. Separation of 
fibrin was facilitated by centrifuging reaction mixtures for 8 minutes at 4500 m~r in thermally 
insulated centrifuge tubes at temperatures between 35 ° and 37°C. Quantitative recovery of 
fibrin was assumed because fibrin is insoluble in the solvent system used. The supernatant 
solutions remained clear when kept at 37°C. Intermittent samples of coagnlum were charac- 
terized chemically on the basis of the amount of peptides that  could be liberated when the 
samples were allowed to react further with thrombin. The following procedure was used to 
liberate fibrinopeptides from the fibrin: (a) the fibrin was dissolved in 0.5 ml of 1 ~ sodium 

I TAME, tosy1-L-arginine methyl ester hydrochloride. 
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bromide at pH 5.4, (b) mixed with 10 units of thrombin, (c) diluted with 10 ml of a solution 
containing 0.05 M sodium barbital and 0.05 ~ ammonium acetate at pH 7.4, and (d) incubated 
at 37°C for 4 hours, after which the coagulum was removed and the mother-liquor was anal- 
yzed for fibrinopeptides. Small amounts of fibrinopeptide A contained in the coagulum were 
assumed to be derived from occluded fibrinogen. The amount of fibrin was calculated from 
the weight of the coagulum minus the weight of occluded fibrinogen. Clots that  were esti- 
mated to be greater than 5 mg were dried at l l0°C for 12 to 16 hours, and weighed to within 
0.02 rag. Smaller clots were dissolved in 1 M NaOH by heating at 50°C for 15 minutes, and 
were compared with calibrated solutions of fibrin by means of Folin-Ciocalteu reagent (14). 

Cryoprofibrin was separated by precipitating it at 0°C from reaction mixtures contained 
in 0.136 ~ ammonium acetate and 0.015 ~ TAME. After reactions in ammonium acetate 
solutions were inhibited with TAME, the solutions were rapidly chilled. The solutions were 
then subjected to continuous and gentle agitation for 5 hours during the precipitation of pro- 
tein. To eliminate contamination by fibrinogen, the precipitates were: (a) washed twice at 
0°C with ammonium acetate and TAME solution, and (b) washed once at 0°C with 0.15 M 
ammonium acetate. Complete removal of contaminating fibrinogen from the precipitate was 
indicated by absence Of protein in the fluid from the second a~d third washings. Fibriuogen 
was not washed from cryoprofibrin precipitates in our previous study (1); in this instance we 
were primarily concerned with measurement of fibrinopeptides liberated from fibrinogen. 

The following procedure was used to separate cryoprofibrin from reaction mixtures in 
saline and plasma: (a) cryoprofibrin and fibrinogen were precipitated as Cohn fraction I 
after inhibiting reactions with TAME, (b) transferred to 0.36 ~ ammonium acetate and 0.04 
M TAME solution at  37°C, (c) stored at 0°C for about one-half hour until precipitation of 
cryoprofibrin subsided, and (d) diluted with 1.7 volumes of cold water to complete the pre- 
cipitation of cryoprofibrin. 

Nearly complete recovery of cryoprofibrin from inhibited reaction mixtures was assumed 
for the following reasons: (a) The supernatant fibrinogen solution contained no dimers within 
limits detectable by analytical ultracentrifugation, whereas a large amount of dimers were 
found when cryoprofibrin was not removed. (b) Good correspondence was observed between 
thrombin-catalyzed liberation of fibrinopeptides and the amounts of cryoprofibrin separated 
from reaction mixtures. And (c) by virtue of the procedure used in preparing the fibrinogen, 
the solutions would have been saturated with respect to the amount of cryoprofibrin that  
tended to remain dissolved at 0°C. Consequently, newly formed cryoprofibrin would be pre- 
cipitable. 

Fibrinopeptides were separated and measured as follows: (a) Protein was removed by 
precipitation with 5 per cent trichloracetic acid and 1 per cent acetic acid. (b) The acids were 
extracted from solution with 2:1 ligroine-ether mixture. (c) The solution was concentrated in 
conical tubes by evaporation using a rotating evaporator. (d) A minimal amount of dimethyl- 
formamide was added to dissolve any crystalline tosylarginine derived from hydrolysis of 
TAME during deproteinization. (e) Volume was adjusted to 1.5 ml with water. (j') The solu- 
tion was transferred to a 1 cm diameter column containing 3 gm of sephadex (grade G-25) 
which was suspended in 0.05 ~ pyridine and packed into 12.2 ml. (g) When large amounts of 
crystalline tosylarginine had been dissolved in the concentrated sample, 0.5 ml of a 50 per 
cent solution of dimethylformamide in 0.05 M pyridine was added to the column both before 
and after application of the sample. (h) The first 7.0 ml of effluent following application of the 
1.5 ml sample was collected from the column. (i) The effluent was evaporated to 0.2 ml, spot- 
ted along with a rinse on to Schleicher and Schiill paper strips, and subjected to electrophoresis 
at 7.8 volts/cm in 0.05 ~ sodium acetate at pH 4.0. (j) Strips were dried at  105°C in an oven 
with uniform draft. (k) Peptides were then located, eluted with 1 or 2 ml of 1 per cent potas- 
sium hydroxide, and measured to within ~ millimicromole per ml by means of a Sakaguchi 
reaction as described previously (1). 
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RESULTS 

Cryoprofibrin and Fibrin Produced by Limited Action of Thrombin.-- 

Fibrinogen in 0.15 ~r ammonium acetate at  pH 6.8 was gently stirred and allowed to react 
with bovine thrombin at concentrations below 0.01 NIH units per mg of fibrinogen at 37°C, 
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FzG. 1. Duration of subthreshold phase (O) and relative concentrations of cryoprofibrin 
and fibrinogen (O) at end of subthreshold phase as functions of initial concentration of 
fibrinogen. Solvent: 0.15 M ammonium acetate at pH 6.8. Thrombin concentration: 9.5 X 
10 -4 units/ml. Volume: 4.2 ml. Temperature: 37°C. Cryoprofibrin was measured after in- 
hibiting reaction by adding one-tenth volume of 0.16 M TAME at pH 6.8. 

0.12 

and the reaction was inhibited after intervals by adding one-tenth volume of 0.16 ~ TAME. 
During an initial subthreshold phase turbidity changes were not detectable to within a 0.01 
increment in optical density at 340 m/~ as measured in 1 cm cuvettes with a Beckman DU 
spectrophotometer. Fibrin strands were not detectable during this phase. The end of the sub- 
threshold phase was marked by the abrupt appearance of an opalescent sheen in the reaction 
mixture. The duration of the subthreshold phase was directly proportional to the concentra- 
tion of fibrinogen (Fig. 1). 

When TAME was added during the subthreshold phase, and the mixture brought to 0°C, 
protein having composition of cryoprofibrin separated as a flocculent precipitate (Table I, g). 
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The cryoprofibrin redissolved without ditficulty on adjusting the temperature of the solution 
back to 37°C. 

A thin film of protein deposited on stirring rods in the region of the triple interface between 
the rod, solution, and air. The protein appeared to be surface-denatured fibrinogen rather than 
a product of reaction between thrombin and fibrinogen, because it deposited from fibrinogen 
solutions as well as reaction mixtures, and deposition did not increase measurably during 
the subthreshold phase of the reaction (Fig. 2). 

TABLE I 

Content of Fibronopeptides in Fibrinogen, Cryoprofibrin, and Fibrin 

Material 

a) Fibrinogen 
b) Fibrinogen 

~) Cryoprofibrin 
d) Cryoprofibrin 

e) Cryoprofibrin 

0 Cryoprofibrin 

g) Fibrin 

h) Fibrin 

Source 

Separated from plasma 
Separated from cryopro- 

fibrin 
Separated from plasma 
Limited action of throm- 

bin on fibrinogen, t < 
duration subthreshold 
phase t8 

Limited action of throm- 
bin on fibrinogen, t = 
2t, 

Separated from mixture 
of fibrinogen and fibrin 

Limited action of throm- 
bin on fibrinogen, t, < 
t <4t, 

Separated from cryopro- 
fibrin 

NO. of 
speci- 
lllen$ 
aDa = 
lyzed 

7 
3 

4 
5 

Fibrinopeptide A [ 
per mg eoagulable ] Ratio of fibrinopep- 
protein,m/~moles/ tides (A/B) -4- sE~ 

mg -4- sE~ 

5.20 4- 0.25 
4.64 -4- 0.46 

2.45  -4- 0 .09  
2.86 ± 0.26 

2.76 -4- 0.16 

2.55 

0.39 -4- 0.04 

0.48 4- 0 .10  

1.10 .4- 0.0H 
0.96 -4- 0.031 

0.56 -4- 0.04~ 
0.52 -4- 0.041 

0.56 -4- 0.00~ 

0.57 

0 . ~ 6 ± 0 . ~ ,  

0.110 -4- 0.02( 

As the reaction proceeded beyond the subthreshold phase, fibrin separated from solution 
as web-like strands that were incorporated into a coagulum. On adding TAME and removing 
fibrin, the supematant solution remained clear when kept at 37°C. The washed coagulum 
had solubility characteristics of fibrin; i.e., insoluble in ammonium acetate and TAME solu- 
tion, soluble in 1 ~ sodium bromide at pH 5.4 and 37°C, and again polymerized into a coagu- 
lure when solutions in sodium bromide were diluted twentyfold with ammonium acetate and 
TAME at pH 6.8. As indicated by a small content of fibtinopeptide A in the coagulum (Table 
I, g), native fibrinogen equal to 7.5 =h 1.1 (SD) per cent of the mass of the coagulum was oc- 
cluded in the fibrin. The fibrin that separated from partially coagulated reaction mixtures 
contained nearly as much fibrinopeptide B (Table I, g) as contained in fibrinogen (Table I, a). 
The high content of fibrinopeptide B was consistent with previous observations that it is 
liberated at much slower rates than fibrinopeptide A (1), and its liberation is not necessary for 
production of fibrin (4). 

The following test provided further evidence of stability of the protein 
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solution remaining after T A M E  was added and fibrin removed:  (a) fibrinogen 
and protein reaction products were precipitated with ammonium sulfate and 
washed with glycine as used in preparing fibrinogen, and (b) were rapidly 
redissolved in the ammonium acetate and T A M E  solution a t  37°C. The  protein 
redissolved without  difficulty, and the solution remained clear for a period 
exceeding 4 hours. 

Protein having composition of cryoprofibrin (Table I,  e) precipitated when 
the clear solutions remaining after removal of fibrin were brought  to 0°C, 
and the cryoprofibrin redissolved in the supernatant  fibrinogen solution a t  
37°C. The  reversible precipitabili ty of the cryoprofibrin provided further 
evidence tha t  fibrin did not  tend to separate f rom the clear solutions. 

Composition and Properties of Cryoprofibrin.JThe experiments described 
below demonstrate  tha t  cryoprofibrin can be separated into fibrinogen and 
fibrin without  liberating fibrinopepfides, and tha t  fibrin can, in turn, combine 
with fibrinogen to form cryoprofibrin. 

When four samples of cryoprofibrin ranging from 6 to 8 mg were dissolved in 3 ml of 0.36 
• r ammonium acetate containing 0.04 M TAME and 0.0002 ~ versene, and were diluted with 
5 ml water, they became increasingly turbid, and approximately half, 48 :h 9 (SD) per cent, 
of the protein separated as insoluble coagulum. Two of the samples of cryoprofibrin were 
derived from plasma, and two from fibrinogen that was subjected to limited action of throm- 
bin. Based on content of fibrinopepfides (Table I, h), the coagulum separating from cryopro- 
fibrin was indistinguishable from fibrin (Table I, g). Liberated fibrinopeptides were not found 
in pooled portions of the supernatant solution remaining after separation of fibrin from cryo- 
profibrin, and would have been found if as little as 0.5 mlllimicromole per mg of protein had 
been liberated. Since fibrinopeptides were not liberated the fibrin was not produced by action 
of thrombin on cryoprofibrin, but was contained in an unpolymerized form within the cryo- 
profibrin. The soluble protein, remaining after separation of fibrin from cryoprofibrin, had 
nearly the same content of fibrinopeptides (Table I, b) as found in native fibrinogen (Table 
I, a). As based on its content of fibrinopeptides and its coagulability when subjected to action of 
thrombin, the soluble protein consisted predominately of fibrinogen and, possibly, a small 
amount of undecomposed cryoprofibrin. 

Since cryoprofibrin was separable by  physical means alone into fibrinogen 
and fibrin, it must  have been a complex formed by  combination of the two 
substances. Apparently,  in the presence of high concentrations of fibrinogen, 
the altered fibrinogen-lacking fibrinopeptide A did not  polymerize into fibrin, 
bu t  instead combined with nat ive fibrinogen to form a soluble complex which 
was precipitable as cryoprofihrin in the cold. When the cryoprofibrin was 
separated from excess fibrinogen and was redissolved, the concentration of 
nat ive fibrinogen was no longer sufficient to prevent  the altered fibrinogen 
f rom polymerizing into fibrin. The  cryoprofibrin then separated into fibrinogen 
and fibrin. 

Laskowski et al. (15) have shown tha t  adsorption of fibrinopeptide inhibits 
polymerization. The  possibility, therefore, existed that  cryoprofibrin was 
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produced by adsorption of fibrinopeptide A on to unpolymerized fibrin. That 
adsorption was not involved in the formation of cryoprofibrin was indicated 
by an observation that the fibrinopeptides contained in cryoprofibrin could 
not be displaced by 5 per cent trichloracetic acid or 0.5 ~r ammonium hydroxide, 
but by thrombin. We calculated that adsorption of peptide could have con- 
tributed maximally to formation of only 2 per cent of the cryoprofibrin which 
was separated from TAME-inhibited reaction mixtures. This conclusion arose 
from an observation that 1 per cent additional fibrin was recovered in presence 
or absence of TAME when fibrinopeptides were dialyzed from solutions ex- 
truded from clots that formed in 0,15 g ammonium acetate. Further evidence 
that adsorption was not involved in formation of cryoprofibrin was obtained 
by demonstrating that the separation of fibrin from cryoprofibrin was re- 
versible in the absence of liberated peptide, as described below. 

When solutions of fibrin in 1 ~ sodium bromide at pH 5.4 were d/luted with 
twenty volumes of 0.15 ~ ammonium acetate adjusted to pH 7.4 with sodium 
phosphate, the fibrin coagulated to within 2 per cent. However, when it was 
mixed with an amount of fibrinogen 20 times greater than the fibrin, the 
fibrin remained dissolved. * These observations were made both with fibrin 
produced by limited action of thrombin and containing fibrinopeptide B, and 
with fibrin that had lost B in addition to A by extensive action of thrombin. 
The amount of fibrin converted to cryoprofibrln was not measured, because 
the presence of bromide prevented complete precipitation of cryoprofibrin 
when solutions were brought to 0°C. Conversion of fibrin to cryoprofibrin 
was measured in one case, as described below. 

A 5.1 mg sample of fibrin containing fibrinopeptide B but not A was suspended along with 
74 mg of fibrinogen in 5 ml of 0.4 ,~ sodium bromide and 0.04 M TAME, and was diluted ten- 
fold with 0.135 M ammonium acetate and 0.015 ~ TAME to form a slightly turbid solution. 
The protein was precipitated with ammonium sulfate and subsequently washed with glycine 
solution as in preparation of fibrinogen. All but 1.4 mg of the protein redissolved in ammo- 
nium acetate and TAME solution. The fibrin that remained soluble had combined with fibrino- 
gen to form cryoprofibrin, as evidenced by the content of fibrinopeptides in 7.1 mg of protein 
precipitating at 0°C (Table I, 19. The amount of cryoprofibrin produced was twice the amount 
of fibrin that redissolved in the fibrinogen solution, and was equal to 10.0 per cent of the 
amount of fibrinogen in the supernatant solution remaining after precipitation of cryopro- 
fibrin. 

As described in the following section, there is a point of equilibrium wherein 
decomposition of cryoprofibrin into fibrinogen and fibrin is balanced by re- 
combination of fibrinogen and fibrin. Kinetic data indicate that the formation 

9. As indicated in a personal communication, Dr. S. Ehrenpreis, Georgetown School of 
Medicine, Washington, D. C., has observed a similar effect of high concentrations of fibrin0gen 
on fibrin. 
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d cryoprofibrin is in equilibrium with the formation of fbrin in ammonium 
acetate solution when the concentration o1 cryoprofibrin equals 8.2 per cent 
of the fibrinogen. The amount of cryoprofibrin formed in the present experi- 
ment is in fair agreement with that expected from kinetic data. 

Fibrin clots, in the form of dense insoluble coagula, dissolved partially when 
allowed to react with fibrinogen; however, we have not as yet succeeded in 
dissolving within a 15 minute period more than 50 per cent of the fibrin from 
a clot. We attributed at least part of the difficulty to stabilization of the dots, 
because the portions that did not dissolve easily were insoluble in 1 ~r sodium 
bromide at pH 5.4. Formation of cryoprofibrin accompanied dissolution of 
the clots. 

Quantitative Aspects of Fibrinogen-Fibrin Conversion in Ammonium Acetate 
Solution.--As shown in the previous section, altered fibrinogen lacking fibrino- 
peptide A combines with native fibrinogen containing fibrinopeptide A to form 
cryoprofibrin. High concentrations of native fibrinogen relative to altered 
fibrinogen appear necessary to prevent the altered fibrinogen from polymerizing 
into fibrin. When dissolved in solutions containing no fibrinogen, cryoprofibrin 
breaks down into fibrinogen and fibrin. Altered fibrinogen tends to remain 
dissolved during the subthreshold phase of reaction between thrombin and 
fibrinogen, as indicated by the absence of fibrin and the stability of the solution 
after adding TAME to inhibit thrombin. Reasonably, the altered fibrinogen 
would not tend to polymerize into fibrin until conditions for equilibrium be- 
tween both its incorporation into cryoprofibrin and its separation from cryo- 
pro fibrin are satisfied. The tendency for altered fibrinogen to be incorporated 
into cryoprofibrin would be dependent on the concentration of fibrinogen. 
Accordingly, the duration of the subthreshold phase would correspond to the 
the time needed for catalytic action of thrombin to bring the concentration of 
cryoprofibrin into equilibrium with the concentration of fibrinogen. 

To determine whether the quantitative aspects of fibrinogen-fibrin conver- 
sion conform with this viewpoint, the following was done: (a) The formation of 
cryoprofibrin and thrombin-catalyzed liberation of fibrinopeptides were 
studied as functions of time to establish a kinetic relationship between the 
production of altered fibrinogen and formation of cryoprofibrin. (b) Concen- 
trations of cryoprofibrin appearing necessary for formation (precipitation) of 
fibrin in the presence of various concentrations of fibrinogen were determined 
to establish that conditions for equilibrium in formation of cryoprofibrin and 
fibrin can be expressed in terms of a mass action relationship between cryopro- 
fibrin and fibrinogen. (e) The formation of fibrin was studied as a function of 
time to establish that it could be expressed as a function of the production of 
altered fibrinogen in excess of the amount tending to be incorporated into 
cryoprofibrin in accordance with the mass action relationship. 
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Peptide A was liberated at a constant velocity of 0.32 millimicromole per 
minute (Fig. 2) both during and after the subthreshold phase? The liberation 
of fibrinopeptide A at  constant velocity indicated fibrinogen was in large 
excess relative to thrombin. Liberation of pepfide B was negligibly small in 
comparison with A, and did not contribute substantially to production of 
cryoprofibrin or fibrin over the periods of reaction that  were studied. 

The amounts of cryoprofibrin formed during the subthreshold phase cor- 
responded to 0.36 mg per millimicromole of liberated peptide A (average of 
three points between t -- 8 and t = 16 minutes in Fig. 2). On the assumption 
that  cryoprofibrin contains one-half as much fibrinopeptide A as does fibrino- 
gen, we calculated that 0.38 mg cryoprofibrin would be formed per milll- 
micromole of liberated fibrinopeptide A. Since the observed yield agreed with 
that expected, we concluded that the fibrinogen altered by thrombin-catalyzed 
liberation of fibrinopepfide A is partitioned predominantly into cryoprofibrin 
during the subthreshold phase of the reaction. The quantitative relationships 
between reactants and products of the subthreshold phase can, accordingly, be 
expressed as in Equation 1. 

dx dy WdA dz 
. . . . . .  - W V ,  a n d  ffi 0 w h e n  t < t° (1) 

dt dt dt 

in which x - milligrams fibrinogen (coagulable protein) 
y = milligrams cryoprofibrin (coagulable protein) 
z = milligrams fbrin 
A - millimicromole peptide A 

W = milligrams cryoprofibrin forming per millimicromole of pep- 
tide A 

= period of reaction 
t, = duration of subthreshold phase of reaction. 

The concentration of cryoprofibrin reached a level equal to 8.2 4- 0.42 
(sE~) per cent of the fibrinogen, and remained at  this level as reactions Pro- 
ceeded beyond the subthreshold phase. The same relative proportions of 
cryoprofibrin and fibrinogen were found at the end of the subthreshold phase  

s Experimental Error: Variations in reaction velocity appear to be greater than variations 
due to errors in measuring protein or peptide in the experiment of Fig. 2. This is indicated 
by the larger size of coefficients of variation for kinetic relationships as compared with stoichi- 
ometric relationships between variables. Pearson's coefficient of variation (V) is the per cent 
relative size of standard deviation and mean. For the purpose of statistical inference, ratios 
of squared coefficients of variation in the present case would be distributed as is Fisher's 
variance ratio, because the data have common origin. The variance (V 2 -- 0.012) for equiv- 
alent weights of cryoprofibrin and fibrin found per mole fibrinopeptide A was significantly 
smaller than the variance (V ~ -- 0.033) in rate of liberation of peptlde A or rate of formation 
of cryoprofibrin and fibrin (V ~ = 0.045). 
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of reactions involving a wide range of fibrinogen concentrations (Fig. 1). In- 
corporation of altered fibrinogen into cryoprofibrin and fibrin, therefore, 
appear to be in equilibrium when the concentration of cryoprofibrin equals 8.2 
per cent of the concentration of fibrinogen. As found in the previous section, 
an amount of cryoprofibrin equal to 10 per cent of the fibrinogen was formed 
when fibrin was allowed to depolymerize in the presence of fibrinogen. The 
conditions for equilibrium in formation of cryoprofibrin, therefore, appear to 
be the same whether approached from a forward directon by liberation of 
fibrinopeptide A or from a backward direction by reaction between fibrinogen 
and fibrin. When interpreted in terms of the laws of mass action, the conditions 
for equilibrium in formation of cryoprofibrin conform with those for the re- 
versible reaction represented by Equations 2 and 2 a, in which K = 1/0.082 is 
the apparent mass equilibrium constant for the reaction in the ammonium 
acetate solvent. 

K 
cryoprofibrin ~ fibrinogen + fibrin (insoluble) (2) 

fibrinogen x 
K = -- - (2 a) 

cryoprofibrin y 

Since cryoprofibrin separates into fibrinogen and fibrin in equal proportions 
(in terms of weight of coagulable protein), the amount of fibrin formed should 
equal one-half the cryoprofibrin decomposed. The formation of fibrin would, 
accordingly, be given by Equations 3 and 3 a, in which decomposed cryopro- 
fibrin is equated with the difference between the total amount produced in 
accordance with Equation 1 and the amount remaining undecomposed in 
accordance with Equation 2 a. 

s = ~  WV$-- , in which t > t o  (3) 

( K +  l ) ,  
s ffi (2K + 1-------~ WV(t - t~), in which t, = x,o/WV(1 q- K) < t (3 a) 

The m o u n t  of fibrin found during the reaction between thrombin and fibrino- 
gen (Fig. 3) after periods of reaction ranging between 20 and 84 minutes are 
described by the empirical relationship (z -- bt - -  a) ,  in which b -- 0.0648 _4_ 
-- 0.0648 4- 0.0042 (sD) rag/minute and a -- -- 1.122 mg. The regression co- 
efficient (b) of the empirical relationship is the same within experimental error 
as the rate (0.0631 mg/minute) of formation of fibrin beyond the subthreshold 
phase as predicted by substituting experimental values for W V  and K in 
Equation 3. The observed duration of the subthreshold phase (t = 17.6 -4- 2.4 
(St.,) minutes, when s = 0) and that predicted (t, = 21.2 minutes) from 
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Equation 3 were also the same. The linear dependence of duration of 
the subthreshold phase on the initial concentration of fibrinogen as 
observed in Fig. 1 is also predicted by Equation 3 a. We calculate that the 
slope of Fig. 1 is 20 per cent smaller than that predicted from data of Fig. 2; 
however, the thrombin used in obtaining data of Fig. 1 was very dilute and 
some may have become adsorbed on to the container. We conclude that the 
course of fibrinogen-fibrin conversion can be expressed as a function of the 
velocity of production of altered fibrinogen by thrombin-catalyzed liberation of 
fibrinopeptide A, and the mass action relationship describing conditions for 
equilibrium between incorporation of altered fibrinogen into cryoprofibrin and 
fibrin. 

Quantitative Aspects of Fibrinogen-Fibrin Conversion under Physiological 
Conditions.--Physiologic saline, 0.15 ionic strength and pH = 7.4, was used to 
simulate the ionic composition of plasma, because study of the reaction be- 
tween thrombin and fibfinogen in plasma was made difficult by the presence 
of antithrombin activity and by high initial turbidity. Study of the reaction 
between thrombin and fibrinogen in saline revealed two aspects that were not 
indicated by studies with the ammonium acetate solvent. One aspect impli- 
cated thrombin as an inhibitor in the process of polymerization of fibrin. The 
other demonstrated that ionic composition of the medium has a large influence 
on the equilibrium between formation of cryoprofibrin and its separation into 
fibrinogen and fibrin. 

Although TAME appeared to have little effect on polymerization in the 
ammonium acetate solvent, it had a substantial effect in promoting polymeriza- 
tion in saline. Addition of TAME resulted in sudden separation of fibrin from 
solutions wherein the reaction between thrombin and fibrinogen had pro- 
gressed for only one-half, or more, of the time required for fibrin to separate 
in the absence of TAME. Small changes in pH, ionic strength, or dielectric 
constant, as affected by glycine or arginine, did not have a comparable effect; 
and studies by Ehrenpreis et al. (13) indicate TAME would tend to retard 
rather than accelerate separation of fibrin. Since effects resulting from altera- 
tion of the medium or interaction of TAME with fibrin were not indicated, the 
action of TAME appeared to be related to its inhibitory properties towards 
thrombin or, possibly, another enzyme present in the preparation. Conceivably, 
adsorption of thrombin on to altered fibrinogen could have blocked binding 
sites involved in polymerization. The TAME might, then, have functioned in 
unmasking the binding sites by displacing the altered fibrinogen from its 
combination with thrombin. The 0.016 ~r TAME used to inhibit the reaction 
between thrombin and fibrinogen was sufficient to eliminate the effect on 
polymerization, because doubling the TAME did not bring about additional 
separation of fibrin from TAME-inhibited reaction mixtures. Quantitative 
aspects of formation and decomposition of cryoprofibrin could, therefore, be 
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determined after inhibiting thrombin with T A M E  as was done with the am- 
monium acetate solvent. 

Measurements of fibrinogen, cryoprofibrin, fibrin, and liberated fibrino- 
pepfides in the TAME-inhibi ted reaction mixtures are plotted in Fig. 3. 
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FIG. 3. Liberation of fibrinopeptides and production of cryoprofibrin and fibrin as functions 
of time. Solvent: 0.136 M sodium chloride and 0.014 ~ sodium barbital at pH 7.4. Initial 
amount of fibrinogen: 38.7 mg. Volume: 15 ml. Thrombin: 0.03 units. Temperature: 37°C. 
The plotted lines were drawn in accordance with Equations I to 3 a, using average values 
0.38 mg/millimicromole, 1.48 miUimicromole/minute, and 1/0.26 for W, V, and K, respec- 
tively. 

Equilibration of cryoprofibrin with respect to the concentration of fibrinogen 
accompanied the formation of fibrin in reaction mixtures where up to 65 per 
cent of the fibrinogen was converted to fibrin, as evidenced by  the concentra- 
tion of cryoprofibrin remaining equal to 26 -4- approximately 4 per cent of 
concentration of fibrinogen. Equilibration appeared to be necessary to predis- 
pose incorporation of altered fibrinogen into fibrin, because fibrin was not  
formed when the concentration of cryoprofibrin was equal to 16 per cent of 
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fibrinogen. The production of cryoprofibrin paralleled the liberation of fibrino- 
peptide A, since the amount of cryoprofibrin remaining in solution or separating 
into fibrinogen and fibrin was equivalent to 0.459 4- 0.018 (SEM) mg per 
millimicromole of fibrinopeptide A, which is in satisfactory agreement with 
the equivalent weight of cryoprofibrin as measured by direct analysis (Table I). 

The rate of liberation of fibrinopeptide B was immeasurably small. 4 
As described in Fig. 3, the kinetic and quantitative aspects of formation of 

cryoprofibrin as a consequence of limited action of thrombin under the 
simulated physiologic conditions conforms with Equations 1 to 3; however, 
the constant (K = fibrinogen/cryoprofibrin = 1/0.26) representing condi- 
tions for equilibrium in the formation of cryoprofibrin and fbrin is one-third 
that circumscribing equilibrium in the ammonium acetate solvent. 

The conditions for equilibrium in formation of cryoprofibrin in plasma ap- 
peared to be the same as in the saline solution, because the concentration of 
cryoprofibrin found in four partially coagulated samples of plasma ranged from 
25 to 30 per cent of the concentration of fibrinogen after thrombin was inhibited 
by TAME. Therefore, plasma proteins other than those affected by TAME did 
not influence the equilibrium. 

We conclude that under physiologic conditions formation of threshold 
quantities of cryoprofibrin (equal to approximately 26 per cent of fibrinogen) 
is a necessary condition for the formation of fibrin, but even this may not be 
sufficient because thrombin, or a similar enzyme, may inhibit polymerization. 

DISCUSSION 

Thrombin acts on fibrinogen to liberate fibrinopeptide A. The fibrinogen is 
altered so as to polymerize into fibrin. The altered fibrinogen may also combine 
with native fibrinogen to form a cold-precipitable complex called cryoprofibrin, 
and the polymerization of altered fibrinogen into fbrin is restrained by its 
incorporation into cryoprofibrin. 

Waugh and Livingstone (16) and Ehrenpreis et al. (13) measured the pro- 
duction of fibrin alone, and demonstrated that the underlying process involved 
first order kinetics. Blomb~ck and Laurent (5) observed that fibrin was not 
produced during an early phase of the reaction between thrombin and fibrino- 
gen despite the liberation of fibrinopeptide A. Our results indicate that during 
a subthreshold phase, when the concentration of fibrinogen is high, cryoprofibrin 
rather than fibrin is formed in proportion to liberation of fibrinopeptide. The 
concentration of cryoprofibrin is limited by the concentration of fibrinogen 
present, and when the maximum amount of cryoprofibrin has been formed the 
altered fibrlnogen begins to separate from solution as insoluble fibrin strands. 

4 We have observed that fibrinopeptide B is liberated at measurable rate when the reaction 
between thrombin and fibrinogen is allowed to proceed without stirring, and fibrin is allowed 
to form a gel rather than an insoluble coagulum. 
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Some Aspects of the Mechanism oJ Formation of Cryoprofibrin.--As based on 
N-terminal amino acids and on a molecular weight of 360,000 for fibrinogen at 
physiologic concentrations, two residues of fibrinopeptide A are contained in 
the fibrinogen molecule (4). Physicochemical data of Caspary and Kekwick 
(8) indicate the fibrinogen molecule is dissociable into at least three subunits. 
The two residues of A might be located on one, or possibly two separate sub- 
units within the fibrinogen molecule. However, if the two residues of A are 
located on a single subunit they must be liberated concurrently by action of 
thrombin, since subunits capable of forming fibrin containing no A are pro- 
duced in stoichiometric proportion to liberated A. 

If it is supposed that two residues of fibrinopeptide A are liberated con- 
currently from one subunit of the fibrinogen molecule, the altered fibrinogen 
containing no fibrinopeptide A would have the peptide composition of fibrin, 
and would correspond to a fibrin monomer. Accordingly, cryoprofibrin, in 
being separable into fibrinogen and fibrin in equimolecular proportions, would 
correspond to a fibrinogen molecule combined with fibrin monomer, the two 
possibly combining in the manner described below. 

Polymerization involves interaction of tyrosyl and histidyl residues (17). 
Liberation of fibrinopepfides unmasks previously unavailable binding sites 
(3). Dormelly eta/. (18) suggested that the histidyl residues may not be masked 
on native fibrinogen, and only the tyrosyl residues may be exposed by liberation 
of fibrinopeptides. If only the tyrosyl groups are unmasked, the histidyl groups 
on both fibrinogen molecules and fibrin monomers would compete for the 
exposed tyrosyl groups on fibrin monomers. The fibrinogen molecules lacking 
exposed tyrosyl groups would on combining with fibrin monomers block further 
polymerization, and in the presence of high concentrations of fibrinogen the 
fibrin monomers would be prevented from polymerizing into fibrin. 

The formation of cryoprofibrin and its separation into fibrinogen and fibrin 
can be explained also in terms of the alternate assumption that each of the two 
residues of fibrinopeptide A are located on separate subunits within the fibrino- 
gen molecule. Liberation of fibrinopeptide A from one of the two subunits 
would produce a molecule having the fibrinopeptide content of cryoprofibrin. 
The altered molecule, which we tentatively call "cryoprofibrin monomer," 
would contain both a native fibrinogen subunit, containing A, and an altered 
fibrinogen subunit, lacking A. Dissociation of these subunits from cryoprofibrin, 
and recombination of the subunits in randomized pairs would not only recon- 
stitute some of the cryoprofibrin monomers, but would also result in formation 
of fibrinogen molecules and fibrin monomers. Fibrinogen molecules would form 
when two native subunits combine. Fibrin monomers, called this because they 
have the molecular weight of fibrinogen but contain no fibrinopeptide A, 
would result from combination of two altered subunits. The shuttling of sub- 
units between fibrinogen molecules and cryoprofibrin and fibrin monomers 
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would provide a dynamic basis for the equilibrium involved in separation of 
cryoprofibrin into fibrinogen and fbrin. 

The histidyl and tyrosyl residues involved in polymerization may both be 
unmasked by liberation of fibrinopeptide A. If so, cryoprofibrin monomers in 
possessing one altered subunit containing a set of unmasked sites could combine 
to form dimers. The fibrin monomers by possessing two altered subunits could 
form polymers, and would tend to polymerize into an insoluble coagulum under 
conditions in which fibrin itself is insoluble. I t  can be shown that when the 
ratio of fibrinogen to cryoprofibrin dimer is greater than the value of the equi- 
librium constant K (Equation 3 a) fbrin monomers do not polymerize into an 
insoluble coagulum, but combine with cryoprofibrin monomers to a limited 
extent to form soluble intermediary polymers with content of fibrinopeptides 
in between cryoprofibrin and fibrin. 

When the formation of cryoprofibrin is interpreted in terms of the first 
suggestion that it is a complex of a fibrinogen molecule in combination with 
fibrin monomer, the intermediary polymers would correspond to a mole- 
cule of fibrinogen combined with a polymer of fibrin. Since the values of equili- 
brium constants for conversion of "(n)-mers" to "(n + 1)-mers" increase only 
slightly with degree of polymerization "n" at low values of n, as shown by 
DonneUy et al. (18), it can be calculated in accordance with laws of mass action 
that for either viewpoint of the structure of intermediary polymers their 
concentration would be very small in comparison with cryoprofibrin under 
conditions of the present study in which the value of the mass equilibrium 
constant K (Equation 3 a) is much greater than 1. 

Soluble complexes between native fibrinogen and fibrinogen altered by 
liberation of fibrinopeptides have not been studied previously, and available 
data do not enable us to determine whether cryoprofibrin consists predomi- 
nantly of fibrinogen molecules combined with fibrin monomers, or of dimers 
of molecules differing from fibrinogen only in lacking one residue of fibrino- 
peptide A. 

Cryoprofibrin as an Indicator of Intravascular Fibrin Deposition.--Histopatho- 
logic evidence suggests intravascular deposition of fibrin in cardiovascular 
disease. Methods have not been available for evaluation of quantitative aspects 
of intravascular conversion of fibrinogen to fibrin. Cryoprofibrin represents a 
soluble product of the action of thrombin, it can be measured in blood, and its 
in vivo origin was previously demonstrated (1). Results of the present study 
indicate that in plasma or saline at pH 7.4, simulating physiologic conditions, 
altered fibrinogen does not tend to polymerize into fibrin until the concentration 
of cryoprofibrin is at a threshold near or equal to 26 per cent of the concentra- 
tion of fibrinogen. Deposition of fibrin on blood vessels would similarly be pre- 
cluded at relatively low levels of cryoprofibrin in blood, but may accompany 
the action of thrombin in presence of threshold concentrations of cryoprofibrin. 
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During the reaction between thrombin and fibrinogen in saline or plasma, 
greater amounts of altered fibrinogen remained soluble than would be solu- 
bilized in forming cryoprofibrin alone. But when TAME was added to inhibit 
thrombin, the altered fibrinogen that was not incorporated into cryoprofibrin 
rapidly polymerized into fbrin. The TAME appeared to be displacing adsorbed 
thrombin that was blocking binding sites involved in polymerization. Waugh 
and Livingstone (16) concluded from their kinetic data that adsorption of 
thrombin on to fibrin inhibits production of fibrin. While Ehrenpreis and 
Scheraga (19) observed that thrombin is not adsorbed on to fibrin, the fbrin 
that is produced by limited action of thrombin contains fibrinopeptide B and 
differs from that used in their studies. That thrombin may reversibly inhibit 
polymerization warrants further study, because administration of an inhibitor 
of thrombin to counter coagulation in a patient having threshold concentration 
of cryoprofibrin might provoke, rather than prevent, formation of a thrombus. 
Since thrombin, or possibly a similar enzyme, may inhibit polymerization of 
fibrin, the concentration of cryoprofibrin in plasma can be used at present only 
to determine whether minimal conditions for deposition of fibrin exist within 
the blood vessels. 

Measurements of cryoprofibrin in normal and endotoxin-treated rabbits 
support the conclusion that levels near 26 per cent of the concentration of 
fibrinogen are necessary for deposition of fibrin. Plasma from endotoxin-treated 
rabbits contains 0.2 4- 0.1 (sD) mg cryoprofibrin per ml, and normal plasma 
contains 0.03 4- 0.04 mg per mi (1). Studies by Thomas and Good (20) indicate 
the concentration of coagulable protein remains at a level near 2 mg per mi for 
a 4 hour period following treatment with endotoxin. I t  can be inferred that a 
small percentage of the endotoxin-treated rabbits had a level of cryoprofibrin 
near the threshold for polymerization of altered fibrinogen into fibrin. Brunson, 
Gamble, and Thomas (21) found fibrinoid deposits in 10 per cent of rabbits 
subjected to single doses of varying amounts of endotoxin, but not in normal 
rabbits. Their finding of fibrinoid in only a small percentage of treated rabbits 
appears consistent with our prediction based on levels of cryoprofibrin. 

The level of cryoprofibrin in plasma from normal rabbits is far below the 
threshold for incorporation of altered fibrinogen into fibrin. I t  can tentatively 
be concluded that fibrin is not deposited on blood vessels of normal rabbits. 
This conclusion is consistent with Gitlin's observations that fibrin, as demon- 
strated by fluorescent antibodies, does not appear to be a component of normal 
tissues (22). 

The presence of a small amount of cryoprofibrin in normal blood indicates 
there is at least a low level of thrombin activity. Since the concentration of 
cryoprofibrin remains low, fibrinogen altered by liberation of fibrinopeptide A 
must be removed from circulation by means other than coagulation. The reticu- 
loendotheliai ceils function in the turnover of plasma protein. Small doses of 
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endotoxin impair phagocytosis (23). The increase in cryoprofibrin following 
treatment with endotoxin might have resulted from disturbance of the reficulo- 
endothelial cells rather than increased thrombin activity. 

Continuous fibrin deposition at low levels has been viewed as being necessary 
for preservation of normal characteristics of capillaries. Since high levels of 
cryoprofibrin are needed for deposition of fibrin, continual deposition does not 
appear to be a function of the coagulation system. Effects of deposition within 
capillaries might be limited to pathologic circumstances and healing processes. 
This implication would be consistent with observations on congenitally afibrino- 
genemic patients (24). 

In absence of continuous deposition of fibrin the fibrinolytic enzyme, plasmin, 
would be needed only under abnormal circumstances. Sherry et al. (25), in 
demonstrating strong inhibitory power of plasma toward plasmin, suggested 
that circulating plasmin may not be effective in removal of fibrin. Astrup's 
(26) observation that only small concentrations of plasminogen activator exist 
in the intimal lining of arterial walls provides circumstantial evidence in favor 
of our conclusion that little would normally be needed. 

Conceivably, localized deposition of fibrin might occur while cryoprofibrin in 
other regions of the body is below the threshold concentration. If localized 
deposition were to occur, the fibrin might subsequently be dissolved by corn- 
billing with fibrinogen from inflowing blood to form additional cryoprofibrin. 
However, interrupted flow of blood would allow the fibrin to remain for a 
period sufficient for stabilization by the enzyme known as "fibrin-stabilizing 
factor" (27) or "fibrinase" (28) making the fibrin refractory to solubilization 
by fibrinogen. It appears that a fibrinolytic mechanism would be necessary for 
removal of thrombi. 

Some evidence (1) suggests the heparin-precipitable fibrinogen described by 
Thomas and Good (20) consists largely of cryoprofibrin. Smith (30) measured 
a heparin-precipitable fraction of human plasma, and found that its level was 
increased in rheumatoid arthritis, acute bacterial infections, and pregnancy. 

The apparent applicability of cryoprofibrin to determining fibrin deposition 
in endotoxin-treated rabbits provides some assurance that its measurement is 
useful in determining whether fibrin deposition precedes atherosclerosis as 
stressed by Duguid (29). Inability of the coagulation system to maintain the 
concentration of cryoprofibrin at low levels may provide the circumstance for 
this deposition. 

SUMMARY 

Fibrinogen altered by thrombin-catalyzed liberation of fibrinopeptide A 
was found to combine with native fibrinogen to form a cold-precipitable com- 
plex we have called "cryoprofibrin." The altered fibrinogen lacking fibrino- 
peptide A polymerized into fibrin, but not until conditions for equilibrium 
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between its incorporation into both cryoprofibrin and fibrin were satisfied. At 
equilibrium, the concentration of cryoprofibrin was maintained at a threshold 
proportional to the concentration of fibrinogen. When the concentration of 
cryoprofibrin was below threshold, fibrin could be depolymerized and solu- 
bilized by fibrinogen with resultant formation of cryoprofibrin. Since threshold 
concentrations of cryoprofibrin appear necessary for precipitation of fibrin, 
the concentration of cryoprofibrin in plasma provides a basis for determining 
intravascular deposition of fibrin. Intravascular deposition of fibrin does not 
appear to occur normally in rabbits, because the concentration of cryoprofibrin 
in plasma from normal rabbits is far below the threshold for precipitation of 
fibrin. The applicability of cryoprofibrin as an indicator of fibrin deposition is 
demonstrated by the occurrence of levels of cryoprofibrin approaching the 
threshold for precipitation of fibrin in plasma from endotoxin-treated rabbits. 

The current concept that the fibrinogen molecule can dissociate into sub- 
units can be used to explain the conversion of fibrinogen to cryoprofibrin. As 
one possibility, the two residues of fibrinopeptide A contained in fibrinogen 
may be located on two separate subunits of the molecule; cryoprofibrln is pro- 
duced when one of these subunits is replaced by a subunit altered by loss of 
fibrinopepfide A. Recombination of native subunits with subunits altered by 
loss of A would counter dissociation of cryoprofibrin and inhibit polymeriza- 
tion of subunits lacking fibrinopepfide A. As an alternate mechanism, two 
residues of A may be liberated concurrently from a single subunit. Cryopro- 
fibrin would then correspond to a fibrinogen molecule, containing a subunit 
with two residues of A, in combination with an altered molecule containing a 
subunit lacking two residues of A. 

Liberation of fibrinopepfide B did not contribute measurably to production 
of fibrin resulting from limited action of thrombin on rabbit fibrinogen. Both 
fibrin containing B but not A, and fibrin containing neither B nor A, as is pro- 
duced by extensive action of thrombin, could be solubilized by fibrinogen. 

Thrombin, or another enzyme utilizing tosyl-L-arginine methyl ester as 
substrate, appeared reversibly to inhibit polymerization of fibrin containing 
fibrinopeptide B. This enzyme and fibrinogen were the only proteins appearing 
to inhibit polymerization in plasma from normal rabbits. 

Miss Dolores Andrasie provided technical assistance. 
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