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Maxwell’s daemon is a popular personification of a principle connecting information gain and extractable
work in thermodynamics. A Szilard Engine is a particular hypothetical realization of Maxwell’s daemon,
which is able to extract work from a single thermal reservoir by measuring the position of particle(s) within
the system. Here we investigate the role of particle statistics in the whole process; namely, how the
extractable work changes if instead of classical particles fermions or bosons are used as the working medium.
We give a unifying argument for the optimal work in the different cases: the extractable work is determined
solely by the information gain of the initial measurement, as measured by the mutual information,
regardless of the number and type of particles which constitute the working substance.

T
he laws of thermodynamics are well known for their robustness, namely the fact that they survived both
physics revolutions of the 20th century. Neither quantum physics nor relativity have modified our confid-
ence in the fact that the overall energy of a closed system should be conserved, while its entropy tends to the

maximum possible value with time. However, quantum systems at low temperatures obey completely different
statistics to classical ones. For example bosons tend to bunch in the same area, so one might expect to be easier to
establish pressure differences, from which one can extract work. One could thus even imagine that bosonic and/or
fermionic statistics might allow us to obtain more work in the same situation than from indistinguishable particles
and thus break the second law.

In this paper we show that the performance of a work cycle with indistinguishable particles depends on the
information one has and is capable of obtaining about them. The type of particles doing the work, be they classical
or quantum, distinguishable or indistinguishable, is only of secondary importance. Our work clarifies why the
basics of thermodynamics are independent of particle statistics, a fact that makes thermodynamical laws all the
more remarkable. Furthermore, it emphasises that the second law ought to most appropriately be phrased in
terms of a trade-off between information gained and work done and holds for all types of particles.

Maxwell’s daemon systems make use of extra knowledge beyond that of a thermal observer to extract work.
Investigating such systems has helped to clarify and develop statistical mechanics. A particularly clean and widely
considered type of Maxwell’s daemons are called Szilard engines, often based around a cylinder with one (or
more) particles inside it1,2. The engine works by dividing the cylinder into two halves by an impenetrable barrier
and measuring the position of the gas particle. Following the measurement, work can be extracted from this device
by exploiting the pressure created by the particle on the barrier. The optimal amount of work is given as kT ln(2)
with k being the Boltzmann constant. Bennett famously showed that the Szilard engine daemon shifts entropy
into a memory, is thus not a closed cycle, and if one tries to make it one by resetting the memory, the work cost for
this cancels out the initial work gain3.

The quantum versions of such engines have also been investigated, a notably difference being that the insertion
and removal of the barrier in the middle costs/gives work4–6. Interesting new phenomena occur if one includes
more particles into the SZE. In e.g.3,6,7 it was shown that correlations have a positive impact on the amount of work
that can be extracted from the engine, quantum correlations having a particularly strong influence. A closely
related type of multi-particle effect is of course particle statistics associated with identical particles. Kim et.al.8

performed analysis of a SZE with more than one particle, bringing the role of particle statistics into focus. This
work was further discussed in9,10. In11 a SZE utilizing purely quantum information was researched.

In this paper we clarify in detail the role of particle statistics in a quantum SZE by placing a particular emphasis
on the initial measurement. We consider primarily the low temperature limit as we are interested in quantum
effects and these are most strongly manifested in this regime; for finite temperature, indistinguishability of
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particles is gradually lost due to the emerging distinguishability by
energy levels they occupy. We show that the extractable work is
directly connected with the entropy extracted from the system by
W 5 2kTDS by the measurement performed on the system. The
equation can also be rewritten to W 5 kTDI, where DI is the mutual
information established by the measurement. In other words, we find
that the extractable work is determined by the information gained
during the initial measurement, regardless of whether the working
medium consists of distinguishable, bosonic or fermionic particles.
By performing a detailed analysis we show that the work costs of the
different individual steps within a working cycle do depend on the
working medium but conspire to remove this dependence when
combined, saving also the validity of the second law.

We proceed as follows. In the first sections we define the SZE with
quantum particles forming the working medium and derive the
extractable work for full measurements. Then we focus on more
general case of partial measurements (where not all possible informa-
tion about the system is extracted) and connect the information gain
of these measurements with extractable work from the system. We
finalize with the discussion on possible effects of degeneracies and
finite temperature.

Results
Szilard engine. Consider N quantum particles (bosons, fermions or
distinguishable particles) placed in a cylinder kept at a constant
temperature T via an ongoing interaction between the particles
and the walls of the cylinder. This interaction is considered to be
fast in the sense that the time scale of thermalization is much smaller
than any other time scale used. In the first part of the paper we will
also assume the energy levels of the particles in the container, as well
as in its parts after inserting the barrier (piston), to be non-
degenerate; possible degeneracies will be discussed later on.
However this does not exclude the energy levels on the respective
sides of the piston having the same energies.

The original SZE with more particles, with measurement not dis-
tinguishing particles even if they are distinguishable in principle,
works via the following steps, see Fig. 1:

. 1. A piston (modelled by a sufficiently narrow and high potential
barrier) is inserted into the container to separate it into two dis-
connected regions, preventing any tunnelling within the relevant
time-scales.

. 2. A measurement is performed to obtain the number of particles
on one side of the cylinder. This measurement is complete for
indistinguishable particles, but only partial for distinguishable
particles. The state of particles in the cylinder, after the wall was
inserted and before the measurement is performed, is a mixture of
possible states obtained via the measurement rather then their
coherent superposition. This is due to the fact that interactions
with the walls of the cylinder will not only fix the temperature of
the gas during the process, but also perform a measurement in the
number basis in each part of the cylinder, once the barrier is
introduced into the cylinder.

. 3. Depending on the result of the measurement the piston will be
allowed to move quasi-statically to a position where the side-ways
force acting on the piston will be zero. Exact conditions to reach
this position shall be discussed later.

. 4. The piston is then quasi-statically removed by decreasing the
strength of the potential.

In the classical case there is no need to invest work into the engine
except during the erasure procedure - insertion of the piston, its
removal as well as the measurement are considered to be ‘‘for free’’.
The only stage of extraction of energy is the movement of the piston
resulting from the unequal pressure on either side. In contrast, in the
the quantum case one inevitably has to invest energy to create the
barrier, as all energy levels of the particles are increased due to

decrease of the available volume. This work can however be recov-
ered during the movement and removal of the barrier (steps 3 and 4).
In this picture the stages of movement and removal of the barrier
need not anymore be considered as independent actions. To show
this, let us define a general force in the form F 5 hlE with l being a
general parameter and E the total energy of the system. In the third
step l can represent the position of the barrier and F will be the
standard force. In the fourth step (only relevant in cases when not
all particles have been found on one side of the barrier) l will be a
general parameter associated with the height of the barrier (e.g.

Figure 1 | Three-particle Szilard engine. In this figure we represent one

working cycle of the Szilard engine with three indistinguishable particles.

This scheme holds also for distinguishable particles, when individual

parametrization of them is not taken into account in measurement. We

start with a container with three particles in the ground state a). After

insertion of the barrier, which costs some work associated with the change

of energy levels, we perform a measurement on the number of particles on

the left-hand side and eventually find two particles there b). In the third

stage we move the barrier to its stationary position, changing the energy

levels and extracting some work c). In the last stage we remove the barrier

to extract rest of the work W2 from decreasing the energy levels d). In total,

W1 1 W2 5 kT ln(4).
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strength of the potential forming the barrier) and F the respective
force. In both cases, the forces can be utilized to extract work by
changing the parameter l in a reversible way.

Therefore, throughout the manuscript we will only work with
three phases of the engine - insertion, measurement and move-
ment/removal phase. We will denote work gained (or invested, with
negative sign) during the insertion of the piston W1 and the com-
bined work-gain of steps 3 and 4 shall be called W2. Four stages
described above represent a closed cycle up to the fact that the result
of the measurement in step 2 is still stored somewhere. For a full
restoration of the original setting one has to erase this information3.

Within most of this paper we will focus on the low temperature
limit, where all particles occupy the lowest possible energy level.
Here, the quantum effects of the engine are expected to manifest
themselves in the strongest way - for high temperatures all particles
became essentially distinguishable as each can be labelled by its
energy. In what follows we shall denote the energy levels of the
particles in the cylinder without the barrier as Ei. We imply the
condition kT=DE, where DE represents the difference between
any two energy levels that could be potentially occupied - for bosons
and distinguishable particles it is just the difference between two
lowest energy levels of the system E2 2 E1 and for fermions DE
represents the difference between the Fermi energy and the nearest
higher energy level. In the first part of this paper we will also consider
the system to be non-degenerate, effect of degeneracies will be dis-
cussed later. Under these assumptions the partition function of any
system consisting of N bosons or distinguishable particles will be Zb

5 exp (2NE1/kT) with E1 being the lowest energy of the system. For
fermions in a non-degenerate system the partition function will have

the form Zf ~exp {
XN

i~1
Ei=kT

� �
.

Work extraction in different steps. We will now calculate the work
that can be extracted from the closed cycle of the SZE. We will use the
fact that the work one can extract going between two thermal states
with partition functions ZA for initial state and ZB for final state is
given by

W~kT ln
ZB

ZA
: ð1Þ

The legitimacy of using this formula even for quantum particles is
discussed in the Methods section.

Insertion of the barrier. Let us denote the energy levels on the left

(right) of the barrier after its insertion as El rð Þ
i . For bosons there are

two distinct possibilities for this step. The first one corresponds to the
case where we do not insert the barrier in the middle of the system;
without the loss of generality we can define El

1wEr
1. Quantities for

this case shall be labelled by index n for non-degenerate and the final
partition function will be Zn

b ~exp {NEr
1

�
kT

� �
, which physically

means that all particles condensed in the lower potential well. This
will result in a final work W1n

b~N E1{Er
1

� �
. Irrespective of the exact

form of the potential defining the cylinder one can expect Er
1wE1, as

the ‘‘living space’’ of the particles has decreased, and thus the work
performed is negative.

The second possibility for bosons corresponds to the case when the
barrier is introduced in the middle of the system, i.e. El

1~Er
1 with

precision El
1{Er

1=kT . Under such an assumption the partition sum
will be Zd

b ~ Nz1ð Þexp {NEr
1

�
kT

� �
and the work

W1d
b~kT ln Nz1ð ÞzN E1{Er

1

� �
: ð2Þ

For such a degenerate case all relevant quantities shall be indexed
by d.

For distinguishable particles the situation is quite similar to the
above bosonic case. Again there is no limit on the number of particles

occupying the lowest energy level. The only difference is for the
degenerate case, where the particles can choose their positions with-
out change of the total energy of the system. Here the number of
possible configurations will be 2N and the partition function will be
Zd

d~2N exp {NEr
1

�
kT

� �
. Hence the extractable work will be

W1d
d~N kT ln 2zE1{Er

1

� �
, ð3Þ

corresponding to the case of simply joining N independent SZEs.
For fermions the situation is distinctly different. We define j as the

level for which following inequality holds:

Er
N{jƒEl

jƒEr
N{jz1: ð4Þ

First let us examine the case where there is a sharp inequality on the
right hand side of (4). The final partition function will be

Zn
f ~exp {

Xj

i~1
El

iz
XN{j

i~1
Er

i

� �.
kT

� �
and the extractable

work will be W1n
f ~

XN

i~1
Ei{

Xj

i~1
El

iz
XN{j

i~1
Er

i

� �
. In con-

trast, for equality on the right hand side of (4) we get a degeneracy
in the energy levels of the whole system when the fermion at the
Fermi level can freely choose either side of the cylinder. The partition

function then reads Zd
f ~2 exp {

Xj

i~1
El

iz
XN{j

i~1
Er

i

� �.
kT

� �
and the extractable work will be

W1d
f ~kT ln 2ð Þ~

XN

i~1

Ei{
Xj

i~1

El
iz
XN{j

i~1

Er
i

 !
: ð5Þ

It is notable that in contrast to the bosonic case there are potentially
many (in the order of N) possibilities for choosing the position of the
barrier to reach the equalized position, but insertion into the middle
of the container will lead to non/zero work extraction only for N odd.

Measurement. In the second step a measurement on the system is
performed. This is only non-trivial if the energy levels of the system
(after inserting the barrier) are degenerate (with partition functions
and works labelled by d) as in the other case it is just a single-outcome
measurement confirming that all bosons/distinguishable particles
are in the deeper well (larger part of the container) or the fermions
are distributed within the container in a way expectable by the dis-
tribution of energy levels.

In the non-trivial bosonic case, the full measurement will have N 1
1 possible outcomes counting the number of particles on the left
hand side. In the fermionic case the measurement will be binary
and for distinguishable particles the number of possible outcomes
will be 2N (specifying the left - right position of every single particle).

Movement and removal of barrier. In the classical case one would
extract the work by simply moving the barrier to its equilibrium
position. All extractable work would be extracted within this phase
for an infinitely narrow barrier. On the other hand, if the barrier was
removed from a different position than the equilibrium one, part of
the potential work would just dissipate due to mixing of gases with
different pressures.

In the quantum case the situation is much more subtle. Here the
extraction of work is not straightforward to define physically in
connection with possible storages of energy. However, if we stick

to the standard definition of the generalized force as F~
LE
Ll

with

l being a parameter of the barrier (e.g. its position during the move-
ment phase or height during the removal phase) and accept that any
such force can be utilized to perform work, we can calculate the
extractable work from the partition functions without making spe-
cific assumptions on the process itself.

For both bosons and distinguishable particles the initial partition
sum of the system is ZA

b ~exp {NEr
1

�
kT

� �
and final is Zb. Therefore

we get as the extractable work

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6995 | DOI: 10.1038/srep06995 3



W2b~W2d~N Er
1{E1

� �
: ð6Þ

For fermions the partition sum is ZA
f ~exp {

Xj

i~1
El

iz
��

XN{j

i~1
Er

i Þ
.

kTÞ and the final one Zf; the resulting work is

W2f ~
Xj

i~1

El
iz
XN{j

i~1

Er
i {
XN

i~1

Ei: ð7Þ

Total work. The total work gained (or consumed) during the relevant
parts of the cycle is given by the sum of the work consumed for inserting
the barrier W1 and the work extracted by the movement and removal of
the barrier W2. For non degenerate cases, for all different kinds of
particles this work is Wb 5 Wd 5 Wf 5 0. This is due to the simple
fact that in the low-temperature limit the particles would always choose
the lowest energy level available for them. So unless there is a
degeneracy of the levels after inserting the barrier, the measurement
is trivial and its result can be predicted with certainty before it is actually
performed. Such a measurement would not remove any entropy from
the system and thus cannot lead to work extraction.

The degenerate cases are much more interesting. In the case of distin-
guishable particles Wd 5 NkT ln(2), for bosons we get Wb 5 kT ln(N 1

1) and for fermions Wf 5 kT ln(2). All these results (even for non-
degenerate cases) are connected by a unifying formula of the form

W~kT ln Mð Þ ð8Þ

with M being the number of possible measurement outcomes, each of
them occurring with equal probability. The work corresponds to the
energy needed to erase a memory able to store the result of the
measurement.

Let us briefly discuss here the consequences of this result for dis-
tinguishable particles. Importantly, the formula for extractable work
(8) not only holds for the average extractable work, but it is also valid
as a single-shot formula that guarantees the work to be extracted for
every possible measurement outcome. This in particular holds for the
insertion of the barrier in the centre of the container for distinguish-
able particles and finding the same number of particles on each side.
This counter-intuitive fact is possible by utilizing filters - semiperme-
able membranes that would allow to penetrate all particles but a
specific one. Possible existence of this kind of filters is guaranteed
by the distinguishability of the particles itself: If there is a way how to
distinguish individual particles by a measurement, this measurement
can be utilized to construct the specific filter. Now the membrane
inserted into the center of the container will consist of a set of N
filters, one for each particle. Each of these filters would then be
moved towards the respective side of the container, gaining kT
ln(2) work, together corresponding to N independent SZEs. For an
example for two particles, see Fig. 2.

Partial measurements and information–work relation. One may
consider another way of exploiting particle statistics to try to violate
the second law, that is by doing a coarse-grained measurement. Let us
define a coarse-grained measurement with M outcomes labelled by m
(running from 1 to M), each occurring with probability pm. Such a
measurement can be designed from a more general measurement
with N . M outcomes and joining these outcomes into groups
indistinguishable for the coarse grained measurement M. This
coarse-graining might have different reasons, from not being able
to measure the exact number of particles on each side of the cylinder
to not being able to individually recognize the distinguishable
particles. We will show here that irrespective on the reason of the
incompleteness of the measurement, the extractable work is given
solely by the information gain of the measurement given by the
probability distribution of the measurement results.

First note that as W1 does not depend on the measurement, it will
not change if a coarse-grained measurement is used instead of a
complete one.

For bosons and distinguishable particles, the partition sum after
performing the measurement and obtaining the outcome m will have

the form ZA
m~

1
pm

exp {NEr
1

�
kT

� �
. Further, after the removal phase

the partition sum will change to ZB
m~exp {NE1=kTð Þ. The extract-

able work for a specific outcome m will thus be

Figure 2 | Work extraction for two distinguishable particles. In this figure

we represent how energy is extracted from a Szilard engine containing two

distinguishable particles. We start with a container with both particles in

the ground state a). Filters for both particles are inserted into the middle of

the container and the measurement eventually reveals the ‘‘blue’’ particle

on the left hand side and the ‘‘red’’ particle on the right hand side b). In the

third stage filters are gradually moved to respective sides to utilize the

pressure force by individual particles c). In the last stage d) filters are on the

edge of the container and can be removed without any work gain from the

sides of the container. In total, W 5 2kT ln(2).

www.nature.com/scientificreports
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Wm~{kT ln pmð Þ ð9Þ

and the average extractable work will be

WM~{kT
XM

m~1

pm ln pmð Þ: ð10Þ

For fermions, the total measurement is always a binary-outcome
measurement, therefore no coarse-grained measurements can be
defined. However, the above Eq. (10) still holds by taking M 5 2
and p1 5 p2 5 1/2.

From (10) we see that the extractable work does not in fact depend
on the actual number and type of particles in the system, but only on
the measurement and its possible outcomes (taking into account that
possible measurements are limited by the number and type of part-
icles in the system). Given a fixed number of possible outcomes M,
the extractable work is maximized for a measurement with equal
probability of each outcome and will gain Wmax 5 kT ln(M). We
see that the maximal extractable work is directly associated with the
measurement with the highest information gain, given the number of
possible outcomes. We further discuss the optimality of such a mea-
surement in the Methods section.

Note here that unlike for full measurements, in case of coarse-
grained measurements the extractable work might be higher for
specific results comparing to the average. Yielding a highly improb-
able outcome with a very small pm the extractable work Wm might be
much higher that WM. But still Wm will be upper bounded by
kT ln (N) with N being the governing full measurement from which
the coarse-grained measurement was induced.

We note also that the result in Eq. (10) can we rewritten as W 5 TS
with

S~{k
XM

m~1

pm ln pmð Þ ð11Þ

being the entropy of the measurement outcomes. This definition
exactly corresponds to the definition of Gibbs entropy except that
here one deals with the probabilities of measurement outcomes
rather than with the probabilities of microstates. One might view
this correspondence in the following way: by removing entropy S
from the system by a measurement one is able to extract exactly W 5

TS of work from the system before it turns back to its original state.
The extracted entropy has to be stored somewhere, or erased, costing
exactly the same amount of work again3.

Eq. (11) can further be rewritten in terms of mutual information.
Let ps(n) be the probability distribution of the states of the system

(thus ps nð Þ~ 1
N

for all n). Let pm(m) be the probability distribution

on the measurement apparatus with M possible outcomes. The joint
probability distribution pms(m, n) will be non-zero only if system
state n will lead to measurement result m and in this case will read
1
N

. It is easy to see that the resulting mutual information between the

probability distributions of the system and the measurement appar-
atus will be

DI~
XM

m~1

XN

n~1

pms m,nð Þ ln
pms m,nð Þ

pm mð Þps nð Þ

� �

~{
XM

m~1

pm mð Þln pm mð Þð Þ:

ð12Þ

Thus one can write W 5 kTDI.

Measurement ignoring distinguishability of particles. Let us briefly
discuss here a specific example of a coarse-grained measurement,
namely the measurement of number of particles on the left-hand

side of the barrier for distinguishable particles. Such a measurement
is easily experimentally realizable, as the number of particles on a side
of the piston is more easily measurable comparing to a measurement
that would individually recognize each particle.

Intuitively one expects the probability of different outcomes to be
concentrated around the balanced state, with approximately equal
number of particles on each side. Moreover, these outcomes are
expected to yield only little work. This intuition is confirmed by exact
calculation which yields the expression for the average extractable
work

Wd~{kT
XN

m~0

2{N N

m

� �
ln 2{N N

m

� �� �
: ð13Þ

This is for all N lower than Wb for N bosons, where this kind of
measurement represents a full measurement of the system. With
growing N the extractable work Wd drops down to
1
2

kT ln Nz1ð Þ^ 1
2

Wb
12. This can be explained by the smaller

information value of the measurement outcome (with the same
number of possible outcomes N 1 1) for distinguishable particles
in comparison to bosons - whereas for bosons any result is equally
probable, for distinguishable particles only the results close to
balanced are more likely.

In the very unlikely event of finding all particles on one side of the
piston we will be able to extract a much higher amount of work than
(13), namely NkT ln(2), what is exactly the amount corresponding to
the full measurement on N distinguishable particles. This is due to
the fact that a measurement result obtaining all particles on one side
is not coarse-grained at all. On the other hand for the most probable
outcome with balanced number of particles on each side the extract-

able work will be
1
2

kT ln
N
2

� �
, thus only slightly lower than the

average. Detailed calculations are available in the Methods section.

Degeneracy. Let us briefly discuss the possible degeneracies of
energy levels in the system. For bosons and distinguishable
particles they only play a role for the lowest energy level. If the
degeneracy can be revealed by the measurement, the system will
correspond to an advanced SZE with more than one barrier and
more complicated measurement. If the degeneracy cannot be
revealed by the measurement, the measurement has to be
considered as coarse-grained. However, as the probabilities for
respective outcomes will be still equal (each coarse-grained
measurement outcome will join the same number of full-
measurement outcomes) and thus having full entropy, the
resulting work will not change at all.

For fermions, if the Fermi energy level of the system is degenerate,
more than one fermion can occupy the same energy. This case repre-
sents a kind of fermionic – bosonic combination that increases the
number of particles actually performing work in the system from one
to the degeneracy degree of the Fermi level. In the marginal scenario
of the degeneracy reaching N, fermions behave exactly like bosons,
condensing into the lowest energy level and performing the same
amount of work as bosons (if the degeneracies cannot be revealed by
measurement) or distinguishable particles (if degeneracies can be
revealed by the measurement).

Effects of finite temperature. If the condition kT=DE for low
temperature limit is not fulfilled, the situation becomes more
complicated. Partition sums will include also terms with higher
energy levels, as the probability of finding one of the particles in
these levels will not be negligible anymore. The consequences can
be summarized under two main topics.

First, indistinguishable particles will become partly distinguish-
able due to their different energy. Bosons can be viewed as divided
into distinct groups of indistinguishable particles labelled by their

www.nature.com/scientificreports
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energy; the which-side measurement, complete for cold bosons,
becomes then coarse-grained for warm ones. Information value of
this measurement will gradually decrease with increasing temper-
ature up to the point, where each boson could be potentially distin-
guishable by its energy, leading to a decrease of extracted work.

For fermions, effects of finite temperature will be similar to degen-
eracy effects - one will be able to utilize some more complicated than
binary measurement, as fermions might occupy also other than
Fermi energies, leading to the increase of the extractable work.

The second effect is connected with a richer structure of possible
extraction procedures. For cold bosons and distinguishable particles,
the barrier could be inserted only in the middle of the cylinder to
extract work, for fermions only in a number of distinct places. For
warmer particles the outcomes of the measurements even for non-
symmetrical insertion of the barrier will not be trivial anymore,
hence work could be extracted also in these cases.

In the high temperature limit, differences between different par-
ticle statistics will be completely eliminated and they will all behave
similarly to a classical gas, where work can be extracted by insertion
of the barrier in any point into the cylinder, and the work costs for
insertion of the barrier are negligible compared to work extracted.

Discussion
We performed a detailed analysis of a specific realization of a
Maxwells daemon – Szilard engine, where the working medium
consist of either distinguishable particles, bosons or fermions. We
showed that the extractable work is determined by the information
gain of the measurement performed on the system, regardless of the
working medium. We demonstrated in detail how things conspire to
remove the dependence on the working medium in that sense. This
latter contribution is arguably of the same type as Bennett’s exorcism
of Maxwell’s daemon3 in that it shows in what exact way the second
law is not violated in this process.

We also showed that if a full measurement on the system is per-
formed (which is associated with a different amount of information
gain in different cases), distinguishable particles exhibit a much lar-
ger potential to deliver work (scaling linearly with the number of
particles) relative to bosons (where it scales logarithmically).
Fermions can only provide a fixed amount of work independent of
the number of particles in non-degenerate case.

Moreover we showed that for coarse-grained measurements the
extractable work is again determined solely by the information gain
of the measurement. This clarifies why the same kind of measure-
ment (measuring the number of particles on either side of the piston)
extracts more energy for bosons than for distinguishable particles.

It would be interesting to provide experimental evidence for the
results obtained, especially for the possibility to extract work with
balanced measurement outcomes. One could think about cold atoms
kept at a stable temperature by a (larger amount) of different atoms,
as suggested in8. Another option would be to use photons in micro-
cavities as the working media. Here the confinement potential is
easily controllable and the barrier could be realized simply as an
inserted mirror.

Methods
Legitimacy of using W~kT ln

ZA

ZB
formula for quantum particles. We show here

that the above-mentioned formula can indeed be used even in cases where the

working medium consist of quantum particles. First define F to be a general force with

F 5 hlE, where E is the energy of the system the force is acting on, and l be the

parameter varied when the work is done. One may for example take E to be the energy

of a state in the Szilard engine, and l the parameter that controls the position of the

barrier. Then if that state is occupied and E depends on l it will cost energy to do this.

The claim now is that ÆFæ 5 hl (2kT ln Z), where Fh i~
X

i

exp {bEið Þ
Z

LlEi . That

the claim holds can be seen from a few lines of calculation. One may worry that this
uses the standard Gibb’s state and does not hold for bosonic and fermionic statistics.
However these are also Gibb’s states on the allowed energy levels at the many-particle

level. Therefore the same argument carries through also in that case. By considering a
quasi-static isothermal sequence of such infinitesimal work extractions with dÆWæ :5

ÆFædl one sees that the total W is indeed W~kT ln
ZB

ZA
. It is also shown in13 that

W~kT ln
ZB

ZA
is not only the average work but the maximal work that can be

guaranteed to be extracted with probability 1.

Why information gain determines optimal work. We now show that the protocols
introduced above are optimal in that the information gain in the measurement is the
best that one can do regardless of the type of particles making up the working
medium. We consider three systems: g for the working medium (gas), m for the
memory and r for the work reservoir.

Consider firstly the information gain in the measurement. Define this as
DI(g : m): 5 D(S(rg) 1 S(rm) 2 S(rgm)) relative to before and after the measurement.
Before the measurement I(g : m) 5 0, as the memory is taken to be in some default
pure state j0æM. The measurement is, optimally, reversible such that S(rgm) is the same
before and after the measurement. Moreover we demand that rg is unchanged by the
measurement as the thermal and decohering reservoir is constantly projecting the
system into basis states of the measurement performed. Thus
DI g : mð Þ~DS rmð Þ~S rf

m

� �
as evaluated after the measurement (f denotes final).

We now show that the optimal work that can be extracted is indeed given by
DI(g : m) 5 S(rm), under certain definitions and conditions. We are interested in the
energy change in the work reservoir r from between the premeasurement state to the
post-extraction state, but without the resetting of the memory having been done. We
demand that the entropy of the work reservoir is negligible both before and after the
working cycle and define the work extracted as the change in internal energy of the
reservoir DUr :5 DTr(rrHr). (If the entropy of r was allowed to change we would
define the work as the change in free energy of r and the argument would still carry
through). For simplicity we also take the work reservoir to be in a pure energy
eigenstate before and after the extraction, labelled by j0ær and j0 1 DEær, such that
DUr 5DE. We wish to show thatDEƒTS rf

m

� �
. We shall take as our starting point the

crucial expression

DF~D U{TSð Þƒ0, ð14Þ

which according to universally accepted models of thermalisation state holds for any
system, in equilibrium or not, interacting with a heat bath of temperature T, with U 5

Tr(rH) and S 5 2trr log r.
Before evaluating DF we make the assumption that both at the initial and final

times the following four conditions hold: (i) The interaction energies are negligible s.t.
Ugmr 5 Ug 1 Um 1 Ur, (ii) The states are product states s.t. S 5 Sg 1 Sm 1 Sr, (note
that the work extraction would decouple the memory from g) (iii) the Hamiltonian of
the memory is proportional to the identity s.t. Um is state-independent, and -as
already mentioned- (iv) Sr 5 0. It then follows that

DF~DE{TS rf
m

� �
, ð15Þ

implying that the energy increase in the work reservoir DE is indeed bounded as
DEƒTS rf

m

� �
~DI g : mð ÞT .

Measurement ignoring distinguishability of particles. The probability of finding a
specific configuration of N distinguishable particles is 22N. Having m particles on the

left hand side is a measurement result coarse-grained in the level of
N
m

� �
, thus

having a probability of appearance 2{N N
m

� �
. This yields the extractable work for

the specific result m

Wm~{kT ln 2{N N

m

� �� �
ð16Þ

and the average extractable work

Wd~{kT
XN

m~0

2{N N

m

� �
ln 2{N N

m

� �� �
: ð17Þ

By setting m 5 0 we get W0 5 NkT. On the other hand, by setting m 5 N/2 we get

approximately WN=2~
1
2

kT:H
N
2

� �
, where H stands for Harmonic number. This

can be further approximated for large N to WN=2~
1
2

kT ln
N
2

� �
.
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