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In this paper, we address a persistent object search and surveillance mission for drone
networks equipped with onboard cameras, and present a safe control strategy based on
control barrier functions The mission for the object search and surveillance in this paper is
defined with two subtasks, persistent search and object surveillance, which should be
flexibly switched depending on the situation. Besides, to ensure actual persistency of the
mission, we incorporate two additional specifications, safety (collision avoidance) and
energy persistency (battery charging), into the mission. To rigorously describe the subtask
of persistent search, we present a novel notion of c-level persistent search and the
performance certificate function as a candidate of a time-varying Control Barrier Function.
We then design a constraint-based controller by combining the performance certificate
function with other CBFs that individually reflect other specifications. In order to manage
conflicts among the specifications, the present controller prioritizes individual
specifications in the order of safety, energy persistency, and persistent search/object
surveillance. The present controller is finally demonstrated through simulation and
experiments on a testbed.

Keywords: search and surveillance, drone networks, safe control, persistency, control barrier functions, distributed
control, coverage control

1 INTRODUCTION

Environmental monitoring is one of the key applications of networked multi-robot systems, wherein
each robot is expected to deploy over the mission space. To this end, the most promising control
technology is coverage control that provides distributed control strategies for enhancing efficiency of
information acquisition on the environment (Cortés et al., 2005; Martínez et al., 2007; Renzaglia
et al., 2012). The recent technological advances in drone technology make it viable to implement
coverage control on drone networks, and many successful results have been reported in the literature
(Schwager et al., 2011; Bentz et al., 2018; Funada et al., 2019). These publications consider the scene
such that drones with onboard cameras looking down the ground to be monitored move around over
the ground as illustrated in Figure 1.

Specifications for environmental monitoring vary depending on the application scenarios. In
this paper, we address a scene where drones are required to surveil a target object on the
environment whose location is initially unknown for the drones. In this scenario, the drones need
to first search the object, and then to switch the task to surveillance of the object once it is found. In
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the phase of searching, the drones are expected to take
exploratory actions to patrol the mission space while
avoiding too much overlaps of fields of view among drones.
Avoiding the overlaps is handled by coverage control but most
of the coverage control algorithms lead robots to a stationary
configuration rather than persistently taking patrolling motion.
Consequently, some subregion may remain uncovered and,
accordingly, the drones may fail to find the object especially
when the number of drones is not many enough to fully cover
the environment as in the scene of Figure 1. To address the
issue, the authors presented persistent coverage control schemes
in (Hübel et al., 2008; Sugimoto et al., 2015; Kapoutsis et al.,
2019), where a notion of information reliability is introduced
and so-called density function is dynamically updated according
to the reliability. It is then exemplified that the gradient ascent
algorithm with the update of the density function generates
persistently patrolling motion over the mission space. A similar
concept is also presented in (Wang and Wang, 2017), wherein
the concept is termed awareness. However, these methodologies
do not provide any guarantee on the coverage performance.
Meanwhile, Franco et al. (2015) and Palacios-Gasós et al. (2016)
address the performance guarantee for the persistent coverage,
but a prescribed performance level is not always ensured therein
in the presence of the performance decay in time. Kapoutsis
et al. (2019) present a persistent coverage scheme not requiring
exact models of the environment and robot’s coverage
capabilities.

In order to ensure persistency of the mission in practice, it is
not enough just to make drones take persistent motion and we
have to meet a variety of constraints. For example, we need to
certify safety during the mission. Specifically, collision
avoidance among drones must be a key in ensuring
persistency since drones no longer continue the mission if
they collide with each other just once. Moreover, drones are
normally driven by batteries with limited storage, and battery

exhaustion prevents drones from continuing the mission. We
thus need to take account of energy persistency, namely we need
to control drones so that they return to charging stations before
their batteries are exhausted. These issues have been
individually addressed e.g. in (Hussein et al., 2007; Zhu and
Martínez, 2013; Bentz et al., 2018; Wang et al., 2020), but a more
general framework to flexibly integrate a variety of specifications
is needed. Meanwhile, a great deal of recent publications have
been devoted to Control Barrier Function (CBF) in order to
certify the constraint fulfillment, e.g., to ensure safe operation of
multi-robot systems (Ames et al., 2017; Notomista et al., 2018).
The CBF has also been employed in coverage control, e.g., in
(Egerstedt et al., 2018; Funada et al., 2019). Egerstedt et al.
(2018) certifies collision avoidance and maintenance of the
energy level in the coverage mission based on the inherent
flexibility of CBFs that allows one to integrate various
specifications. Funada et al. (2019) manages overlaps of fields
of view for drone networks using the CBFs. The paper most
closely related to the present paper is Santos et al. (2019),
wherein the authors investigate coverage control with a time-
varying density function similarly to the persistent coverage
control. However, the paper does not give any explicit guarantee
of the coverage performance.

In this paper, we present a novel persistent object search and
surveillance control with safety certificates for drone networks
based on CBFs. We first introduce a new concept of c-level
persistent search as a performance metric for the searching
mission in the form of a constraint function. We then
formulate constraint functions that describe the control goal
for the object surveillance and specifications for safety
(collision avoidance) and energy persistency (battery charging).
We then formulate inequality constraints to be met by the control
input, following the manner of CBFs. A constraint-based
controller is then presented, including all of the above
inequality constraints. The controller with all of the
constraints however may result in issues on infeasibility in
online optimization required by the controller. We thus
present prioritization among the constraints, where we place
priority in the order of safety, energy persistency, and
persistent search/object surveillance. Based on the designed
priority, we present a novel constraint-based controller that
ensures feasibility, where the inequality constraints for
persistent search and object surveillance are appropriately
switched depending on whether the object is detected or not.
The controller is moreover shown to be implemented in a
partially distributed manner. We then run simulation of the
constraint-based control only with the performance certificate
for the persistent search. It is revealed there that the present
constraint-based controller maintains the c-level persistent
search during the simulation, while the gradient-based
controller in (Sugimoto et al., 2015) occasionally fails to meet
the level. Finally, we implement the present control algorithm
including not only the constrained-based controller but also an
object detection algorithm and takeoff from/landing to the
charging stations on a testbed with three drones.

The contributions of this paper are summarized as follows: 1) a
novel constraint-based controller is presented so that a prescribed

FIGURE 1 | A scene of coverage control with drone networks.
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performance level is maintained, differently from the gradient-
based persistent coverage algorithm (Hübel et al., 2008; Sugimoto
et al., 2015), constraint-based coverage algorithms (Santos et al.,
2019), and other related algorithms (Franco et al., 2015; Palacios-
Gasós et al., 2016; Wang and Wang, 2017), 2) a novel object
search/surveillance problem is formulated, wherein not only the
persistent coverage, safety certificates and energy persistency in
(Egerstedt et al., 2018; Santos et al., 2019) but also task switches
between search and surveillance are integrated, and 3) the
algorithm is demonstrated through experiments, where we put
the vision data and associated image processing in the loop while
other related publications purely examine only robot motion
(Schwager et al., 2011; Sugimoto et al., 2015; Egerstedt et al., 2018;
Funada et al., 2019; Santos et al., 2019).

A part of the contents in this paper is presented in the
conference version (Dan et al., 2020). The incremental
contributions relative to (Dan et al., 2020) are: 4) we
implement the present partially distributed control
architecture on Robot Operating System (ROS), while the
experimental setup in (Dan et al., 2020) took a centralized
control architecture, 5) owing to the contribution 4), we
increase the number of drones from two to three in the
experiment, and 6) we newly add simulation to precisely
check if the performance is guaranteed in the absence of
uncertain factors in real experiments.

2 PRELIMINARY: CONTROL BARRIER
FUNCTION

In this section, we present the notion of control barrier functions
that play a central role in this paper. Let us consider a control
affine system formulated as

_p � f(p) + g(p)u, (1)

where p ∈ RN, u ∈ U4RM, and vector fields f, g are assumed to
be Lipschiz continuous. Suppose now that there exists a unique
solution p(t) on [t0, t1] to (1). A set S is then said to be forward
invariant with respect to system (1) if for every p(t0) ∈ S, the
inclusion p(t) ∈ S holds for all t ∈ [t0, t1] (Ames et al., 2017).

Define the Control Barrier Function (CBF) as below.

Definition 1. Let h: D ⊂ RN →R be a continuously differentiable
function and the set C is defined as C :� p ∈ RN|h(p)≥ 0{ }. Then,
h is said to be a CBF for system (1) if there exists a locally Lipschitz
extended class K function α such that

sup
u∈U

Lfh(p) + Lgh(p)u + α(h(p))[ ]≥ 0, (2)

for all x in the set C, where Lfh(10) and Lgh(10) represent Lie
derivative of h in the vector fields f and g, respectively.

It is shown that if h is a CBF, then the set C is forward
invariant (Ames et al., 2017). If the set C consists of the states
that ensure safety, 2) means that there always exists input
signal u such that the state p is enforced to be inside of C,
namely safety is always ensured as long as the function h that
characterizes C is a CBF.

We next present an extension of CBF to the case where the set
C is time varying. Consider the following set defined by a
continuously differentiable function h: RN × R≥t0 →R,

C(t) :� p ∈ RN | h(p, t)≥ 0{ }. (3)

It is shown that the forward invariance of the set C(t) can be
ensured with so-called time-varying CBF defined as follows
(Lindemann and Dimarogonas, 2019; Notomista and
Egerstedt, 2021).

Definition 2. Given a dynamical system (1) and a set C(t) defined
in Eq. 3, the function h is time-varying CBF defined on D × R≥t0
with C(t)4D ⊂ RN, if there exists a locally Lipschitz extended
class K function α such that ∀p ∈ D and ∀t ∈ [t0, t1],

sup
u∈U

zh

zt
+ Lfh(p, t) + Lgh(p, t)u + α(h(p, t))[ ]≥ 0

holds.

3 PROBLEM SETTING

Let us consider a 3-D space including n drones to be controlled
and a ground modelled by a 2-D plane as illustrated in Figure 2.
Without loss of generality, we arrange the world frame Σw so that
its origin is on the ground, and its (x, y)-plane is parallel to the
ground. The subset of the (x, y)-coordinates on the ground to be
monitored is called field, and denoted by a compact setQ ⊂ R2. It
is assumed that a target object to be surveilled by the drones may
be on the field, and its 2-D position is denoted by
po � [xo yo]T ∈ Q. We assume no prior knowledge about not
only the position po but also whether the object exists or not. We
then define the persistent object search and surveillance mission
by the following two subtasks:

• Persistent search: Drones patrol the entire field persistently
to search the object.

FIGURE 2 | Illustration of the problem setting with the field Q, the world
frame Σw, drones on the plane (gray plane), drone i’s sensing region S i (red
region), its inner edge E i (blue curve), and target object.
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• Object surveillance: Drones keep monitoring the object once
the object is found through the persistent search.

These subtasks should be appropriately switched depending
on whether the object is detected or not.

Let us denote the set of identifiers of n drones by
I � 1, . . . , n{ }. The x, y, and z coordinates of drone i in Σw are
denoted by xi, yi, and zi, respectively. In this paper, each drone is
assumed to be locally controlled so that the altitude zi is constant
and common among all drones i ∈ I . We thus mainly focus on
the 2-D motion of pi � [xi yi]T ∈ Q. Each drone i ∈ I is
assumed to follow the kinematic model:

_pi � ui, ui ∈ U4R2, (4)

where ui is the velocity input to be designed. Throughout this
paper, we assume that pi is available for control of drone i.
Remark that the constant and common altitudes are assumed in
order to highlight the main issue to be addressed in this paper. It
is actually possible to handle full 3-D motion of the drones, e.g.,
by taking the formulation of (Funada et al., 2019) at the cost of the
computational simplicity.

We next present an external sensor and network models for
the drones. Every drone is assumed to be equipped with a single
onboard camera that captures the ground. We suppose that the
optical axis of each camera is perpendicular to the ground, and
that the field of view of camera i is modeled by a circle

Bi(pi) � q ∈ Q | ‖q − pi‖≤R{ }
for a sensing radius R > 0. Let us now introduce the Voronoi

partition of the field Q (Cortés et al., 2005), which means the
collection of the following sets for all i ∈ I :

V i(p) � q ∈ Q | ‖q − pi‖≤ ‖q − pj‖, ∀j ∈ I \{i}{ }.
Using the above sets, we define the feasible sensing area Si(p)

by so-called r-limited Voronoi cell (Martínez et al., 2007)
defined by

Si(p) :� Bi(pi) ∩ V i(pi),
where p is the collection of p1, p2, . . . , pn. For convenience of the
subsequent discussions, we also define the following set called
inner edge of the set Si(p) (Sugimoto et al., 2015).

Ei(p) :� q ∈ Si | ‖q − pi‖ � R{ }.
We also assume an inter-drone network such that drone i and j

can exchange messages if their distance ‖pi − pj‖ is smaller than or
equal to 2R. It is then well-known that the set Si(p) is computable
in a distributed fashion (Cortés et al., 2005). We also assume that
each drone can detect the object when the object is inside of the
sensing area Bi(p), and define a binary variable

Δi :� 1 po ∈ Bi(p)
0 otherwise.

{
When Δi � 1 holds, drone i can compute the position of the object
po by the detection result and the geometric relation. In real
applications, drones need to install an algorithm for detecting the

object in the sensing area. See Section 6 for more details on how
to detect the object.

In this paper, we implicitly assume that the collection of the
fields of view Bi(pi) for all i ∈ I is not wide enough to fully cover
the field Q. The goal of persistent search is then to let the drones
persistently patrol the field Q, while preventing any subregion in
Q from being uncovered. To address the issue, the authors’
antecessors (Hübel et al., 2008; Sugimoto et al., 2015)
presented a gradient ascent algorithm-based controller for the
following objective function to be maximized:

J(p, t) :� −∑n
i�1

∫
Si

‖q − pi‖2ϕ(q, t)dq

+ b∫
Q\∪ n

i�1Si

ϕ(q, t)dq (b≤ − R2), (5)

The function ϕ: Q × R≥t0 → [0, 1], called density function,
enables one to mark the important points in the field, as illustrated
in Figure 3. The papers (Hübel et al., 2008; Sugimoto et al., 2015)
presented a novel update rule of the function ϕ formulated by

dϕ(q, t)
dt

� − δ ϕ(q, t), if q ∈ ∪ n
i�1Si

�δ(1 − ϕ(q, t)), otherwise.
{ (�δ, δ > 0). (6)

Eq. 6 means that importance of point q monitored by at least
one drone decays while that of point q such that
q ∉ Bi(pi) ∀i ∈ I increases. In view of the nature of the
gradient-based coverage, it tends to deliver robots to positions
with high density, drones are expected to repeatedly visit all of
uncovered regions, which is close to the objective of the persistent
search mission in this paper. The control algorithm with Eq. 6 is
actually demonstrated through experiments in (Sugimoto et al.,
2015). However, the gradient-based controller does not ensure
any guarantee on the performance quantified by J (p, t).

In order to certify the search performance, we formally define
the objective of the persistent search as below.

Definition 3. Let a function hJ: Qn × R≥t0 →R be

hJ(p, t) :� J(p, t) − c,

where c is a negative real constant. The drones are then said to
achieve c-level persistent search, if

FIGURE 3 | Example of distribution of density function ϕ(q, t). The point
q1 is more important point, which need to be monitored than the point q2.

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 7404604

Dan et al. Persistent Object Search and Surveillance

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


hJ(p(t), t)≥ 0 (7)

holds for all t ≥ t0 with a given initial time t0.
Remark that a similar concept is also investigated in (Franco

et al., 2015; Palacios-Gasós et al., 2016). It is an extension of the
concept to the time-varying objective function.

Let us next consider the object surveillance that should be
performed only when Δi takes the value of 1. Define the function
hi,sur: Q→R as:

hi,sur(pi) � −‖pi − po‖2 + d2
sur.

Assuming R > dsur > 0, the object must be inside of the field of
view Bi if

hi,sur(pi)≥ 0 (8)

holds. It is also fully expected that Eq. 8 holds at the time when Δi

switches from 0 to 1. The goal of the object surveillance is thus to
keep meeting (8) during the period with Δi � 1.

Besides the above subtasks, we need to meet the following
specifications in order to ensure persistency in real operations.

• Safety: Drones avoid collisions with each other.
• Energy persistency: Drones return to their charging stations
before their batteries run out.

If either of the above two would not be satisfied, drones would
no longer continue the search and surveillance mission. In this
sense, we should place a higher priority on these specifications
than 7) and (8). Remark that the subsequent formulations follow
the manner of (Egerstedt et al., 2018; Santos et al., 2019).

In order to formulate the specification for safety, let us first
define the function:

hi,avd(p) � ‖pi − pi,near‖2 − d2
avd,

where pi,near denotes the position of the drone nearest to drone i
within the radius 2R, and davd is selected so that davd > 0. Then,
drone i keeps the distance from all other drones greater than
davd if

hi,avd(p)≥ 0. (9)

holds. Accordingly, collisions are avoided as long as davd is
selected to be large enough and 9) is satisfied.

We finally formulate the condition for energy persistency. To this
end, the state of charge for drone i, denoted by Ei, is assumed to obey

_Ei � −Kchg (Kchg > 0).
We then assume that there is a minimum energy level Emin,

that is, Ei ≥ Emin must hold during the mission. Also, charging
stations are assumed to be located on the ground, where the
center of the station assigned to drone i is denoted by p̂i. For
simplicity, we leave the landing and takeoff motion out of
consideration, and assume that the battery is recharged as
long as ‖pi − p̂i‖≤ dchg. Let us now define the function

hi,chg(pi, Ei) � Ei − Emin − Kchg

kchg
(‖pi − p̂i‖ − dchg) (kchg > 0).

Note that the positive constant kchg should be selected so that
(Kchg/kchg)(‖pi − p̂i‖ − dchg) is greater than the battery needed
for returning to the station from the position pi. Then, if the
condition

hi,chg(pi, Ei)≥ 0, (10)

is always satisfied, the state of charge for drone i is never
exhausted before arriving at the station.

In summary, two subtasks, persistent search and object
surveillance, and two specifications, safety and energy
persistency, are formulated in the form of the constraint
functions (7)–(10), respectively. The control goal for the
persistent object search and surveillance mission is to design
the control inputs that satisfy the inequalities (7)–(10).

4 CONSTRAINT-BASED CONTROLLER

In this section, we present a constraint-based controller to meet
(7)–(10) that are possibly conflicting with each other. To this end,
we first focus on Eq. 7 for the c-level persistent search in
Definition 3.

Now, the time derivative of the function hJ along with the
trajectories of system 4) is given as

_hJ � zJ(p, t)
zt

+∑n
i�1

zJ

zpi
( )T

ui.

The first term in the right hand side of the equation is
rewritten as below according to (Diaz-Mercado et al., 2017)
and (6).

zJ(p, t)
zt

� − ∑n
i�1

∫
Si

‖q − pi‖2zϕ(q, t)
zt

dq + b∫
Q\∪ n

i�1Si

zϕ(q, t)
zt

dq

� ∑n
i�1

δ∫
Si

‖q − pi‖2ϕ(q, t)dq + b∫
Q\∪ n

i�1Si

�δ(1 − ϕ(q, t))dq.
(11)

The second term can be expressed as

b∫
Q\∪ n

i�1Si

�δ(1 − ϕ(q, t))dq � ∑n
i�1

b
⎧⎨⎩1
n
∫

Q
�δ(1 − ϕ(q, t))dq

−∫
Si

�δ(1 − ϕ(q, t))dq⎫⎬⎭. (12)

In the same way as (12), hJ is also rewritten as

hJ � ∑n
i�1

{ − c

n
− ∫

Si

‖q − pi‖2ϕ(q, t)dq + b

n
∫

Q
ϕ(q, t)dq

−b∫
Si

ϕ(q, t)dq}. (13)

Combining (11)–(13), we find that
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_hJ + khJ � zJ(p, t)
zt

+∑n
i�1

zJ

zpi
( )T

ui + khJ

� ∑n
i�1

zJ(p, t)
zpi

( )T

ui + ξi(p, t)
⎧⎨⎩ ⎫⎬⎭ (k> 0),

where

ξ i(p, t) :� δ − k( )∫
Si

‖q − pi‖2ϕ(q, t)dq

+b{1
n
∫

Q
�δ + k − �δ( )ϕ(q, t)( )dq − ∫

Si

�δ + k − �δ( )(

ϕ(q, t))dq} − k

n
c.

Assume that there exists a controller for each agent: ui �
Ki(p, t): Qn × R≥t0 →U that is locally Lipschitz in p ∈ Qn,
continuous in t ∈ [t0, t1], and satisfies

Ki(p, t) ∈ Ki(p, t) :� ui ∈ U
∣∣∣∣∣∣∣∣∣∣
zJ(p, t)
zpi

( )T

ui + ξi(p, t)≥ 0
⎧⎨⎩ ⎫⎬⎭,

∀p ∈ Qn and∀t∈ [t0, t1]. Thismeans that the function hJ is a time-
varying CBF defined on Qn × R≥t0 with extended class K function
β0(s) � ks. Lemma 1 in (Notomista and Egerstedt, 2021) then ensures
that the controller guarantees forward invariance of the set

C0(t) :� p ∈ Qn | hJ(p, t)≥ 0{ }.
Then, the definition of the forward invariance means c-level

persistent search for any initial condition inside of the set C0(0). In
the case of U � R2, Ki(p, t) � ∅ happens only if zJ(p,t)

zpi
� 0. The

gradient is now equivalent to the control law in (Sugimoto et al.,
2015), wherein zJ(p,t)

zpi
� 0 means that the robot stops at a point.

Through extensive simulations and experiments, we have never
observed such a scene and it is fully expected that Ki(p, t)≠∅
in practice, which is demonstrated through simulation in Section 5.

Remark also that the above discussions require that the initial state is
selected in the set C0(0), and do not ensure recovery of the level from
an initial condition outside of C0(0), namely hJ (p, t) ≥ 0 for some t ≥
t0 from an initial condition with hJ (p (t0), t0) < 0. In the case of time-
invariant CBFs, the recovery is rigorously proved in (Ames et al.,
2017). The result is not trivially extended to the time-varyingCBFs. It
is however exemplified in Dan et al. (2020) that the recovery is
achieved even for the time-varying case in practice.

Let us next consider the satisfaction of Eqs 8–10. It is known
that hi,sur, hi,avd and hi,chg are all CBFs (Egerstedt et al., 2018;
Notomista et al., 2018; Notomista and Egerstedt, 2021).
According to Definition 1, we thus formulate the inequality
constraints for ensuring (8)–(10) as:

zhi,sur
zpi

( )T

ui + β1(hi,sur(pi)) � −2 pi − po( )Tui + β1(hi,sur(pi))≥ 0.

(14)

zhi,avd
zpi

( )T

ui + β2(hi,avd(pi)) � 2 pi − pi,near( )Tui + β2(hi,avd(pi))≥ 0,

(15)

zhi,chg
zpi

( )T

ui −Kchg + β3(hi,chg(pi, Ei))

� − Kchg(pi − p̂i)
kchg‖pi − p̂i‖

( )T

ui − Kchg + β3(hi,chg(pi, Ei))≥ 0,

(16)

with locally Lipschitz extended class K functions β1, β2, β3
respectively. By definition of CBFs, if we take the controller
ui � Ki(p, t) such that

Ki(p, t) ∈ Ki(p, t) :�
⎧⎨⎩ui ∈ Un

∣∣∣∣∣∣∣∣∣∣
zJ(p, t)
zpi

( )T

up
i + ξ i(p, t)

≥ 0, (14), (15), (16)⎫⎬⎭,

FIGURE 4 | Block diagram of the partially distributed control architecture.
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all of Eqs 7–10 are satisfied. However, due to the conflicts
among the specifications, the controller setKi(p, t) can be empty.

To address the above issue, we prioritize the specifications,
which can be realized by relaxing some of the constraints. It is
now immediate to see that 7) and 8) are never met in practice if
the safety constraint 9) or energy constraint (10) is violated.
Accordingly to the insight, we propose the following controller
ui � Ki(p, t):

Ki(p, t) � argmin
(upi ,λi ,μi ,]i)∈U×R×R×R

‖up
i ‖2 + |λi|2 + |μi|2 + |]i|2 (17a)

s.t. 1 − Δi( ) zJ(p, t)
zpi

( )T

u*
i + ξ i(p, t)

⎧⎨⎩ ⎫⎬⎭
+Δi −2 pi − po( )Tup

i + β1(hi,sur(pi)){ }≥ ϵλλi,
(17b)

2 pi − pi,near( )Tup
i + β2(hi,avd(pi))≥ ϵμμi, (17c)

− Kchg(pi − p̂i)
kchg‖pi − p̂i‖

( )T

up
i −Kchg + β3(hi,chg(pi, Ei))≥ ϵ]]i, (17d)

where the weights ϵλ, ϵμ, and ϵ] are non-negative scalars. The
slack variables λi, μi, ]i allow the violations of the associated
constraints, and the corresponding weights adjust the penalty on
the individual constraint violations. When one of the weights
takes a value smaller than other weights, then the controller
tries to satisfy the corresponding constraint more strictly than
others. When the weight is equal to zero, then the controller treats
the constraint as a hard constraint. In this paper, we arrange the
weights so that ϵλ ≫ϵμ, ϵ] in order to prioritize safety and energy
persistency over the control goals of the subtasks. If the weights
ϵλ, ϵ], ϵμ are all positive or only one of ϵμ and ϵ] is equal to zero,
then the optimization problem in (17) is ensured to be feasible as
long as (9) and (10) are satisfied at the initial time t0.

We finally show that the present controller is implementable
in a (partially) distributed manner. The gradient zJ(p, t)/zpi
in Eq. 17b is known to be rewritten as follows (Cortés et al.,
2005):

zJ(p, t)
zpi

� 2mass Si(p)( )(cent(Si(p)) − pi)

− (R2 + b)∫
Ei

q − pi

‖q − pi‖ϕ(q, t)dq,
where

mass(Si(p)) :� ∫
Si

ϕ(q, t)dq,

cent(Si(p)) :� 1
mass(Si(p))∫Si

qϕ(q, t)dq.

As mentioned before, the sets Si and Ei can be locally
computed under the network assumed in Section 3. In
addition, 17) consists only of local variables/parameters
excluding Q, n, c, and ϕ(q, t) in Si. In other words, if the
fieldQ, the number of drones n, and desired performance level c
are shared by the drones, and the density function ϕ(q, t) in Si

would be given, each drone i can locally solve the optimization
problem Eq. 17. It should be now noted that, as assumed in
(Hübel et al., 2008; Sugimoto et al., 2015), the density update 6)
must be inherently executed by a central system since each
drone hardly knows if other drones visited each q ∈ Q in the
past. The overall control architecture is then illustrated in
Figure 4. The comprehensive algorithm for drone i including
landing/takeoff motion and object detection is informally
described as Algorithm 1, where Emax means the battery
level at which drones stop charging, and Emin is the level at
which each drone starts landing.

Remark 1. The computation in the density update (6) left to
the central computer is almost scalable with respect to the
number of drones, while solving the optimization problems
(17) for all i at a central computer is not scalable. It is thus
fully expected that the present partially distributed
architecture works even for large-scale drone networks.

FIGURE 6 | Comparison on the value of the performance function with
five drones among the gradient-based controller (blue) (Santos et al., 2019)
(green), and the present the constraint-based controller (yellow).

FIGURE 5 | Comparison on the value of the performance function (with
three drones): the gradient-based controller (blue) and (Santos et al., 2019)
(green) do not meet J ≥ c, while the constraint-based controller (yellow) satisfies.
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Nevertheless, some readers may have a concern about using a
central computer itself. In many practical applications,
however, the communication infrastructure between drones
and a central system is established so that a person at the
monitoring center monitors the data acquired by the drones.
Thus, assuming the computational supports from the central
computer must be reasonable in such application scenarios.

Remark 2. Santos et al. (2019) addressed coverage control with a
time varying density function using time-varying CBFs, which is
close to the present approach. The contribution of this paper
relative to (Santos et al., 2019) is as follows. The controller
presented in (Santos et al., 2019) is designed based on the
distance between the current robot position and the centroid

of the Voronoi cell. However, the relation between the metric and
the coverage performance quantified by the objective function is
not always obvious. On the other hand, the presented controller
The switches between subtasks are also not investigated in
(Santos et al., 2019).

Algorithm 1. Algorithm for drone i.

5 SIMULATION

In this section, we focus only on the persistent search mission
while ignoring other objectives, object surveillance, safety, and
energy persistency. We then verify through simulation that the
constrained-based controller achieves the performance specified
by the parameter c. To this end, we employ the simplified version
of the controller (17):

Ki′(p, t) � arg min
u*i ∈R

2

‖u*
i ‖2 (18a)

s.t.
zJ(p, t)
zpi

( )T

u*
i + ξ i(p, t)≥ 0. (18b)

In the simulation, the field is set to Q � [−2, 2]m × [−2, 2]m.
We also let n � 3 and the initial positions be selected as p1 � [−1 0]

FIGURE 8 | Experiment room: Overview of the environment.

FIGURE 7 | Snapshots at time t �17 s: the constraint-based controller (right) almost fills the entire field with blue, while some regions remain yellow for the gradient-
based controller (left).
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Tm, p2 � [1 0]Tm, and p3 � [1 1]Tm. The altitude zi and radius R of
every drone are set to 1.2 and 0.6 m mimicking the experimental
testbed that will be presented in the next section. Under the
setting, we run the constraint-based controller 18) with c � − 4.0,
and compare the performance with the gradient-based controller
(Sugimoto et al., 2015), namely ui � κzJ (p, t)/zpi with κ � 5.0 and
(Santos et al., 2019). In all of the controllers, we take �δ � 0.05,
δ � 1.0 and b � − 1.0. Remark now that (Santos et al., 2019) does
not consider limitation of the sensing radius, but we impose the
same limitation as the other two methods by just changing
Voronoi cells to r-limited ones in order to fairly compare the
methods. The gradients of the centroids of the r-limited Voronoi
cells needed for implementing (Santos et al., 2019) are
numerically computed.

Figure 5 shows the time responses of the performance
function J for the above two methods, where the blue line
shows the performance by the gradient-based controller
(Sugimoto et al., 2015), the green line that by (Santos et al.,
2019) the yellow line that by the constraint-based controller (18),

and the red line illustrates the prescribed performance level c � −
4.0. We see that the gradient-based controller (Sugimoto et al.,
2015) and (Santos et al., 2019) occasionally fail to meet the
desired performance level, namely the value of performance
function J goes below c. On the other hand, the constraint-
based controller 18) successfully keeps the performance above
the level c � − 4.0. Figure 6 illustrates the results for n � 5,
wherein we take c � − 2.5 to highlight the differences between
the present controller and the other two. It is immediate to see
that the above insights from Figure 5 are also applied to this
case. It is now to be noted that, if we remove the density update
6) from consideration, the controller in (Santos et al., 2019) is
itself fully distributed, while the present constraint-based
controller still needs partial support from a central
computer. However, in the present scene, 6) needs to be
executed in a central computed regardless of the control
algorithm, as mentioned in Section 4.

Figure 7 shows the snapshot of simulation in Figure 5 at t �
17 s, where the left and right figure correspond to the gradient-
based controller (Sugimoto et al., 2015) and the constraint-based
controller (18), respectively. The color map on the field illustrates
the value of the density function ϕ(q, t), where the yellow region
has high density while the dark blue means low density. We
immediately see from the definition of J in Eq. 5 that low density
is directly linked with a good search performance. In the left,
some areas remain yellow while, in the right, the entire area is
almost filled with blue. It is thus concluded that the constraint-
based controller 18) achieves a better performance than the
gradient-based controller.

Remark that if we take a larger gain κ, then the gradient-based
controller tends to achieve a better performance and may even
meet the prescribed performance level. Even through that, the
performance level is not rigorously ensured and, more
importantly, it is hard to know an appropriate gain for given
environment and parameters in advance. Of course, taking a too
large feedback gain may result in unstable motion in real
implementation.

FIGURE 9 | Definition of the field of view for a drone.

FIGURE 10 | Experiment systems: Schematic description of the system.
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It is finally to be noted that the optimization problem in the
controller has never been infeasible, namely the gradient zJ(p,t)

zpi

has never been equal to 0 throughout the simulation. Due to
pathological cases, the function hJ has not been rigorously proved
to be always a time-varying CBF, but it would not matter in
practice.

6 EXPERIMENT

In this section, we demonstrate Algorithm 1 through experiments
on a testbed.We set the fieldQ as a 3.3 m × 2.6 m ground plane as
shown in Figure 8. We place a picture of a car on the field as the
object to be surveilled. We also employ three Parrot Bebop2
drones (n � 3), whose onboard cameras capture the ground plane.
We set the virtual charging stations, in which we suppose that
drones can charge their batteries.

A local controller for each drone is designed so that its altitude
is maintained to be 1.2 m and the body is parallel to the ground.
When a drone takes the above desirable states, the field of view of
the camera is given by about 1.8 m × 1.2 m rectangle as illustrated
in Figure 9. In order to compensate the gap from the circular field

FIGURE 11 | Snapshots of the experiment, where the planeQ (rectangle), charging station (green cylinder) the shifted field of views (green cone) are overlaid. The
current value of the performance function J, the each state of charge, and the onboard camera views of the drones are also tiled. Note that the shifted field of view and
actual camera view do not match perfectly due to the differences shown in Figure 9. In (C), (F), and (H), the drones land on the ground for charging. The object (picture of
car) is monitored by one of the drones in all scene except (A).

TABLE 1 | Parameter setting.

b −1.0 γ −2.0 Emin 1,500 ϵλ 0.05

K 0.3 dsur 0.1 kchg 0.15 ϵμ 0
�δ 0.05 davd 0.5 dchg 0.3 ϵ] 0.01

δ 1.0 Kchg 25 Emax 4,000
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of view assumed in the previous sections, we set the red circle in
Figure 9 with radius 0.6 m inside of the rectangle while accepting
conservatism. Also, the optical axis of the camera is not
perpendicular to the body, which differs from the model in
Figure 2. In order to fill the gap, the center of the circle is
shifted from that of the rectangle. This shift does not matter in
practice since the object position is also shifted in the sequel.
Generalization of the algorithm that does not require such
remedies is left as a future work.

The schematic of the testbed is illustrated in Figure 10 which
consists of a desktop computer, three laptops, and a motion capture
system (OptiTrack) as well as drones. The motion capture measures
the positions of drones at every 4.17 ms (240 fps). The desktop
computer (PC0) receives all drones’ positions from the motion
capture system, updates the value of density function ϕ(q, t), and
publishes the positions and the field information such as field size
(Q), the number of drones (n), performance target c, and the current
value of ϕ(q, t), to each laptop. Each laptop (PC1–3) implements the
distributed controller Ki(p, t), and outputs the velocity command ui
(i � 1, 2, 3) to be sent to each drone. The laptops are connected to
individual drones byWi-Fi communication. Each laptop receives the
onboard camera images from the drone in real time. It then detects
the object by using the tensorflow object detector (https://
github.com/osrf/tensorflow_object_detector). The object position is
computed by the detection result and the geometric relation, and
then shifted to compensate the gap between the rectangle and red
circle in Figure 9. The laptop then calculates the inputs ui based on
the information published by PC0 and the detected object position
by Python script. The quadratic program in Eq. 17 is solved in the
script using CVXOPT. The input is converted into a suitable format
for communication and sent to the drone. Note that each distributed
controller needs the positions of not all drones but only the
neighboring drones within the radius 2R � 1.2 m. To mimic the
real distributed computation, each laptop deletes drones’ positions

not within the radius, and does not use the information at all in the
program.

The weight of constraints are given as follows:

ϵλ > ϵ] > ϵμ � 0.

This means that the primary constraint is safety, namely the
collision avoidance, and it is treated as a hard constraint. The
secondary is the battery charging, and tertiary is the subtasks: the
persistent search and object surveillance, which are treated as soft
constraints. For the safety reason, we restrict the speed of drones
by setting input space U as [ − 0.3 0.3]m/s × [ − 0.3 0.3]m/s. The
other parameters needed for implementing Algorithm 1 are
listed in Table 1.

The snapshots of the experiment are shown in Figure 11. When
the object is not detected and all drones’ batteries have enough states

FIGURE 12 | Time series of Ei. Each drone recharges its battery before Ei reaches the minimum limit.

FIGURE 13 | Time series of J, where the blue line denotes the function J
and red line does its target level c.
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of charge, drones run the persistent search and move around over
the plane Q (Figure 11A). In Figure 11B, drone 1 successfully
detects the object. Accordingly, it switches to the subtask of the
object surveillance, and stays above the object. Meanwhile, other
drones continue the persistent search. We also see from Figure 11C
that, when the battery level of drone 3 is low, it returns to and
lands on the charging station. After charging, he restarts the
subtasks (Figure 11D). Through the experiment, every drone
autonomously repeats these actions depending on the situation
(Figures 11E–H). It is to be emphasized that the drones never
crash against each other through the experiment owing to the
primary constraint.

Let us next confirm the function of the secondary constraint for
the energy persistency. The time series of the (virtual) states of charge
are shown in Figure 12. We see from the figure that the drones
successfully return to the charging station, and recharge the battery
before their batteries reach theminimum limit Emin shown by dashed
line with slight exception at around t� 225s. Finally, Figure 13 shows
the time series data of the value of the function J. We see that the
drones frequently failed to satisfy the performance level c. This is fully
reasonable since the collision avoidance, energy persistency and
object surveillance are prioritized over the subtasks of persistent
search. We see that the performance level is high in the early stage,
where all drones engage in the persistent search as seen in
Figure 11A. The performance decreases at around t � 20s since a
drone switches to object surveillance (Figure 11B). The performance
further decays around t � 30–40s since a drone goes back to the
charging station and only one drone engages in persistent search
(Figure 11C). Once the drone restarts persistent search (Figure 11D),
the performance improves during t � 60–80 but it again decays
at around t � 80s since another drone returns to the station. It is
thus concluded that the present prioritization works as expected,
and the present algorithm autonomously completes the overall
mission.

7 CONCLUSION

In this paper, we have investigated a persistent object search and
surveillance mission with safety certificates for drone networks. To
address the issue, the control goals for the persistent object search
and surveillance together with certificates for safety and energy
persistency have been rigorously formulated in the form of
constraint functions. To design a controller that fulfills the
constraints, we have derived inequality constraints to be met by
the control input, following the manner of CBFs. We then have
presented a constraint-based controller that appropriately prioritizes

constraints to manage conflicts among specifications. The
simulation study has revealed that the constraint-based controller
certifies a prescribed performance level for the searching mission,
differently from the authors’ antecessor and other related
publications. The present algorithm has also been demonstrated
through experiments. In the experiment, it has been confirmed that
safety and energy persistency are successfully guaranteed by the
controller even in the presence of a variety of uncertain factors in the
real physical world, not in the ideal mathematical models. We have
also observed through experiments that the present prioritization of
the specifications works as expected, namely drones prioritize safety
and energy persistency at the cost of the control goals for persistent
object search and surveillance.
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