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Abstract

Background: Understanding the aspects of the cell functionality that account for disease or drug action mechanisms
is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of
precision medicine.

Results: Here we propose a simple probabilistic model in which signaling pathways are separated into elementary
sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene
expression measurements into probabilities of activation of such signal transmission circuits. Using this model,
differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses
can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based
biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms.
The accuracy of the proposed model is demonstrated with simulations and real datasets.

Conclusions: The proposed model provides detailed information that enables the interpretation disease mechanisms
as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for
suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

Keywords: Signaling pathways, Probabilistic model, Disease mechanism, Precision medicine, Disease mechanism,
Cancer, Fanconi anemia, Obesity, Stem cells
Background
Precision medicine requires of better ways of defining
diseases by introducing state-of-the-art genomic tech-
nologies into the diagnostic procedures. A more precise
diagnostic of diseases, based on the description of their
molecular mechanisms, is critical for creating innovative
diagnostic, prognostic, and therapeutic strategies properly
tailored to each patient’s necessities [1]. Consequently, a
deeper understanding of the consequences that the com-
bined effect of gene activities has over the functionality of
the cell has become a major concern in the analysis of
genomic data. Moreover, this knowledge is essential to
understand how gene activity perturbations account for
disease. The analysis of genome-wide expression profiles
has produced an unprecedented amount of data on gene
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activity under a plethora of experimental conditions. Now-
adays more than one million of microarray experiments
are available, stored in public databases. However, the
conversion of such data into a better understanding of the
underlying biological processes that explain molecular
mechanisms of diseases still remains an open issue. Early
attempts to deal with the problem of understanding the
collective contribution of gene activities to the definition
of phenotypes (e.g. disease) produced a family of algo-
rithms commonly known as single enrichment methods
(SEA) [2]. Such methods study over-representations of
functional annotations in groups of differentially expressed
genes [3-8]. Typical functional annotations used for this
purpose are gene ontology (GO) [9], KEGG pathways [10],
etc. Later, the gene set enrichment analysis (GSEA) method
[11] pioneered another family of more sensitive algorithms
based on testing the distribution of functional annotations
along a list of genes ranked by differential expression
[12-16]. Both approaches consider functional modules
as discrete, unstructured entities composed of elements
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(proteins) of identical importance with respect to the
trait analyzed. This is a quite unrealistic assumption
that drastically reduces the statistical power in any test-
ing framework [17].
Nevertheless, functional modules with detailed infor-

mation on their internal structures are available in sev-
eral repositories such as KEGG [10], Reactome [18],
etc. In fact, there is a recent interest in exploiting the
information contained in different biological pathways
to understand cellular function and disease mecha-
nisms [19]. Recently, a few pathway topology PT-based
algorithms have been published [20] that use the in-
ternal structure of the pathway to elucidate global acti-
vation status for the pathway from gene expression
data. Some PT-based algorithms use the pathway struc-
ture to compute measurements of coordinated activity
(such as correlation, covariance, etc.) among pairs of
genes [21]. Other, as the signaling pathway impact ana-
lysis (SPIA) [22,23] or the NetGSA [24], infer scores
that account for the global activation status of pathways
taking into account the relationships among their con-
stituent gene products. Conceptually similar methods,
implementing more sophisticated ways of scoring path-
way global activity based in the relationships among the
corresponding gene products, have also been proposed
[25-35].
In most of the methods described above individual

values accounting for gene expression are combined, as
defined by the internal structure of the pathway, into a
global score for the entire pathway. That is, pathways
are used as whole functional units in the interpretation
of gene expression experiments. However, the biological
consequence of the activity of a pathway is not a trivial
concept. Stating that a pathway is activated (or deacti-
vated) is not very informative by itself. In fact, partial ac-
tivation (or deactivation) within the same pathway can
have very different (and sometimes opposite) biological
implications. For example, the apoptosis signaling path-
way can lead to two opposite cell behaviors: apoptosis
and degradation (cell death) or antiapoptosis (cell survival)
depending on the final protein that receives the signal (see
hsa04210 pathway in the KEGG repository). Therefore,
depending on their relative location within the pathway,
changes in the activation state of one or several proteins
can change (and even reverse) the cell behavior. Some of
the PT-based methods use values of differential gene ex-
pression within the context of the pathways to calculate
scores for pathway sub-structures [28-31,36]. However,
such scores have a difficult interpretation for both signifi-
cant and non-significant parts of the pathway because the
differential expression of a gene does not necessarily imply
a transition from an active to an inactive state (or vice
versa). However, the most serious problem occurs when
one or several inhibitors within a pathway present a non-
significant differential expression. In this case, its acti-
vation state is unknown and, consequently, its effect
(normally drastic) on the sub-pathway.
From a completely different angle, other approaches

have attempted to model protein signaling networks in
detail [37-40]. Such approaches offer a detailed descrip-
tion of the network modeled and have been used to
check for inconsistences in the network or for finding
new interdependences between their constituent elements.
These models were used to study properties of the path-
ways analyzed [41], to optimize network models using
experimental data (protein activations, measured as
phosphorylation or other biochemical properties) [37],
or to study pathway responses [42], but none of these ap-
proaches consider the use of gene expression measure-
ments derived from transcriptomic experiments (probably
the most frequently used genomic data in biomedical re-
search during the last decade).
The approach proposed here offers a conceptually new

way of understanding the functional consequences of
changes in gene activity associated to any comparison of
conditions by taking into account the internal structure
of the pathways. This structure is used to split up the
pathway into stimulus-response sub-pathways, or cir-
cuits, which trigger particular cell functionalities. In
other words, the method enables the estimation of the
probabilities of activation of these cell functionalities.
This approach allows overtaking the simplistic view of
a pathway as an entity that is either active or inactive as
a whole. Here we show how the analysis of these signaling
circuits results in a more detailed and realistic description
of the functional consequences of gene up-and down-
regulations within the context of each pathway. In many
cases, the resulting activation/deactivation of individual
functionalities within the pathway helps to suggest a
causal explanation for disease mechanisms. We illustrate
the application of the methodology with gene expression
data obtained from various microarray experiments with
different conditions and diseases.

Results and discussion
Performance of the methodology
As previously commented pathways are multifunctional
entities that can trigger a range of different cell functions
and it is often meaningless to talk about the activation
of a pathway as a whole or relating its global activity to
a disease. Opposite to this view, we propose a different
method which accounts for the change in the probabil-
ities of signal transmission along the different signaling
circuits defined within pathways. Briefly, we first use the
values of gene expression to infer probabilities of gene
product presence/absence (and, consequently, their poten-
tial for transmitting a signal). Then, we use such probabil-
ities to calculate the probability of signal transmission
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along the circuit, from the receptor protein (that receives
the stimulus) to the effector protein (that triggers the re-
sponse). We take into account that interactions between
proteins can be either activations or inhibitions (see
Methods for details). If the probability of having the cir-
cuit activated for signal transmission is significantly higher
in one of the conditions of the comparison then a change
in a specific pathway activity is reported as a result. Since
some circuits of the modeled pathways might be declared
significant simply as a consequence of type I errors (false
positives), we carried out a simulation and we also studied
a real case in which no differences were expected.
We first simulate probe datasets with identical prob-

ability of being activated, to which normally distributed
noise is added (mean zero, and standard deviation 0.05).
All the samples would represent pathways whose genes
will have a similar activity state and, consequently,
should have their signaling circuits in the same activity
Figure 1 Analysis of the false discovery rate of the signaling circuit te
datasets, of n = 10, 20, 50 and 100 samples were simulated. All the probes for
of being activated (0.1, 0.3, 0.5, 0.7 and 0.9). Normal distributed (mean = 0, SD
0.05 chosen for the test, the ratios of false positives are negligible. B) Res
which contains gene expression microarray data of 237 samples, which (in pr
1000 datasets, of n = 10, 20, 50 and 100 samples, by randomly subsampling th
parts and compared to each other with the test. Again, the number of false p
state. For this reason, no differences should be observed
in any comparison. We produced 1000 datasets, of n = 10,
20, 50 and 100 samples with probabilities 0.1, 0.3, 0.5, 0.7
and 0.9 of being activated. Figure 1A shows the results of
the simulation. At the conventional p-value of 0.05 chosen
for the test the ratios of false positives are negligible (and
far below the expected 5%).
We have also used a large dataset of pediatric acute

myeloid leukemia (AML) which contains gene expres-
sion microarray data of 237 children [43]. In principle all
samples should have a similar profile of gene expression,
and consequently similar activation states in the signal-
ing circuit. We produce 1000 datasets, of n = 10, 20, 50
and 100 samples, by randomly subsampling the 237
samples. Any of the datasets was divided into two equal
parts and compared to each other with the proposed
methodology. Figure 1B shows that for any data size
(given the p-value of 0.05 used in the test as threshold)
st proposed. A) Results of the simulation experiment. A total of 1000
all the genes in all the nodes of the pathways had the same probability
= 0.05 noise was added to each probe). At the conventional p-value of
ults with a real dataset of pediatric acute myeloid leukemia (AML)
inciple) should display a similar gene expression profile. We produced
e 237 samples dataset. Any of the datasets was divided into two equal
ositives is negligible.
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the number of false positives is almost inexistent. In fact,
some real biological variation that could result in slight
circuit activity differences cannot be ruled out. Conse-
quently, some of these very few false positives might, in
reality, be true positives as well.
Additionally, two microarray datasets containing cases

and controls in a study of breast cancer (GSE27562) [44]
and another study of genes with increased expression in
AML (GSE9476) [45] were used to check the predictive
performance of features consisting of circuit activation
values estimated using the proposed method. This pre-
dictive performance can be considered representative of
a low number of failures in detecting real activations
(false negatives) [26,35] and allows us to check for the ex-
tent of type II error. We used Support Vector Machine
(SVM) [46] for the classification of the samples. The ac-
curacy of the classification obtained was evaluated by ten-
fold cross validation [47], using the following parameters:
proportion of correct classification (PCC) and the area
under the curve (AUC). The results obtained were in: for
the breast cancer dataset, PCC was 0.99 and the AUC
0.99, while in the AML dataset [45] PCC was 0.96 and the
AUC 0.96. These results allow discarding a significant
amount of type II error in the method.

Dissecting pathway functionalities
Signaling-dependent mechanisms of colorectal cancer
progression
We have used an example of colorectal cancer (CRC) to
illustrate this concept. A recent microarray (Affymetrix™
array HG-U133 Plus2.0) study has been used to system-
atically search for genes differentially expressed in early
onset CRC [48]. The study involves the comparison be-
tween 12 CRC cases and 10 healthy controls (see Material
and Methods for details). Several pathways are known to
be affected in CRC. For example, the proposed test detects
a significant increase of signaling activity in circuits lead-
ing to growth proliferation, cell cycle and anti-apoptosis in
the Jak-STAT pathway (see Figure 2). This result is coher-
ent with previous results, which describe how the inhib-
ition of this pathway induces apoptosis, cell cycle arrest,
and reduces tumor cell invasion in colorectal cancer cells
[49,50].
Another pathway whose activity is significantly altered

is the WNT signaling pathway. This pathway has a ca-
nonical Wnt/β-catenin cascade and two non-canonical
pathways named Wnt/Planar cell polarity (Wnt/PCP)
pathway and Wnt/Ca2+ pathway, forming part of the
complete WNT signaling pathway. The results of the test
reveal a significantly increased activity for two out of the
three circuits (Additional file 1: Figure S1). Genes be-
longing to the Wnt/PCT pathway, such as RhoA or RAC
and JNK are known to be up-regulated in cancer [51].
This would explain the activation of the circuit leading
to JNK, which is one of the possible responses triggered
by this pathway. Other PT-based analyses also point to
this pathway as a key player in CRC [30].
A remarkable example of precise detection of a signal-

ing circuit activity occurs in the VEGF pathway, whose
induction is known to be involved in malignant trans-
formation [52]. Human colorectal tumors produce vascu-
lar endothelial growth factor (VEGF) whose expression is
up-regulated in tumor cells by cyclooxygenase-2 (COX2),
represented in the KEGG pathway in Additional file 2:
Figure S2 by node PTGS2 (prostaglandin G/H synthase
and cyclooxygenase), and directly correlated to neoangio-
genesis and clinical outcome [53,54]. COX2 catalyzes the
production of PGI2, and high levels of PGE2 have been re-
ported in colorectal adenocarcinomas in comparison with
adjacent normal tissue [55]. We observed that only the
circuit leading to PGI2 production, via PTGS2 (COX2),
was significantly activated (Additional file 2: Figure S2A)
in this pathway.
As a general rule, it is worth noticing that the pat-

terns of circuit activities, which account for cell func-
tionalities, cannot be easily derived from the changes in
gene expression. Additional file 2: Figure S2B illustrates
how different gene (with either signaling or repressing
activities) up- and down-regulations suppress and com-
pensate to each other to finally (unexpectedly) result
in no change for the rest of circuits (Additional file 2:
Figure S2A). Thus, genes activated or deactivated, with
no effect in this pathway, are free to play a different
role in another pathway. This demonstrates the useful-
ness of the proposed approach that provides direct in-
formation on the specific pathway activities that result
in pathologic conditions, instead of just reporting gene
activities out of context.

Study of genetic and diet-induced murine models of obesity
In our previous study [56], we characterized the adipose
tissue macrophages (ATM) from wild type (WT) and
ob/ob mice at 5 and 16 weeks of age. We showed that at
16 weeks WT ATM had a predominantly M2 antinflam-
matory phenotype. The M2 phenotype was also ob-
served in 5 weeks old ob/ob ATMs. Conversely, 16 week
old ob/ob ATMs had switched to a predominantly M1
proinflammatory phenotype, which was associated with
severe insulin resistance, diabetes and an enrichment of
proinflammatory macrophages in adipose tissue. The
analysis of the activity of signaling circuits revealed spe-
cific signaling ways used to achieve the different physio-
logical conditions. After 16 weeks, wild type animals
remain able to control their carbohydrate metabolism
and they are progressively expanding their adipose tis-
sue. This process requires remodeling of adipose tissue
and may be facilitated by M2 antinflammatory ATMs.
Compatible with this expansion, Figure 3A documents a



Figure 2 Model of the JAK-STAT pathway in CRC with the corresponding significant changes in the signaling circuit activities. Red nodes
indicate activated circuits in the CRC patients with respect to the healthy controls and blue nodes indicate circuit deactivations. Solid lines
indicate activations and dashed lines indicate inhibitions.
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significant activation of circuits triggering cell cycle, in
particular the Wnt/β-catenin, whose role in tissue re-
modeling by weight gain has already been identified
[57,58]. VEGF pathway is also activated in 16w WT
ATMs (Additional file 3: Figure S3). The activity of this
pathway is increased when there is increased demand in
adipose tissue expansion and also when there is hypoxia
as part of an adaptation to increase vascularization in
the tissue. In some way, increased demands for growth
results in hypoxia which is compensated by increased
vascularization. This result is compatible with macro-
phages producing VEGF and contributing to remodeling
of adipose tissue when it is expanding as part of the age
related growth [59]. On the other hand, Figure 3B docu-
ments the generalized activation of different circuits of
the apoptosis pathway in ob/ob 16 week mice when
compared to the 16 week WT mice. Degradation and
Cleavage of caspase substrate is activated. However the
relationship between survival and apoptosis changes
with respect to the 16 week WT mice. Survival is acti-
vated and the circuits triggering apoptosis are different.
These anomalous activities in apoptosis pathways in
ATM macrophages from ob/ob 16 weeks are in agree-
ment with the characteristic huge amount of fat depos-
ition, inflammatory responses and adipocyte crowns of
apoptotic adipocytes.

Signaling changes in human bone marrow hematopoietic
stem cells
In the human hematopoietic system, aging is concomitant
with decreased bone marrow cellularity and decreased
adaptive immune system function. On the other hand it is
also associated to increased incidence of anemia and other
hematological disorders and malignancies. It has been
suggest that changes within the hematopoietic stem cell
(HSC) population during aging contribute significantly to
the manifestation of these age-associated hematopoietic
pathologies in mice [60].



Figure 3 Signaling changes in mouse models of obesity. A) Activation within the Wnt pathway of circuits triggering cell cycle, in particular
the Wnt/β-catenin, when wildtype mice 16 weeks old is compared to wildtype 5 weeks old, and B) Activation of different circuits of the apoptosis
pathway in Ob/Ob 16 week mice when compared to the 16 week wildtype mice. Red nodes label activated circuits with respect to initial state of
each comparison and blue nodes label deactivations. Solid lines indicate activations and dashed lines indicate inhibitions.
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A recent gene expression profiling study revealed that
aged human HSC transcriptionally up-regulate genes re-
lated to cell cycle, myeloid lineage specification, and mye-
loid malignancies [61]. The study highlighted a few genes
that have been implicated in hematopoietic malignances
and are differentially expressed between elderly and
young human HSC, being age-up-regulated: AURKA,
FOS, HOXA9, MYC, TRIM13, while MAFF and FPLT3
resulted to be age-down-regulated [61]. Our analysis of
signaling circuit activity detected activation in the circuit
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ending in the FOS gene in the T-Cell receptor signaling
pathway. This circuit triggers proliferation, differentiation
and immune response (see Figure 4). Actually, gene set
analysis carried out in the original study suggests that
slight but coordinate deregulations in genes associated
to Cell cycle, Hematological System Development and
Function, Cellular Growth and Proliferation and Humoral
Inmune Response occurred in elderly HSC when com-
pared to young cells [61]. In other words, the original
study discovered only the gene expression signatures of
the processes whose activation mechanisms is reported in
detail by the signaling circuit activation method proposed
here.
Cross-talk between pathways: a case study of deregulation
of programmed cell death in Fanconi Anemia
Signaling pathways are connected among them and such
connections can also be detected using the method pro-
posed here. Furthermore, the results can potentially reveal
the precise mechanism by which a pathway specifically
Figure 4 Signaling changes in the T-Cell receptor signaling pathway o
activated circuits with respect to initial state of each comparison and blue
lines indicate inhibitions.
triggers a particular biological response in a second
pathway. Since pathways work cooperatively, the incor-
rect activation of a specific circuit can activate a wrong
circuit in another pathway creating a perturbed signal-
ing cascade that could eventually result in a disease
condition. The observation of the combined behavior of
all the signaling pathways in a diseased cell can eventu-
ally reveal interesting details of the overall mechanism
of the disease and help in the inference of ways of
intervention. We illustrate this concept with the detec-
tion of cross-talk between pathways in an example of
Fanconi Anemia (FA), a disease in which signaling is
known to play a relevant role. FA is a rare chromosome
instability syndrome characterized by aplastic anemia
as well as cancer and leukemia susceptibility [62]. It has
been proposed that disruption of the apoptotic control,
a hallmark of FA, explains the phenotype of the disease
to some extent [63]. A recent study used gene expression
microarrays to identify differences at the transcription
level in bone marrow cells between normal volunteers and
FA patients [64]. Eleven normal volunteers and 21 patients
f human bone marrow hematopoietic stem cells. Red nodes label
nodes label deactivations. Solid lines indicate activations and dashed
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were studied. Gene expression datasets for FA were
obtained from the GEO database (see methods for
details).
It has been proposed that one of the genes related to

the disease, FANCC, is involved in Jak/STAT signaling
and apoptotic signaling [62]. The model of both path-
ways using the data of this experiment enables the pre-
cise identification of the mechanisms by which Jak/STAT
pathway specifically triggers one of the survival circuits
of the apoptosis pathway that eventually results in the
disease. Figure 5 shows the changes in signal transmis-
sion activities across all the signaling circuits when FA
patients are compared to the controls. While the activity
of the signaling circuit ending in CIHS, leading to cell
proliferation, is inhibited the activity of the circuit end-
ing in AKT3 is significantly activated in FA (Figure 5A).
This signaling circuit, according to KEGG functional an-
notation, specifically triggers the antiapoptotic activity in
the apoptosis pathway. Figure 5B shows a detailed descrip-
tion of the process of antiapoptotic activity activation.
Three signaling circuits are significantly inactive in FA
(the ones ending in BAD, DFFA and CASP6) and other
three circuits are significantly active (the ones ending in
BCL2L1, BIRC2 and BCL2). The consequences of the ob-
served changes in the activation status of the circuits
affected can easily be understood at the light of the
functions they trigger (Figure 5B). Firstly, one of the
circuits triggering apoptotic response (the one ending
in BAD) is inactivated in FA. Additionally, another two
circuits triggering degradation (DFFA) and cleavage of
caspase substrate (CASP6), respectively, are also deacti-
vated. On the other hand, circuits ending in BCL2L1,
BIRC2 and BCL2, that trigger survival, are activated.
Thus, the final consequence is that the antiapoptotic
pathway activity in FA increases with respect to a nor-
mal cell. This does not mean that apoptosis cannot
occur in FA. Actually it does [63], most probably
through the circuits ending in BAX and/or TP53 (see
Figure 5B), whose activity is not different from the activity
in normal cells. This observation suggest that known fea-
tures of FA, such as hypersensitivity to DNA cross-linking
agents [65,66] or chromosomal instability [66] could be a
consequence of the abnormal survival of cells with dam-
aged DNA. Actually, the authors of the original study
describe that some functional categories, including
“negative regulation of programmed cell death” are over-
represented in the FA samples. Actually, recent reports
have confirmed that FA proteins participate directly in ca-
nonical signaling pathways that influence survival and
self-replication of hematopoietic cells [64].
Conventional (PT)-based methods of functional en-

richment, even if they take into account the relationships
between the components, fail in revealing details on the
molecular mechanisms that mediate the pathologic
behaviors of the apoptosis in FA. And, obviously, can-
not account for the cross-talk between pathways.

Comparison with other approaches
It is difficult to provide a reasonable comparison of the
procedure proposed with other procedures because they
test different aspects of the functionality of the pathway.
A recent revision on pathway-based methods describe
the evolution of the different algorithms proposed from
those that only consider membership relationships be-
tween the genes of a pathway (SEA or Functional Class
Scoring -FSC-) to those, more sophisticated, that use the
topology of the pathway (PT-Based) [20]. However, the
ultimate property to be tested here is the behavior of the
whole pathway, while our approach checks for signifi-
cant differences in the probability of activation of the in-
dividual stimulus-response signaling circuits. Only very
recently, a few methods that consider sub-pathways have
been proposed [28-31]. The clipper approach [28] ap-
plies first a Gaussian graphical model that deconstructs
the whole graph that defines the pathway into smaller
sub-graphs (cliques), that are further individually tested.
The cliques are genes connected through the pathway
structure but not necessarily related with the actual
stimulus-response biologically relevant circuits used here.
For example, a clique within a stimulus-response sub-
pathway can have their genes significantly up-regulated
but the signal might not be transmitted if the sub-pathway
is interrupted upstream or downstream. Another ap-
proach, the DEgraph [31], uses multivariate analysis to
identify differential expression patterns that are coherent
with a given sub-graph structure. Again, this method uses
the same approach of searching for any sub-graph within
the pathway, irrespective of its biological meaning. More-
over, both approaches splits nodes composed of several
proteins into multiple nodes regardless of the nature of
these multi-protein nodes. The dissociation of a node
which is a protein complex, where all the proteins must
be present to produce an active complex, into individual
nodes leads to erroneous results. We used the CRC data-
set [48] to compare the signaling circuit activity method
proposed here to the clipper method [28], as recently im-
plemented in the Graphite Web application [67], and the
DEgraph [31] method. Additional file 4: Table S1 shows
the 85 significant pathways found. A large number of
pathways, such as Cocaine addiction, African trypanosom-
iasis, Long-term depression, Salivary secretion, and many
others completely unrelated to cancer are obvious false
positives. Focusing only on cancer related pathways we
consider VEGF, Jak-STAT, ERBB and WNT. In VEGF, clip-
per only detect a portion of the sub-pathway leading to
the production of COX2 via PTGS2 (prostaglandin G/H
synthase and cyclooxygenase), which is detected by our
approach and is known to be activated in CRC [55,68].



Figure 5 Models of the A) JAK-STAT and B) Apoptosis pathways in FA along with the corresponding significant changes in the signaling
circuit activities. Red nodes label activated circuits in the FA patients with respect to the healthy controls and blue nodes label deactivations.
Nodes that simultaneously participate in activated and deactivated pathways are labeled in yellow.
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Clipper and DEgraph declare so many pathways as signifi-
cantly activated because they detect sub-graphs, which are
portions of signaling circuits of dubious biological mean-
ing. As previously commented for some up-and down-
regulations of individual genes, some sub-graphs have not
impact on biological functions triggered by signaling path-
ways as well. And again, in many cases the use of differen-
tial expression instead of individual gene activation or
deactivations might introduce errors in the role of inhibi-
tors in the pathways.
Additionally, two almost identical approaches that de-

fine sub-pathways in a similar manner to our signaling
circuits but score them in a similar manner to SPIA [22]
have recently been published [29,30]. However, the use
of differential expression values in the nodes instead of
actual presence/absence estimations lead to incorrect as-
sumptions on the activities of sub-pathways, as mentioned
above. Moreover, they do not provide any software for car-
rying out the test, which critically compromises the poten-
tial usefulness of both approaches.
In an apparent conceptual downgrade, the way in which

new sub-pathway based methods check its validity implies
checking whether the pathways in which they found sig-
nificant sup-pathways are also significant in conventional
FSC or PT-based methods or not. Although probably of
limited value, we produced a similar comparison. We have
used the CRC example [48] for the comparison. We have
analyzed the pathways to detect significant changes in sig-
nal transmission activities in the signaling circuits be-
tween the two conditions compared. Table 1 represents
the number of circuits significantly activated and deac-
tivated in cases with respect to the controls. We com-
pare this approach to: a) a conventional ORA test [3],
which require a pre-selection of genes based on individ-
ual tests for each gene [13]; b) to a FSC test (in particu-
lar a representative of the family of GSEA tests [15])
which do not require of the previously mentioned step
of pre-selection of genes; c) to a PT-based approach,
the SPIA [22], which takes into account the internal
structure of the pathway for the calculation of a global
activity index for the whole pathway.
No main discrepancies were observed among the sig-

nificant values reported by the SPIA method and the
proposed method. In some cases, the behavior of SPIA
is closer to the GSEA, probably because both methods
return a global pathway score (despite the fact that SPIA
weights take into account the pathway structure, thus
providing a more accurate description of the whole be-
havior of the pathway.) However, our method is testing a
different aspect of the activity of a pathway than SPIA
and GSEA do. For example, a pathway known to be ac-
tive in cancer is the VEGF signaling pathway, whose in-
hibition has been suggested as an anticancer therapy
[69]. Several circuits in this pathway were detected as
activated by the proposed approach but not by the other
approaches (see Table 1). Likewise, the relationship of
JAK-STAT signaling pathway to colorectal cancer is known,
given that its disruption reduces tumor cell invasion in
this cancer [49]. Again, circuits within the JAK-STAT
pathway were found activated by the approach proposed
here and by GSEA but not by SPIA. The apparent super-
ior sensitivity of GSEA methodologies in this case is
probably due to its lower specificity [70]. The general
conclusion derived from the comparison is that the
method proposed here finds circuits activated in pathways
which are detected as significant by whole-pathway FSC
or PT-based methods. As expected, our more sensitive
method also detects activations of specific signaling cir-
cuits in pathways which were non-significant in FSC tests.
Conclusions
Because of the complexity of the cell, functional traits
cannot be understood as the result of the action of only
one or a few genes [71,72]. The multigenic (and non-
necessarily additive) nature of many common pheno-
types (including common diseases) is one of the causes
of the low statistical power rendered by conventional
marker- or gene-based testing strategies when applied to
genomic data (e.g. genotyping or transcriptomic) [73,74].
Specific strategies for pathway analysis (such as SEA,
FSC and PT-based methods that test the collective activ-
ity of sets of functionally related genes as defined in GO,
KEGG, etc.), despite more sensitive than gene-based ap-
proaches, still provide a very poor detail on the actual
functionalities affected in the cell.
Therefore, in a realistic scenario, the conventional

paradigm that link disease to the failure of a particular
gene needs to be changed for a systems-biology-oriented
view [75-77], in which the causative factor of the disease
is not the gene itself but perturbations of the combined
activity of several genes, functionally related through
pathways (the signaling circuit here). Thus, the anomal-
ous activity of one or several circuits, responsible for
specific cell functionalities, could be the ultimate cause
of the disease. Probabilistic models have been used some
time ago in theoretical approaches to understand regula-
tory networks [78-80] and, more recently, for different
types of studies that involved the characterization of
regulatory or signaling circuits [37-40,81]. Increasing the
knowledge on the way in which signaling circuits operate
is crucial: changes in the activity of the biological func-
tions triggered by signaling pathways (via the circuits that
compose them) are behind the mechanisms of several dis-
eases. Here, we extend the idea of probabilistic model to
the study of the functional consequences of gene expres-
sion in the context of signaling pathways. Simple but effi-
cient probabilistic models of pathway activity have been



Table 1 Analysis of the activity of the pathways by means of different approaches in the case-control comparison of
early onset colorectal cancer

Circuits SEA

PATHWAY Total Case Control UP vs DOWN UP vs ALL DOWN vs ALL GSEA SPIA

PPAR SIGNALING PATHWAY 106 3 19 DOWN ALL ALL DOWN* INH*

ERBB SIGNALING PATHWAY 139 11 2 UP UP DOWN DOWN* INH

CALCIUM SIGNALING PATHWAY 20 2 2 DOWN UP DOWN UP* ACT

NEUROACTIVE LIGAND-RECEPTOR INTERACTION 7 0 0 UP UP ALL UP* ACT

APOPTOSIS 28 0 0 DOWN ALL DOWN DOWN* INH

WNT SIGNALING PATHWAY 37 6 6 UP UP DOWN DOWN* INH

NOTCH SIGNALING PATHWAY 14 0 0 DOWN ALL ALL DOWN INH

VEGF SIGNALING PATHWAY 10 2 0 DOWN ALL ALL DOWN INH

CELL ADHESION MOLECULES 43 6 3 UP UP ALL UP* – 1

GAP JUNCTION 17 4 0 UP UP ALL UP* ACT

ANTIGEN PROCESSING AND PRESENTATION 6 0 0 DOWN ALL DOWN UP ACT

TOLL-LIKE RECEPTOR SIGNALING PATHWAY 103 0 0 UP UP DOWN UP* INH

JAK-STAT SIGNALING PATHWAY 7 7 0 DOWN ALL DOWN UP* INH

B CELL RECEPTOR SIGNALING PATHWAY 10 0 0 UP UP ALL UP* INH

Fc EPSILON RI SIGNALING PATHWAY 7 0 0 UP ALL ALL DOWN* INH

INSULIN SIGNALING PATHWAY 54 1 0 DOWN UP ALL DOWN* INH

GnRH SIGNALING PATHWAY 9 0 0 UP UP ALL DOWN* ACT

MELANOGENESIS 8 1 0 UP ALL ALL UP ACT

ADIPOCYTOKINE SIGNALING PATHWAY 31 0 2 DOWN ALL ALL UP INH

1 – This pathway is not implemented in SPIA.
The first column contains the name of the pathway. The next three columns, collectively labeled as circuits, list the number of sub-pathways in the pathways
(Total) and the number of them significantly activated in cases with respect to controls (Case) or vice versa (Control) in the comparison, respectively. The three
next columns, collectively labeled as SEA, list the results of a conventional functional enrichment test [3] in three situations: UP vs DOWN) when the significantly
upregulated genes are compared to the significantly downregulated genes, UP vs ALL) when significantly upregulated genes are compared to rest of genes, and
DOWN vs ALL) when significantly downregulated genes are compared to the rest of genes. UP, DOWN and ALL means where the major part of the pathway lies
in the comparison. Significantly up- and downregulated genes are obtained by a conventional t-test with multiple test adjustment as implemented in the Babelomics
program [89]. Although the trends of the results are coincident with the other analyses, none of them resulted significant. The column labeled GSEA contains a version
of GSEA test [15] implemented in the Babelomics program. The * and the boldface indicate the trend is significant according to the test. The last column, labeled as
SPIA, contains the result of the application of the pathway impact analysis [23].
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developed here for a collection of signaling pathways from
KEGG [10].
Unlike other conventional approaches, where either the

activity of individual genes or the activity of the complete
pathway was tested, this approach dissects the structure of
the pathway and tests the activity of the stimulus-response
signaling circuits. Actually, the notion of pathway is some-
how an arbitrary concept based, in some cases, on histor-
ical or theoretical concepts that may include many
different actual functional roles. The aim of the method
proposed here is focusing on the actual elementary func-
tionalities triggered by these circuits within the context of
the pathway, whose failure (wrong activation state, tested
by the method) can be associated to the disease. There are
only a few recently published methods that consider sub-
pathways, however they present some problems that ser-
iously limit its applicability and compromises the accuracy
of the results provided [28-31]. Firstly, some of them do
not consider biologically meaningful sub-pathways, such
as the signaling circuits considered here, but rather any se-
quence of connected proteins (sub-graphs), no mater of
their relevance in the signaling transmission process
[28,31]. This produces false positives because pathways
are declared as significantly activated when some of such
topologically-defined sub-graphs are active, regardless of
their contribution to effective signal transmission. Even if
the circuits are reasonably well defined [29,30], many
nodes, often composed by several proteins, are not well
resolved, which results in erroneous estimations of the
states of the circuits. Moreover, all these methods use dif-
ferential expression values in the nodes instead of actual
probabilities of node activity, which lead to incorrect as-
sumptions on the activities of sub-pathways in general
and signaling circuits in particular. In addition some of
the methods do not provide any software, which critically
compromises their potential use [29,30].
The analysis of type I and type II errors demonstrated

the accuracy of the methodology proposed. The examples
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presented in this paper illustrate the use of the concept of
the probability of stimulus-response circuit integrity for
signal transmission in different scenarios including cross-
talk between pathways.
We have focused on gene expression data obtained from

microarrays purely by practical reasons of availability: it is
the most abundant genomic data publicly available. Obvi-
ously, gene expression values can be obtained by other
methodologies, providing the data compared are in the
same scale (this is the objective of the normalization
process). In particular, it is likely that in a near future most
of the gene expression measurements will be obtained
from RNA-seq experiments [82]. Different measurements
for differential gene expression have been proposed, that
can accurately account for the estimation of the differen-
tial gene expression [83] that could be easily adapted to
measure the differential activation of a signaling circuit.
Detailed pathway models helps to understand the dis-

ease mechanism [72] as well as throw light on possible
mechanisms of drug action [84]. Such models facilitate
the advent of a real systems medicine where interventions
over particular molecules can be understood within a sys-
tems context [76,77]. Actually, the method proposed fos-
ters the conceptual transition from gene-based biomarkers
to mechanism-based biomarkers (the signaling circuits).
These can be derived from the gene expression values com-
bined in a way that have a biological meaning and poten-
tially account for the disease mechanism. Moreover,
pathway models will likely play an important role in the
interpretation of different types of genomic data apart
from gene expression. Thus, models of pathways can also
be used to study the possible impact of mutations found
in exome or whole genome resequencing experiments in
the context of pathway functionality. The study of the
combined effect of these mutations on the different signal-
ing circuits and consequently the resulting cellular func-
tionality damaged will help to understand the mechanism
of the disease and to propose ways of intervention. Simi-
larly, it will also be possible to understand the functional
implications at pathway level of genome-wide regulatory
constraints found in methyl-seq [85] experiments and its
corresponding impact in diseases. Steps toward model the
functionality of the cell will render more detailed insights
into the knowledge of the living systems and will provide
more powerful statistical tools to study the behavior of the
cell in a diseased condition. Models developed here for the
relatively simple scenario of signaling pathways really cap-
ture the network of relationships among proteins that ac-
count for particular aspects of the functionality of the cell.

Methods
Data sources and preprocessing
All data used in this study was downloaded from the Gene
Expression Omnibus (GEO), public repository of the
NCBI [86]. By the time this study was carried out, there
were 169 GEO series containing microarray data gener-
ated using the Affymetrix GeneChip HG-U133 Plus 2.0
Array (GPL570 platform in the GEO data base). Only for
74 of those series raw data (Affymetrix .CEL files) were
available, comprising a total of 3034 array hybridized to all
kind of human samples. The same search was performed
for the platforms HG-U133A and MoGene-1_0-st-v1, ren-
dering a total of 5293 and 683 arrays, respectively. A col-
lection of reference arrays was made with them. The raw
data (.CEL files) for these platforms were downloaded.
The arrays were normalized in batches of size 100 (be-
cause of memory size limitations) using the function
RMA in the affy library [87] of Bioconductor and finally
all batches were rescaled together using the “quantile”
method of the limma library [88] of Bioconductor, imple-
mented in the Babelomics [89] platform. Details of the
procedure followed have been published elsewhere [17].
The data collection covered an ample spectrum of bio-
logical conditions including different tissues, and diseases,
male and female individuals as well as cell lines.
Gene expression data for the CRC analysis were re-

trieved from the GEO (GSE4107). Gene expression data-
sets for the Fanconi Anemia analysis were obtained from
GEO (GSE16334) (Affymetrix HG-U133A Array). Gene
expression datasets for the murine models of obesity
were downloaded from GEO (GSE36669). Human bone
marrow hematopoietic stem cells gene expression data
were retrieved from GEO (GSE32719). Gene expression
data of pediatric acute myeloid leukemia (AML) used in
the validation of the methodology were retrieved from
GEO (GSE17855). Gene expression data for breast cancer
and data from the study of genes with increased expres-
sion in AML were also retrieved from GEO (GSE27562
and GSE9476, respectively).
The original GEO normalization of each dataset was

used. Differential gene expression control versus case
samples were carried out using the Limma library [88]
from Bioconductor.
Models of KEGG's pathways
Signaling pathways offer an excellent framework for de-
riving models of biological activity because their func-
tionality can be easily conceptualized: it simply consists
on the potential of transmitting a signal from the protein
that receives a stimulus (signal input) to the effector
protein that triggers the action (signal output) in re-
sponse to the stimulus. In practical terms, any node with
no incoming interactions is defined as signal input node
and any node with outgoing interaction is defined as a
signal output node. Then, a sub-pathway is defined as a
signal entry point and the collection of intermediate
connecting nodes that links it to a signal output node.
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We will name circuits to these particular sub-pathways
in order to distinguish them from any other possible
sub-pathway that does not connect signal input to signal
output nodes within the pathway. Thus, we recode each
pathway into a collection of circuits. Any of these cir-
cuits represent a potential elementary functionality trig-
gered by the corresponding signal output node. Some
signal output nodes have specific annotations, included
in the KEGG pathway definition, about the functionality
triggered, although a number of them lack annotation.
Figure 6 schematizes an example with three possible in-
puts and three possible outputs that trigger three possible
functionalities of the pathway. The connection matrix
shows how input and output can be connected through 5
different circuits (non-zero entries). Circuits can have
more than one sub-pathway (linear path) that connects
the input to the output node. For example, Figure 6 shows
how the circuit that connects ProtA to ProtH can be tra-
versed by two different ways, represented by the following
sequences of nodes: ProtA, ProtB, ProtD, ProtF, ProtH or
ProtA, ProtB, ProtD, ProtG, ProtH. A node can be one in-
dividual protein, several alternative proteins or a complex
of proteins.
A total of 27 KEGG pathways for Homo sapiens and

18 for Mus musculus belonging to the general categor-
ies Environmental Information Processing and Cellular
Processes, which include important processes and systems
such as Signal Transduction (ERBB, WNT, NOTCH, JAK-
STAT, calcium, VEGF, HEDGEHOG and mTOR signaling
pathways), Signaling Molecules and Interaction (neuroac-
tive ligand-receptor interaction, cell adhesion molecules,
cytokine-cytokine receptor interaction and EMC-receptor
interaction), Cell Growth and Death (apoptosis and p53
signaling pathway), Cell Communication (GAP junction
and tight junction), Endocrine System (insulin signaling
pathway, adipocytokine signaling pathway, PPAR signaling
pathway, GnRH signaling pathway and melanogenesis)
and Immune System (toll-like receptor signaling pathway,
B cell receptor signaling pathway, T cell receptor signaling
pathway, Fc epsilon RI signaling pathway, antigen process-
ing and presentation, and chemokine signaling pathway),
could be coded in this way.
The information about the topology of each pathway

was extracted from the corresponding KEGG’s XML files.
The KEGG database provides information on the genes
and their corresponding relationships, making it possible
to reconstruct each pathway from its corresponding
XML-formatted file (in KGML format - KEGG Markup
Language). The Dijkstra's algorithm [90] is used to dis-
cover all the possible sub-pathways between an input
and an output node.
Only two types of relationships are considered: activa-

tions and inhibitions. These are coded in the XML file, ei-
ther directly or through a more detailed description of the
mechanism by which the molecules perform the action.
Thus, according to KEGG nomenclature, the labels Phos-
phorylation, Dephosphorylation, Indirect, Expression and
Compound are initially considered activations, unless the
contrary is specified. That is, if a relationship is labeled as
phosphorylation, we consider that the signal is transmitted
to the next node, however, if it is labeled as both, phos-
phorylation and inhibition, we consider that the relation-
ship is a phosphorylation that is inhibiting the activity of
the next node in the pathway. On the other hand, Ubiqui-
tination, and Inhibition are considered inhibitions. When
several proteins are linked by binding/association relation-
ships, or are indicated as a group in the XML file, they are
considered as a single node that need to be simultaneously
activated to transmit the signal.
Once a pathway is represented in this way, the probabil-

ities of signal transmission from any entry point (stimulus
receptor) in the input layer to any exit point (protein that
triggers the response to the stimulus) in the output layer
can be calculated, providing the activation state of the
nodes connecting them are known. Moreover, changes in
signal transmission probabilities when comparing different
experimental situations can be tested.
Estimation of the activation state of a node in the
pathway
As mentioned above, a node can be composed of only
one protein, several alternative proteins or a complex of
proteins. The probability of activity in any of these sce-
narios can be conceptually derived from the probability
of activation of a protein. Commonly, the presence of
the transcript(s) corresponding to a gene is taken as a
proxy of the presence of the resultant gene product [26].
We assume that two alternative states are possible for a
gene: active and inactive. The activation state can be in-
ferred from the expression value observed across many
samples. It has been previously described that gene ex-
pression values for the inactive state often follow an ex-
ponential distribution, while the values corresponding to
the activated state tend to follow a normal distribution
[26]. Microarrays provide indirect measurements of the
gene expression values via sets of probes (namely probe-
sets in the Affymetrix™ technology). Following this, we
have calculated the mixture of distributions that best re-
flects the level of expression of any gene (represented by
the corresponding probeset in the microarray) across the
collection of microarrays of reference described above.
The Expectation-Maximization algorithm, as implemented
in the R package mixdist [91], was used to fit the expres-
sion data to a mixture of two distributions (that can be
normal or gamma, which are generalizations of the distri-
butions proposed for this scenario [26,92]). For any probe-
set for each gene, the program calculates the two highest



Figure 6 Example pathway with three possible inputs and three possible outputs. Any of the output proteins trigger a different functionality
of the pathway. The connection matrix shows how input and output can be connected through 5 different sub-pathways. Any sub-pathway can be
traversed by different paths. For example, the sub-pathway connecting ProtA to ProtH can be traversed by two different paths, represented by two
sequences of nodes (that, for the sake of the simplicity are here equivalent to proteins): ProtA, ProtB, ProtD, ProtF, ProtH or ProtA, ProtB, ProtD, ProtG,
ProtH. On the right, the two interactions among proteins: top right represents activation, with an arrowhead line, and bottom right represents
repression with a line with no arrow. In the lower part there is an example to illustrate the way in which the probability of activation of a sub-pathway
can be calculated from the combined activation of the corresponding nodes. From top to bottom: i) Probability of the transmission of the signal
through an activation action, ii) Probability of the transmission of the signal through a repression action, iii) An example of a simple bifurcating
sub-pathway and iv) the probability of signal transmission along this pathway.
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peaks in the distribution of expression values, and uses
them as starting point for the calculation of the mixtures.
Then, it calculates the distribution that best suits the data,
the proportion in the population of each component of
the mixture and the associated parameters to each distri-
bution which are calculated from its mean and standard
deviation.
Once such calculations are available for any of the pro-
besets across all the microarrays studied, the distributions
obtained can be used to estimate the probability of activa-
tion for this probeset in a different microarray [26,92,93].
The probability of a probe being activated given its

expression level x can be calculated from the Bayes’
Theorem:
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P Activejxð Þ ¼ p xjActiveð ÞP Activeð Þ
p xð Þ

where, according to the Law of total probability:

p xð Þ ¼ p x ActiveÞP Activeð Þ þ p x InactiveÞP Inactiveð Þjðjð

That, in terms of our mixtures can be written as:

p Activatedjxð Þ ¼ π1p1 xð Þ
π0p0 xð Þ þ π1p1 xð Þ

Where π0 = P(Inactive) and π1 = P(Active) are the pro-
portions in the population for each distribution, that are
calculated by the mixdist package, and p0(x) = p(x|In-
active) and p1(x) = p(x|Active) are the distributions that
form the mixture.
Although the distributions derived from these particu-

lar datasets are only applicable to the particular micro-
array platforms used in this study (HG-U133 Plus 2.0,
HG-133A and MoGene-1_0-st-v1), it is straightforward
to produce similar distributions for the corresponding
probesets of reference in other microarray platforms
(actually, more platforms are available in the implemen-
tation of the method). Probesets mapping on multiple
genes are discarded from the calculations.
Given a microarray, the probabilities for each probeset

of being activated can be used to derive the probabilities
of gene activation (proxies for the corresponding protein
activation probabilities) in the experiment studied. We
use the 90% percentile of the distribution of the probeset
activation probabilities as the value of probability of gene
activation. The rationale behind this approach is to take
the highest signal of hybridization of a probeset as an
evidence of the existence of gene activity trying to avoid
the most extreme values. In this way we choose a repre-
sentative value for each gene [94] by means of which we
minimize the false positives and negatives derived either
from outliers or (more frequently) from unsuccessful
probe hybridizations.
Nodes in the pathway are composed of one or more

proteins. In the case of nodes of multiple proteins, these
can be independent or can be part of a protein complex.
When the node is composed by a single protein, the
probability of node activity is the probability of activa-
tion of this protein. The second scenario corresponds to
a node composed by more than one alternative protein.
These are supposed to be redundant in its activity,
meaning that the existence of only one of these proteins
would be enough for the transmission of the signal. In
this case, all the probes corresponding to all the genes in
the node are taken together and the 90% percentile of
the distribution of their activation probabilities is taken
as the value of probability of node activation. The third
scenario, corresponding to a complex of proteins, is
slightly different because all the proteins are simultan-
eously necessary for its integrity. Unlike in the previous
case, we consider that the activity of the node depends
on the simultaneous presence of all their components.
Consequently, we consider that the probability of having
this type of node active is conditioned by the lowest
probability of having any of the proteins of the complex
active. The lowest of these probabilities will be the limiting
factor for the integrity (and consequently, the activity) of
the node. Of course, the scenarios for the nodes are ideali-
zations of a reality which may be much more complex,
but they have demonstrated to represent a realistic
enough scenario and to work in practical terms [95].

Probability of signal transmission along a circuit
As stated above, a signaling circuit is defined by an input
node (the protein that receives the stimulus), an output
node (the protein that triggers the response to the stimu-
lus) and all the intermediate nodes connecting them.
Thus, the probability of signal transmission along a circuit
can be derived from the probability of a) having all the
nodes connecting the input node to the output node ac-
tive and b) having all the nodes that are inhibitors of
nodes in the pathway in an activation state compatible
with the transmission of the signal. When there are several
possible ways (bi- or multi-furcations) to transmit the sig-
nal from the input node to the output node (linear sub-
pathways), the formula of the probability of the union of
several events can be used. Thus, once input and output
nodes and the topology of the intermediate nodes has
been defined for a particular circuit, and the probabilities
of activation for each node in the pathway has been esti-
mated (as described in the previous section), the prob-
ability of signal transmission across any circuit can be
calculated as:

P ∪n
k¼1Ak

� � ¼
Xn

k¼1

P Akð Þ−
X

i<j

P Ai ∩Aj
� �

þ
X

i<j<k

P Ai ∩Aj∩Ak
� �þ …

þ −1ð Þnþ1 P ∪n
k¼1Ak

� �

being n the number of linear paths conforming a circuit
and being Ai (i = 1,…,n) any of the paths in the circuit.
Thus, the resulting probability, which can be assimilated
to the probability of signal transmission across the cir-
cuit, is estimated as the probability of the union of all
the linear paths that form this circuit.
Figure 6 (lower part) illustrates with a very simple ex-

ample the way in which the probability of combined ac-
tivation can be used to calculate the probability of
activation (signal transmission) of a circuit.
Circuits containing loops cannot be modeled under

this simple approach and are not considered here.
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Specifically, this situation occurs in four pathways where
we eliminated the following number of circuits
(hsa04150: mTOR signaling pathway, hsa04612: Antigen
processing and presentation, hsa04630: Jak-STAT signal-
ing pathway and hsa04920: Adipocytokine signaling path-
way, in which 11, 3, 18 and 22 loops were removed,
respectively).

Comparing pathways and signal transmission in two
experimental conditions
Since we are using gene expression values as proxies of
protein activation statuses, the resulting probabilities of
signal transmission across circuits at mRNA level might
not have an exact correspondence with the protein level.
In other words, the value of probability obtained for a
circuit could not be by itself very informative about the
real activation status of the circuit. However, the compari-
son of two conditions will render results with a clear bio-
logical interpretation: a significant change in the probability
of signal transmission along a circuit is most probably ac-
counting for a real change it the cellular response to any
stimulus. In that case it can be anticipated that changes in
mRNA levels causing significant changes in signal trans-
mission circuit status will most likely be accompanied by
the corresponding change at protein levels.
This method seeks to assess the activation probability

of every circuit, representing a canonical functionality
within the pathway, given the status of the sample (e.g.,
disease, control, etc.) In order to achieve that, we use the
Wilcoxon test [96] (implemented in R as the wilcox.test
function) to compare the difference of activation probabil-
ity of each individual circuit in the pathway. Then we use
a False Discovery Rate (FDR) [97] control to correct the
p-values obtained for each circuit in the pathway. This
p-value can be used to detect circuits with a significant
difference of activation between conditions. The wilcox.
test function returns the location parameter that indi-
cates which is the activated condition when a circuit
was found to be significantly activated. Depending on
the topology of the pathway a few genes can produce a
remarkable change in the number of circuits activated/
deactivated or vice versa.

Methods for functional enrichment
In order to compare the proposed approach to other
pathway-based methods we have used different algorithms
for functional analysis, namely singular enrichment ana-
lysis (SEA), gene set enrichment analysis (GSEA), and im-
pact analysis [23]. The FatiGO [3] is a widely used SEA
implementation, which is included in the Babelomics
web-based package [89]. For the GSEA we have used an-
other implementation developed by us [15], also included
in the Babelomics package [89]. For the SPIA we have
used the program provided by the authors [23].
Sample classification using circuit activation
statuses as features for sensitivity assessment
In order to test the sensitivity of the method for the esti-
mation of the probabilities of circuit activation, we have
used them as features to predict disease class. A low mis-
classification rate can be considered an appropriate proxy
for a low type II error rate [26,35]. We have used Support
Vector Machine (SVM) [46] for the classification of the
samples. The accuracy of the classification obtained was
evaluated by ten-fold cross validation [47], using the fol-
lowing parameters: proportion of correct classification
(PCC) and the area under the curve (AUC).

Representation of the results
A web interface that implements the test described above
has been developed [98] and is available at: http://pathi-
ways.babelomics.org. The results are displayed in a table
that contains each circuit and its corresponding p-value,
its FDR corrected p-value and its estimation of the loca-
tion parameter. A graphical representation of the results
in the pathway context of a KEGG-like map is also pro-
vided. This representation is obtained using the R package
igraph [99]. Nodes belonging to circuits significantly more
activated in the first condition appear in blue while nodes
significantly more activated in the second condition ap-
pear in red. Nodes belonging to several circuits with dif-
ferent activation statuses appear in yellow. Activations are
represented by solid arrows and inhibitions by dashed
arrows.

Additional files

Additional file 1: Figure S1. Model of the Wnt signaling pathway in
CRC with the corresponding significant changes in the signaling circuit
activities. Red nodes indicate activated circuits in the CRC patients with
respect to the healthy controls and blue nodes indicate circuit
deactivations.

Additional file 2: Figure S2. Model of the VEGF signaling pathway in
CRC with: A) the corresponding significant changes in the signaling circuit
activities. Red nodes indicate activated circuits in the CRC patients with
respect to the healthy controls and blue nodes indicate circuit deactivations.
B) Individual differential gene expression values in the nodes of the same
pathway. Red nodes indicate genes over-expressed in CRC with respect to
controls and blue nodes the opposite situation.

Additional file 3: Figure S3. Signaling changes in mouse models of
obesity. Activation of circuits within the VEGF pathway in wildtype mice
16 weeks old. Red nodes label activated circuits with respect to initial state
of each comparison and blue nodes label deactivations.

Additional file 4: Table S1. Significant pathways obtained upon the
application of the clipper method on KEGG pathways as implemented in
the Graphite Web program to the CRC dataset.
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