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Abstract: Dietary probiotic supplementation has the potential to enhance the health of fish and their
disease resistance. In this study, some properties of ten Lactiplantibacillus plantarum strains have been
evaluated, for their potential use as probiotics in freshwater fish diet. In particular, antimicrobial
activity, antioxidant activity, the potentiality to survive the gastrointestinal transit and persist in
the intestine, were evaluated in vitro. The experimental tests were carried out at 15 ◦C and 30 ◦C
to determine the suitability of these lactic acid bacteria to be used as probiotics in the diet of fish
grown at different temperatures. The results demonstrated that the evaluated Lp. plantarum strains,
which often have significant differences among themselves, are characterized by important functional
characteristics such as cell surface properties (auto-aggregation and hydrophobicity), ability to
produce antioxidant substances, capacity to survive in the presence of 0.3% bile salts and acidic
environment (2.5 pH), antagonistic activity against some fish opportunistic pathogens (A. salmonicida,
Ps. aeruginosa, E. coli and C. freundii) and other unwanted bacteria present in fish products (S. aureus
and L. innocua). The outcomes suggest that these Lp. plantarum strains may be candidates as probiotics
in warm- and cold-water aquaculture.

Keywords: aquaculture; probiotic; Lactiplantibacillus plantarum; fish health

1. Introduction

Aquaculture has become an important economic activity in many countries [1]. The
current intensification of aquaculture has led to the promotion of conditions that favor
the development of infection and disease-related problems [2]. Bacterial diseases in fish
farming can cause high mortality, with subsequent economic losses [3]. The conventional
approach so far applied in the mitigation, or cure, of bacterial diseases has been mainly
based on the use of antibiotics [4].

The misuse of these compounds, however, is known to have several ancillary compli-
cations, such as negative effects on the gut microbiota [5,6] and antibiotic accumulation in
edible products [7–9]. In addition, there is a general concern over the increased numbers of
antibiotic-resistant bacteria in the environment [10,11].

As such, there is a growing concern to have other safe, non-antibiotic-based and
eco-friendly alternatives for the treatment of the diseases [12]. In response to the reduction
in antibiotic use in fish farming, vaccination has been playing a pivotal role in the control of
infectious diseases in aquaculture for decades [13]. The wide acceptance of vaccines stems
from the fact that there is no risk of drug resistance development in vaccinated animals and
for the resulting protection of unvaccinated animals due to herd immunity. Conversely,
the role of every vaccine is limited to the control and prevention of a single infectious
disease [14]. Subsequently, a single approach is not sufficient to maintain the health status
of fish in aquaculture, but rather a combination of different strategies is required.
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In recent years, the use of probiotics as agents of biological control is a promising
alternative approach for the control of infectious agents and treatment of diseases [15,16].
Although probiotics were initially used for disease control, their use in aquaculture has now
extended for further reasons: improvement of fish growth and reproduction, enzymatic
contribution to digestion, modulation of the gut microbiota, enhancement of hematological
parameters and immune response [15–19]. Lactic acid bacteria (LAB) have gained consid-
erable attention as probiotics in aquaculture, and over the last two decades, numerous
investigations were carried out to evaluate the probiotic properties of different genera and
species [20–23]. Based on these studies, it is evident that LABs along with other bacteria that
belong to the indigenous microbiota play an important role in improving the health and wel-
fare of fish. Among several probiotic bacterial species, several reports have been published
on the beneficial role of Lactiplantibacillus plantarum (previously Lactobacillus plantarum)
and its use as a probiotic in aquaculture [24–27]. Lp. plantarum is a bacterium capable of
colonizing several ecological niches, including the intestinal tract of mammals, insects,
and fishes [28–30]. Many studies have shown that some Lp. plantarum strains that inhabit
our intestinal tract must have intrinsic resistance mechanisms to resist the gastrointestinal
transit [31,32]. Recently, several studies have suggested that Lp. plantarum is a versatile
LAB, among the most important due to its distinctive probiotic properties, as it can tolerate
acid and bile conditions as well as exhibit antioxidant and antimicrobial activities [33–39].
Therefore, some strains of Lp. plantarum are proposed or used as probiotics in aquaculture
practices [40–42]. Considering the positive impact of probiotics, it is important to select
new specific strains to be used in freshwater fish aquaculture [20,43].

This study focused on some functional and probiotic activities of ten Lp. plantarum
strains, to assess their suitability to be used as probiotics in aquaculture. In particular,
antioxidant and antimicrobial activities, cell surface properties (auto-aggregation and
hydrophobicity) and capability to survive at low pH and in the presence of bile salts were
studied. Our tests were conducted at temperatures of 15 ◦C and 30 ◦C degrees.

The reason for this experimental choice was to evaluate the versatility of the selected
Lp. plantarum strains and their possible use as probiotics in the diet of farmed fish grown at
different temperatures.

2. Materials and Methods
2.1. LAB Strains

Ten Lp. plantarum strains (23V, 33V, 36V, 37V, 64V, 65V, 66V, 67V, 68V, 73V) isolated
from the intestinal tract of the Mediterranean trout (Salmo macrostigma) were used [30].
Their 16S rRNA sequences have been deposited in GenBank under accession numbers from
MZ452092 to MZ452095 and from MZ452098 to MZ452103.

2.2. Antimicrobial Activity

The antimicrobial activity of the Lp. plantarum strains (producers) was evaluated
against the following indicator bacteria: Escherichia coli ATCC 11775, Listeria innocua ATCC
33090, Proteus mirabilis ATCC 29906, Staphylococcus aureus ATCC 29213, Pseudomonas aerugi-
nosa ATCC 27853, Citrobacter freundii ATCC 8090, and Aeromonas salmonicida ATCC 33658
belonging to the American Type Culture Collection (ATCC Manassas, VA, USA).

The Lp. plantarum strains were grown in MRS broth (Oxoid Ltd., Hampshire, UK).
After 16 h at 30 ◦C, the broth culture of every single strain was centrifugated (8000× g rpm
for 10 min at 4 ◦C) to separate the cell pellet from the cell-free supernatant (CFS). Before
being used, the CFS was mechanically sterilized by means of filtration (cellulose acetate
membrane, pore size 0.22 µm (Sigma-Aldrich; St. Louis, M0, USA).

The antimicrobial activity of CFSs were tested in accordance with the Kaewchom-
phunuch et al. protocol [44]. As a negative control, 50 µL of MRS, adjusted to pH 3.8 with
hydrochloric acid 1N (Sigma-Aldrich), was used. Antibacterial activity has been evaluated
after 72 h, at 15 ◦C and 30 ◦C, measuring the diameter (mm) of the clear zone of inhibition
(ZOI) around the inoculated wells [44]. The tests were conducted in triplicate.
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2.3. Evaluation of Acid and Bile Tolerance

The Lp. plantarum strains were anaerobically grown in MRS for 18 h at 30 ◦C. The cells
were collected by centrifugation, washed twice with physiological solution (NaCl 0.9%),
and suspended in MRS broth. In order to assess the ability of bacteria to survive acidic
environments, 100 µL of bacterial suspension were transferred in test tubes containing
10 mL of MRS adjusted to pH 2.5 with 1 M HCl (Sigma-Aldrich; St. Louis, MO, USA).
Similarly, to determine the bile tolerance, 100 µL of bacterial suspension were transferred
in test tubes containing 10 mL of MRS enriched with 0.3% (w/v) of bile salts (cholic acid
sodium salt, 50%; deoxycholic acid sodium salt, 50% Sigma-Aldrich) [44].

Finally, the test tubes were incubated at 15 ◦C and 30 ◦C in anaerobiosis. Viable cell
counts were performed at the beginning of the trial and after 3 and 24 h by plate counting
on MRS agar incubated anaerobically at 30 ◦C for 48 h. The experiments were performed
in triplicate and expressed as mean values.

2.4. Cell Surface Properties
2.4.1. Bacterial Cultures

The bacterial strains were grown in MRS broth at 30 ◦C. After 12 h, the cultures were
centrifugated (8000× g rpm for 15 min at 4 ◦C), washed twice and resuspended in a sterile
phosphate buffer saline (PBS, pH 7) to an optical density of 0.5 MacFarland scale (OD580) to
standardize the bacterial density at 108 CFU/mL [45]. The OD580 of bacterial suspension
(BS) was measured using a spectrophotometer (Multilabel Counter–PerkinElmer 1420, San
Jose, CA, USA). The tests were then conducted in triplicate.

2.4.2. Auto-Aggregation

The auto-aggregation (AA) assay was performed according to Iorizzo et al. [31]. The
absorbance measurements (OD580) of the BSs were carried out after 1, 2, 5, and 24 h at 15 ◦C
and 30 ◦C. The AA (%) was obtained using the following formula: AA% = (1 − ODt/OD0)
× 100 [46], where OD0 is the initial absorbance and ODt is the absorbance detected after 1,
2, 5, and 24 h.

2.4.3. Hydrophobicity

The percentage hydrophobicity has been determined considering the capacity of
Lp. plantarum strains to adhere to hydrocarbons (BATH) using xylene and toluene [47].
The BS was added with 50% of every single hydrocarbon and the two-phase system was
vortexed for 5 min. After 15, 30, and 60 min of stationary phase at 15 ◦C and 30 ◦C, the
aqueous phase was carefully removed and spectrophotometric readings were carried out
using the wavelength control set to 580 nm. Hydrophobicity (H) was calculated as a
percentage decrease in optical density and was expressed using the following formula:
H% = (1 − ODt/OD0) × 100) [46], where ODt represents the absorbance after 15, 30, and
60 min, while OD0 represents the optical density value before adding the hydrocarbon.

2.5. Antioxidant Activity

The overnight cultures (107 CFU/mL) of the Lp. plantarum strains in 10 mL of MRS
medium were centrifuged at 8000× g rpm for 5 min at 4 ◦C.

Cell pellets (CP) were fractionated into two aliquots for the protein contents and
antioxidant activity. Total cell protein extraction was carried out resuspending the CP in
1 mL of NaOH 0.1 M, treated with heat at 95 ◦C for 20 min and stored at 4 ◦C. After 24 h,
samples were centrifugated at 13,000× g rpm for 15 min at 4 ◦C and the supernatants were
used for protein quantification according to Di Martino et al. [48]. The cell protein was
expressed as mg/mL, using bovine serum albumin (BSA) as the standard.

For the antioxidant activity, the cell pellet was washed twice with sterile water and
resuspended in 500 µL of cold pure methanol, and after 12 h of storage at −20 ◦C, cen-
trifuged at 13,000× g rpm for 15 min at 4 ◦C. The supernatants of cell extract (CES) were
used for the evaluation of the antioxidant activity.
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Antioxidant activity of the CES was evaluated using the 2,2 azino-bis 3-
ethylbenzothiazoline-6-sulfonic acid (ABTS·+) radical cation method according to
Re et al. [49] and scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical ac-
cording to the method described by Aarti et al. [50], with some modifications. ABTS
radical cations (ABTS·+) were produced by reacting the ABTS methanol solution 7 mM
with 2.45 mM potassium persulfate, storing it in the dark at room temperature for 24 h
before use. The ABTS·+ solution was diluted with cold pure methanol to an optical
density (OD) of 0.700 at 745 nm. Then, 100 µL of CES were mixed with 900 µL of the
ABTS·+ solution. The OD was measured at 745 nm after 6 min in the dark at room
temperature using a BioSpectrometer (Eppendorf).

For the DPPH radical-scavenging capacity, 100 µL of CES were mixed with 900 µL of
DPPH radical solution (0.05 mM) and diluted with cold pure methanol to OD of 0.700 at
515 nm after 15 min.

For ABTS and DPPH assays, Trolox was used as the standard for the calibration curve.
The antioxidant activity was expressed as the ratio (w/w) between µg/mL Trolox and

mg/mL of total cell protein (BSA equivalents). All the reagents used for this experiment
were from Sigma-Aldrich.

2.6. Statistical Analysis

All the data obtained from the three independent experiments are expressed as
mean ± standard deviation (SD). Statistical analysis was performed using an analysis
of variance (ANOVA) followed by Tukey’s multiple comparison test. Statistical signifi-
cance was attributed to p-values < 0.05 using SPSS software (IBM SPSS Statistics 21) for
the analysis.

3. Results
3.1. Antimicrobial Activity

The results of the antagonistic activity of the Lp. plantarum strains against indicator
bacteria at 15 ◦C and 30 ◦C are presented in Tables 1 and 2 as the mean diameter (mm)
of the growth inhibition zone (ZOI). Tests using the acidified MRS pH 3.8 showed no
inhibitory effect. At 30 ◦C, all the CFSs of the Lp. plantarum strains inhibited the growth
of indicator bacteria causing ZOI between 5 and 14 mm, in some cases with statistically
significant differences. At 15 ◦C, the overall results show there was a greater diversification
of antagonistic activity than that caused at 30 ◦C. The results of the antimicrobial activity
conducted at 30 ◦C showed the ability of the ten Lp. plantarum to inhibit all indicator strains.
The specific data at 15 ◦C showed an inhibitory effect of all tested Lp. plantarum strains
against A. salmonicida, Ps. aeruginosa, E. coli, and C. freundii, while only Lp. plantarum 66V,
67V, 68V, and 73V were able to partially inhibit the development of S. aureus and L. innocua.

3.2. pH and Bile Resistance

To survive and persist in the gastrointestinal tract, probiotic candidates must be able
to survive in an acidic environment and in the presence of bile salts. The results of the
effect of acid and bile stress on the survival of the Lp. plantarum strains are reported
in Tables S1 and S2 (Supplementary Materials). All the examined strains exhibited high
resistance in an acidic environment (pH 2.5) and the presence of bile salts (0.3%) with
significant differences between them.

The viability of lactobacilli, in MRS at pH 2.5 after 2 h of incubation, from the initial
number of 8.00 log CFU/mL decreases approximately only 1 log cycle at 15 ◦C and 30 ◦C.
The general comparison of all strains examined, for significant differences in the cell
viability, indicated similar pH tolerance. The bile salts present in bacterial cultures were
much less effective on bacterial viability than the effect of pH 2.5. The selected Lp. plantarum
strains were able to survive in the presence of 0.3% bile salts. In fact, over 24 h, they
maintained almost entirely the initial viability (8 log CFU/mL) both at 15 ◦C and at 30 ◦C.
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Table 1. Antimicrobial activity at 15 ◦C by cell-free supernatant (CFS) of the tested Lp. plantarum
strains against different indicator bacteria. The data (mean ± SD; n = 3) are expressed as zone of
inhibition-ZOI (mm). Different lowercase letters (a–d) in each row indicate significant differences
(p < 0.05).

Indicator
Strains

Lp. plantarum Strains

23V 33V 36V 37V 64V 65V 66V 67V 68V 73V

L. innocua 0 ± 0 d 0 ± 0 d 0 ± 0 d 0 ± 0 d 0 ± 0 d 0 ± 0 d 7.1 ± 0.2 a 5.0 ± 0.3 c 5.5 ± 0.4 b 5.9 ± 0.5 b

A. salmonicida 7.0 ± 0.6 b 7.0 ± 0.5 b 7.7 ± 0.6 a 7.5 ± 0.6 a 8.5 ± 0.3 a 7.3 ± 0.3 a 6.6 ± 0.6 b 7.5 ± 0.3 a 8.0 ± 0.2 a 7.7 ± 0.6 a

C. freundii 7.2 ± 0.7 c 7.2 ± 0.6 c 8.0 ± 0.4 b 6.4 ± 0.6 c 9.9 ± 0.4 a 7.0 ± 0.4 c 10.5 ± 0.4 a 9.0 ± 0.6 b 10.2 ± 0.3 a 10.3 ± 0.5 a

P. mirabilis 9.2 ± 0.6 a 7.4 ± 0.6 b 8.3 ± 0.5 b 9.7 ± 0.4 a 9.5 ± 0.5 a 9.0 ± 0.2 a 9.6 ± 0.4 a 10.1 ± 0.2 a 9.5 ± 0.4 a 7.3 ± 0.6 b

S. aureus 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 6.5 ± 0.4 b 7.1 ± 0.5 b 8.9 ± 0.3 a 6.9 ± 0.4 b

Ps. aeruginosa 7.0 ± 0.3 a 8.0 ± 0.3 a 7.9 ± 0.6 a 8.0 ± 0.7 a 7.9 ± 0.6 a 6.8 ± 0.3 a 6.0 ± 0.1 b 7.3 ± 0.4 a 7.8 ± 0.4 a 5.8 ± 0.2 b

E. coli 8.8 ± 0.6 b 9.9 ± 0.6 a 9.6 ± 0.5 a 10.1 ± 0.1 a 9.8 ± 0.2 a 6.9 ± 0.4 c 7.0 ± 0.3 c 7.8 ± 0.3 b 8.9 ± 0.6 a 7.1 ± 0.1 c

Table 2. Antimicrobial activity at 30 ◦C by cell-free supernatant (CFS) of the tested Lp. plantarum
strains against different indicator bacteria. The data (mean ± SD; n = 3) are expressed as zone of
inhibition-ZOI (mm). Different lowercase letters (a–c) in each row indicate significant differences
(p < 0.05).

Indicator
Strains

Lp. plantarum Strains

23V 33V 36V 37V 64V 65V 66V 67V 68V 73V

L. innocua 7.9 ± 0.3 b 7.9 ± 0.2 b 7.0 ± 0.4 c 8.0 ± 0.3 b 9.0 ± 0.3 a 9.0 ± 0.3 a 5.9 ± 0.4 c 10.0 ± 0.5 a 8.2 ± 0.8 b 9.0 ± 0.2 a

A. salmonicida 7.8 ±0.6 a 8.2 ± 0.6 a 8.5 ± 0.5 a 8.9 ± 0.3 a 8.4 ± 0.5 a 7.2 ± 0.8 b 7.4 ± 1.0 a 7.7 ± 0.5 a 7.2 ± 0.4 b 7.9 ± 0.2 a

C. freundii 7.9 ± 0.7 b 8.7 ± 0.8 b 8.8 ± 0.9 b 9.8 ± 1.2 b 14.0 ± 0.8 a 9.1 ± 0.8 b 7.9 ± 0.3 b 7.9 ± 0.4 b 8.9 ± 0.6 b 6.7 ± 0.8 c

P. mirabilis 7.0 ± 0.5 a 8.0 ± 0.3 a 8.0 ± 0.4 a 7.1 ± 0.6 a 6.1 ± 0.8 b 6.9 ± 0.6 a 5.2 ± 0.5 b 5.8 ± 0.4 b 6.4 ± 0.5 b 7.0 ± 0.6 a

S. aureus 5.9 ± 0.7 b 5.9 ± 0.6 b 7.0 ± 0.4 a 6.8 ± 0.2 a 6.8 ± 0.6 a 6.7 ± 0.2 a 7.0 ± 0.6 a 7.9 ± 0.6 a 7.2 ± 0.4 a 6.2 ± 0.6 b

Ps. aeruginosa 7.2 ± 0.9 a 7.0 ± 0.9 a 6.4 ± 0.5 a 6.8 ± 0.6 a 6.9 ± 0.5 a 6.0 ± 0.6 a 5.8 ± 0.5 a 7.4 ± 0.4 a 7.0 ± 0.3 a 6.0 ± 0.5 a

E. coli 9.0 ± 0.5 a 9.0 ± 0.6 a 8.6 ± 0.4 a 9.9 ± 1.0 a 9.9 ± 1.0 a 10.2 ± 1.0 a 8.0 ± 0.8 b 7.9 ± 0.5 b 8.0 ± 0.7 b 7.0 ± 0.6 b

3.3. Cell Surface Properties: Hydrophobicity and Auto-Aggregation

The hydrophobicity was investigated using the ability of the bacteria to adhere at
15 ◦C and 30 ◦C to toluene and xylene hydrocarbons. The hydrophobicity (%) of the
Lp. plantarum strains is reported graphically in Figure 1 and numerically in Table S3
(Supplementary Materials). In all tests, we have detected significant differences among
the tested Lp. plantarum strains. For all strains, the adhesion to hydrocarbons increased
gradually during the test period (60 min). Lp. plantarum 33V and 67V strains, already after
15 min both at 15 ◦C and 30 ◦C, showed a high adherence to toluene and xylene with a
hydrophobicity percentage greater than 66%, and after 60 min, the percentage was greater
than 90%. After 60 min at 15 ◦C, Lp. plantarum 23V and 36V adhered to toluene with a
hydrophobicity percentage of 41.4% and 54%, respectively, while for the other strains we
found a hydrophobicity of less than 30%. At 30 ◦C, Lp. plantarum 23V and 36V adhered
to toluene with percentages of 49.5% and 67.5%, respectively; the other strains did not
show a percentage of hydrophobicity greater than 37%. In the test with xylene after 60 min,
except for Lp. plantarum 33V and 67V, the other strains did not exceed the hydrophobicity
percentages obtained from Lp. plantarum 36V: 49.5% at 30 ◦C and 48.1% at 15 ◦C.

The AA results are depicted in Figure 2, and the relative numeric data are presented
in Table S4 (Supplementary Materials). The data highlighted significant differences among
the tested Lp. plantarum strains. The tests showed that the ability to aggregate and sediment
increased progressively, until reaching, after 24 h, range values between 20% and 50% at
15 ◦C and between 36% and 57% at 30 ◦C.
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3.4. Antioxidant Activity

The antioxidant activities, expressed as the ratio between µg Trolox/mL and mg/mL
of cell protein (BSA equivalents), are shown in Table 3.

Table 3. Antioxidant activity of the Lp. plantarum strains. All values are expressed as mean ± standard
deviation (n = 3). Different lowercase letters (a–d) in each row indicate significant differences
(p < 0.05).

Antioxidant
Assay

Lp. plantarum Strains

23V 33V 36V 37V 64V 65V 66V 67V 68V 73V

ABTS 24.1 ± 0.3 d 30.9 ± 0.7 b 31.5 ± 1.1 b 22.6 ± 0.2 d 31.0 ± 1.1 b 38.0 ± 0.7 a 29.1 ± 0.9 b 31.2 ± 1.4 b 27.4 ± 2.3 c 25.9 ± 0.6 c

DPPH 1.0 ± 0.7 b 1.3 ± 0.3 a 1.6 ± 0.1 a 0.8 ± 0.4 b 1.3 ± 0.1 a 1.5 ± 0.6 a 1.0 ± 0.4 b 2.2 ± 0.1 a 2.1 ± 0.3 a 1.2 ± 0.1 a

µg Trolox/mg cell proteins (BSA eq.).

The values obtained in ABTS assays were between 22.6 (37V strain) and 38.0 (65V
strain), while the values obtained in DPPH assays were between 1.0 (23V strain) and 2.2
(67V strain).

4. Discussion

Fish’s digestive tract is colonized by a wide microbial community that has important
influences on the immune system, nutrient assimilation, and a wide range of other host
activities. The gut microbiota can positively or negatively interact with each other. The
interactions established among the components of the microbiota can significantly affect
fish health. Fish become more susceptible to pathogens due to their stressful environment,
which eventually suppresses their immune system, causing dysbiosis, which can lead
to opportunistic infections that would be otherwise suppressed. Among all pathogens,
bacteria are the most prominent disease-causing agents in fish and cause major problems
and economic losses in commercial farming of a large number of cultivated fish species [51].

Conversely, an aggressive pathogen producing powerful virulence factors may be able
to disrupt the normal microbial balance and lead to dysbiosis. Most surveys on probiotic
applications in aquaculture consider the ability to inhibit pathogenic bacteria [52].

In this field, we evaluated the antagonistic activity of ten Lp. plantarum strains against
some opportunistic fish pathogens (C. freundii, A. salmonicida, P. mirabilis, Ps. aeruginosa)
and other unwanted bacteria present in fish products [6,53–56]. It is well known that some
LAB strains may protect fish from intestinal pathogens by several possible mechanisms,
including the production of inhibitory substances, such as organic acids, hydrogen peroxide,
bacteriocins, and carbon peroxide [20,57].

Our results on the antimicrobial activity indicated that at 15 and 30 ◦C, the MRS
pH 3.8 did not inhibit the growth of indicator bacteria. The data obtained in our study
seem to exclude that antibacterial activity is due to the acidic environment. Therefore, the
antagonistic activity highlighted in our tests is probably due to substances produced by
lactobacilli during the growth phase in the native CFS [58]. The nature of these substances
needs to be investigated in the future. The ability to inhibit pathogens is a desirable property
for probiotics and a sustainable alternative to antibiotics; dietary supplementation with
these LABs may provide effective prophylaxis against infections in fish [59,60]. The fish,
like other living organisms, developed an enzymatic antioxidant system including different
enzymes (e.g., superoxide dismutase, glutathione peroxidase, glutathione reductase, and
catalase) and a non-enzyme antioxidant system based on the production of different
compounds as glutathione, thioredoxin, vitamin C, and vitamin E [61,62]. This complex
system is capable of providing the balance between production and removal of reactive
oxygen species (ROS) under normal physiological conditions. In fish, like other organisms,
the lack of balance between the production of ROS and the antioxidant defense system can
cause the oxidation of biological macromolecules, inducing cell damage [63]. Excessive
production of ROS in fish can be caused by changes in environmental O2 (hyperoxia and
hypoxia), temperature (hyper or hypothermia), and malnutrition [64]. In addition, the
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presence in the aquatic environment of heavy metals, pesticides (insecticides, herbicides,
and fungicides), along with oil products, induces oxidative stress on fish [65]. In fact,
various research studies proposed the use of new and safe natural antioxidants as an
alternative for synthetic antioxidants [66]. Other studies in aquaculture have shown
promising antioxidative effects of beneficial additives, such as probiotics, on different fish
species [67,68]. Recently, LAB have been considered for their antioxidant activity [66,68,69].
Based on this evidence, in our research, we examined the antioxidant activity of selected
Lp. plantarum strains using the ABTS and DPPH methods. These two techniques may
be utilized in aqueous and non-polar organic solvents to examine both hydrophilic and
lipophilic antioxidants [70–73]. The obtained results showed that the selected Lp. plantarum
strains possess antioxidant activity, confirming what has been reported in other studies
conducted on this species [74–77].

The DPPH method provided lower values than the ABTS test. This difference is
probably because it has a different sensitivity to the different antioxidant substances present
in the CES, which needs to be investigated in further detail.

Consumption of probiotics alone, or foods supplemented with probiotics, may re-
duce oxidative damage in fish cells. The health-benefiting properties of probiotics are
largely dependent on their prolonged residence in the GIT and are dictated by adher-
ence to the intestinal mucosa. The ability of probiotic bacteria to adhere to intestinal
epithelial cells involves various surface properties, including hydrophobicity and auto-
aggregation [15,16,78]. These characteristics promote the colonization and permanence of
probiotics in the gastrointestinal tract (GIT). Moreover, the examined Lp. plantarum strains
had values of auto-aggregation and hydrophobicity in line with previous studies [47,79].
In particular, Lp. plantarum 33V and 67V strains stood out for their performances. Our data
confirm that some Lp. plantarum strains have the potential to survive in the gastrointestinal
tract and adhere to its epithelial cells [80,81]. An effective probiotic should be viable, safe,
bile- and gastric-juices-tolerant, able to survive through the gastrointestinal tract, adhere
and colonize gut epithelial cells. Our study showed a high survival of the 10 strains of
Lp. plantarum in an acidic environment (pH 2.5) and the presence of 0.3% of bile salts. These
results showed that some Lp. plantarum strains had a high likelihood to survive stress in
the gastrointestinal tract like low pH and bile presence, as highlighted in a previous study
by Bucio et al. [82]. Gut transit time in fish depends on numerous factors including species,
fish age/size, water temperature, food quality, meal size and feeding frequency [83,84];
water temperature influences gut transit time and nutrient digestibility as it can correlate
to feed intake and enzyme activity [85,86]. This evidence motivated us to conduct bile
tolerance tests for 24 h. In addition, our tests were conducted at temperatures of 15 ◦C and
30 ◦C degrees. Fish are poikilotherms, they do not have a thermoregulatory system and
their body temperature fluctuates in response to the temperature of the surrounding envi-
ronment. Certain fish species are classified as cold-water fish, while others as warm-water
or tropical fish; while cold-water fish are rarely exposed to temperatures greater than 20 ◦C,
tropical fish are frequently exposed to temperatures well above 30 ◦C [87].

Our results showed that the selected Lp. plantarum strains have high adaptability to
temperature, confirming the versatility of this species to adapt to different environmental
conditions [88]. This characteristic would make it possible to use them in the diet of
different fish species as well as make them tolerant to the different annual climatic seasons.
The seasonal changes in water temperature can be extremely different for cold-water
and warm-water species, they can range from below 5 ◦C to 19 ◦C and 16 ◦C to 39 ◦C,
respectively [89,90].

5. Conclusions

The supplementation of fish diet with specific probiotic microorganisms can contribute
to improving the welfare and disease resistance, which is a widespread problem in aqua-
culture. The present study improves the application knowledge for the implementation
of Lp. plantarum as probiotic in freshwater fish diet. Our results demonstrated that the



Microorganisms 2022, 10, 463 9 of 12

examined Lp. plantarum strains are characterized by important features such as antioxidant
activity, ability to survive in the presence of bile, tolerance to low pH, cell surface properties
and antagonism activity against some fish pathogens. Therefore, these LABs meet some
important criteria to be candidates as probiotics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020463/s1, Table S1: Resistance to pH 2.5 at
15 ◦C and 30 ◦C, Table S2: Resistance to 0.3% bile salts at 15 ◦C and 30 ◦C, Table S3: Adhesion to
toluene and xylene of Lp. plantarum strains after different contact times; Table S4: Auto-aggregation
(AA) at 15 ◦C and 30 ◦C of the Lp. plantarum strains.
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