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The aim of this study is to investigate that fetal heart rates (fHR) extracted

from fetal phonocardiography (fPCG) could convey similar information of fHR from

cardiotocography (CTG). Four-channel fPCG sensors made of low cost (<$1) ceramic

piezo vibration sensor within 3D-printed casings were used to collect abdominal

phonogram signals from 20 pregnant mothers (>34weeks of gestation). A novel multi-lag

covariance matrix-based eigenvalue decomposition technique was used to separate

maternal breathing, fetal heart sounds (fHS) and maternal heart sounds (mHS) from

abdominal phonogram signals. Prior to the fHR estimation, the fPCG signals were

denoised using a multi-resolution wavelet-based filter. The proposed source separation

technique was first tested in separating sources from synthetically mixed signals and then

on raw abdominal phonogram signals. fHR signals extracted from fPCG signals were

validated using simultaneous recorded CTG-based fHR recordings.The experimental

results have shown that the fHR derived from the acquired fPCG can be used to

detect periods of acceleration and deceleration, which are critical indication of the fetus’

well-being. Moreover, a comparative analysis demonstrated that fHRs from CTG and

fPCG signals were in good agreement (Bland Altman plot has mean = −0.21 BPM and

±2 SD=±3) with statistical significance (p< 0.001 and Spearman correlation coefficient

ρ = 0.95). The study findings show that fHR estimated from fPCG could be a reliable

substitute for fHR from the CTG, opening up the possibility of a low cost monitoring tool

for fetal well-being.

Keywords: fetal heart sounds (fHS), phonocardiography (PCG), phonograms, cardiotocography (CTG), blind source

separation (BSS), vibration sensors

1. INTRODUCTION

Fetal well-being monitoring in a non-invasive way is a crucial step for obsterician and midwives to
understand the fetal health status. In this endeavor, various non-invasive monitoring approaches
have been adopted. Fetal echocardiography (fECHO) based on ultrasound signals (Nassit and
Berbia, 2015b) is very widely used approach for monitoring fetal well-being. fECHO uses
sound waves that “echo off” of the structures of the fetus’ heart to produce a picture, or
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echocardiogram, of the fetus heart’s interior, and it is mainly used
for the diagnosis of congenital heart defects (20th–23rd week
of pregnancy). Another method used for the fHR monitoring is
fetal magnetocardiography (fMCG), which is a recording of the
magnetic field of the fetal heart, using SQUID sensors placed
over maternal abdomen (Peters et al., 2001). It, however, allows
for easy fHR morphological analysis, due to its high signal-
to-noise ratio (SNR) ouput. Nevertheless, fMCG is expensive
and needs trained staff. Non-invasive fetal electrocardiography
(fECG) is one of them which is based on the maternal abominal
Electrocardiogram (abECG) (Freeman et al., 1997). In fECG, the
fetal heart rate (fHR) is monitored through the acquired abECG
by placing electrodes on the mother’s abdomen and extracting
fHR with the application of signal processing techniques on
the abECG (Hyvarinen and Oja, 2001; Kanjilal and Saha, 2012;
Wu et al., 2013; Nassit and Berbia, 2015a). A routine clinical
method is the Cardiotocography (CTG), which is used during
pregnancy to monitor both the fetal heart and the contractions
of the uterus (Grivell et al., 2015). CTG involves the placement
of two transducers onto the abdomen of a pregnant women;
one transducer records the fHR using ultrasound, whereas the
other transducer monitors the contractions of the uterus, by
measuring the tension of the maternal abdominal wall, providing
an indirect indication of intrauterine pressure. The current CTG
technology is well-advanced and it is a routine part of modern
obstetrics in all developed countries. One of the disadvantages,
however, of CTG is its high sensitivity to different types of
noise generated by maternal movements, requiring frequent
repositioning of the ultrasound transducers. Moreover, due to the
potential harmful effects of sustained ultrasonic radiation on the
fetus (not well-understood so far), CTG seems not suitable for
long-term continuous fetal monitoring. Moreover, CTG does not
provide any information about beat-to-beat variability (Nageotte,
2015).

An alternative, cheaper and non-invasive fHR extraction
can be done by fetal phonocardiography (fPCG). Its primitive
form has its roots in the qualitative auscultation of fHS by
general practitioners (dated back to the 1750s as a discovery
by Kergardec, Marsac, and Kennedy; Sartwelle, 2012) via the
so-called Pinard’s stethoscope. The basic principle behind the
fPCG is that the heart’s mechanical activity is accompanied
by the generation of a variety of characteristic sounds. These
sounds are associated with changes in the speed of blood flow,
as well as with the opening and closing of heart valves and could
provide diagnostic information, accordingly (Tang et al., 2016).
In modern fPCG, fHS are picked through sound transducers
placed on the mother’s abdomen and different characteristics,
such as rate, frequency, and duration or changes in individual
parts of the recorded cardiac acoustic signal can be measured.
Apart from sound transducers, fiber-optic sensors have recently
been introduced for the fPCG recordings (Martinek et al., 2016).

One of the main challenges faced in fHR estimation from
fPCG analysis is the difficulty in extracting information from
very noisy transducer data because data are affected by acoustic
damping, manly due to amniotic fluid and digestive activity
in addition to four main sources of sounds such as fetal
and maternal heart contractions, maternal breathing and fetal

movements. Other secondary sources of noise include shear
noises due to transducers movement. All these noises embedded
in the fPCG signal in time- and frequency-domain make the
extraction of fHR very challenging. fPCG signals from the
sound transducers are of low energy; hence, the SNR is quite
low.

To address the aforementioned problem, various signal
processing tools and techniques have been proposed and
applied in the extraction of valid information from fPCG
recordings. Initially FIR/IIR Filtering (Ginsburg et al., 1964;
Talbert et al., 1986; Adithya et al., 2017) was used, which has
low computational complexity yet high chance of failure to
separate the desired fPCG components. FIR/IIR Filtering is
suitable for pre-conditioning, e.g., 50 Hz notch filter. Some
heuristic methods such as spectral substraction (Kovacs et al.,
2006; Ruffo et al., 2010; Adithya et al., 2017) provide some
noise enhancement via the artifact attenuation implemented at
low computational complexity, yet they are mainly useful in
post processing for fPCG classification. Also, spectral subtraction
(Chen et al., 2006; Adithya et al., 2017) works under stationary
noise model and its performance is linked to the quality of noise
estimation. Adaptive filtering (Goovaerts et al., 1991; Adithya
et al., 2017) showed poor performance in fPCG extraction. This
could be improved if the maternal heart sounds (mHS) were first
estimated and canceled using a multi-channel system. Kalman
filtering (Adithya et al., 2017) needs accurate reference signal,
as it has high computational complexity. Wavelet Transform
(Kosa et al., 2008; Kovacs et al., 2011; Fodor et al., 2012;
Adithya et al., 2017; Koutsiana et al., 2017), showed good
performance in de-nosing noisy fPCG and analyzing the fetal
heart sounds (fHS), but it lacks the ability to finely de-noise
the overlapped frequency components. Independent Component
Analysis (ICA) (Nigam and Priemer, 2004; Jimenez-Gonzalez

FIGURE 1 | Piezoelectric vibrations sensors setup on the maternal abdomen.
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and James, 2008; Jiménez-Gonzàlez and James, 2010; Jimenez
and James, 2013) assumes source components as independent
(which is hardly met in case of abdominal sources of sounds)
and needs post processing with high computational complexity.
Empirical Mode Decomposition has also been applied in the
fHR extraction from simulated fPCG, yet it still needs evaluation
in the context of real fPCG data (Taralunga et al., 2015).
Moreover, many algorithms, such as, Fast ICA, INFOMAX
ICA (Wan et al., 2008), ICA MERMAID (Marossero et al.,
2003), and JADE ICA (Sameni et al., 2006) which were used
for fECG morphological features were also tested on fPCG
signals. A summary of the state-of-the-art signal processing
algorithms used in fPCG analysis can be found in Adithya et al.
(2017).

In line with the abovementioned background, we
aim to apply a source separation algorithm that uses
multi-lag covariance eigenvalue decomposition on fPCG
signals because of its low computational complexity and
suitability on non-independently mixed signals such as fPCG
signals. Therefore, the aim of this study is to investigate
if fHR signals extracted from fPCG and CTG are in good
agreement.

2. METHODS

2.1. Data Collection and Experimental
Setup
The fact that fPCG acquisition is highly susceptible to noises
paves the way to innovative hardware oriented methods for
a less noisy acquisition. In this study, fPCG are recorded
using vibration sensors (cost $1 each) embedded in high
definition 3D printed plastic harnesses. Each harness holds
a ceramic piezo vibration sensor (35 mm diameter) on the
maternal abdomen with rubber made cushion to minimize
the shear noise. The 3D printed harness is designed with
precise parameters that rigidly mount the piezo sensor. The
sketch in Figure 1 shows the setup of the sensors, where
each sensor picks fPCG signals through a coaxial cable having
very high insulating resistance. Power lab data acquisition
system by ADinstrument (www.adinstruments.com) was used
to record the abdominal phonograms at a sampling frequency
of fs = 1, 000Hz. In order to validate the extracted fHR,
14 simultaneous CTG recordings were collected by Monica
wireless CTG AN24 (www.monicahealthcare.com) and, 6 by
Phillips Avalon FM300 CTG (www.usa.philips.com) devices for
20 subjects in total.

The prototype was tested on 20 pregnant mothers in Al-
Ain Hospital, United Arab Emirates. Al Ain District Ethics
Committee approved this study (ref: AAHEC-09-14-013) and
informed signed consent forms were obtained from all pregnant
volunteers. Figure 2 shows an example of recorded raw fPCG
signal over time (seconds), which contains clear maternal
breathing patterns (exhaling and inhaling) and fHS, as well,
modulated, however, by the maternal breathing patterns, setting
the challenge for efficient source separation. The total weight
of the prototype (four channel sensors with harness) is 200 g

and it was comfortable to wear which was confirmed by end of
measurement survey questionnaire.

2.2. Proposed Source Separation technique
The special problem of extracting sources from a set of linear
mixtures without any knowledge of the mixing channel has
been widely studied by assuming different sources statistical
conditions (Parra and Sajda, 2003; Naik and Wang, 2014). In its
simplest form, it can be expressed as the problem of identifying
the factorization of P-dimensional observations x into a mixing
channel A and Q-dimensional sources s.

Let xo[n] be a multichannel discrete-time signal resulting
from the synchronous sampling of P continuous-time signals
(channels), where n denotes discrete time. The multichannel
signal xo[n] corresponds to the linear combination ofQ unknown
source signals s[n] according to

xo[n] = As[n], (1)

where A is the P × Q mixing matrix. The observation signals
in xo[n] are given in row format (as well as the source signals
in s[n]), such that xoi [n] denotes the ith channel in xo[n]. The
problem we deal with is the recovery of the sources s[n] from
the observations xo[n], without any knowledge of the mixing
matrix A.

In our particular problem, the observation signals xo[n]
correspond to the synchronous reading of P = 4 vibration
sensors. Given the sensor arrangement (Figure 1), placed 16
cm apart from each other, a distance much smaller than the
minimum wavelength (λ = 3m in liquid for the specific fs),
each source signal si[n] arrives to every sensor with a different
intensity, usually based on how close the sensor is to its respective
physical source. We assume s[n] to be related to the mother’s
breathing, mother’s heart, fetal heart, and noise, hence Q . P.
In consequence, the mixing matrix A is assumed to be of rank P,
but not necessarily well-conditioned.

Let e be a diagonal control matrix to disable bad channels of
M×Pmultiplied by xo[n], whereM ≤ 4 is the number of strongly
correlated channels, i.e.,

x[n] = exo[n]. (2)

We define the observation cross-covariance matrix as

X[n] = x[m] xT[m+ n], (3)

where for such operation a N-point window is involved, that is,
the ith row and jth column of matrix X[n] is obtained as follows

Xij[n] =

N−1
∑

m= 0

xi[m]xj[m+ n]. (4)

Based on the mixing scenario (1), we can express matrix (3) in
terms of the mixing matrix A as

X[n] = As[m] sT[m+ n]AT = AS[n]AT , (5)

where S[n] is the source cross-covariance (unknown) matrix.
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FIGURE 2 | Ch1, Ch2, Ch3, and Ch4 of the fPCG recorded data in time (seconds) using the vibration sensors of Figure 1.

TABLE 1 | Distinguishing good channels from bad channels.

Ch1 Ch2 Ch3 Ch4 Enable vector(e) Decision

Ch1 1 R(1,2) R(1,3) R(1,4) R(1,2) OR R(1,3) OR R(1,4) If output is logic 1,

Ch2 R(2,1) 1 R(2,3) R(2,4) R(1,2) OR R(2,3) OR R(2,4) enable the channel.

Ch3 R(3,1) R(3,2) 1 R(3,4) R(1,3) OR R(2,3) OR R(3,4) If output is logic 0,

Ch4 R(4,1) R(4,2) R(4,3) 1 R(1,4) OR R(2,4) OR R(3,4) disable the channel.

The black cells indicate mirrored version of the upper triangle covariance values; hence discarded.

We are interested in a demixing matrix WT such that
WTA = I orATW = I. This would separate the mixed signals as,

s[n] = WTx[n]. (6)

The expression in Equation (5) aims to provide general cross
statistics between shifted versions of the collected sensors
readings. Using Equation (3), we can refer to X[0] as the zeroth
lag covariance matrix of the sensors recordings, while X[1] as the
1st lag cross-covariance matrix and X[n] as the nth lag cross-
covariance matrix. These matrices will be used to devise an
algorithm to recover the original components of a specific set of
mixtures of data. In particular, starting from the zeroth lag it can
be written

for n = 0, X[0] = AS[0]AT . (7)

In Equation (7), the sensors recordings zeroth lag covariance
matrix X[0] is written in terms of the sources zeroth lag

covariance matrix S[0] and the mixing matrix A. By multiplying
each right side of Equation (7) byW it would result in

X[0]W = AS[0]. (8)

This process is repeated for n = 1, 2...k as shown below

for n = 1, X[1] = AS[1]AT , (9)

for n = 2, X[2] = AS[2]AT , (10)

for n = k, X[k] = AS[k]AT . (11)

Blind source separation utilizing only the first lag covariance
matrix X[1] has been shown and discussed in Parra and
Sajda (2003), Weinstein et al. (1993), Parra and Spence (2000).
Belouchrani et al. (1997) introduced a source separation
technique utilizing the time coherence of the source signals.
This relies only on stationary second-order statistics that are
based on a joint diagonalization of a set of covariance matrices.
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In our mixing scenario, we assume that the sources are non-
white, stationary and decorrelated. The aim here is to provide
a simplified understanding of the stationary assumption by
studying sums of multi-lag cross covariance up to kth-lag sample
in a form of eigenvalue decomposition problem. As Equations
(9–11) share the same mixing matrix A, let the kth sample be the
discrete time lag over a very short period of time; the sum of the
nth lag covariance matrices up to k is given by

k
∑

n= 1

X[n] = A(

k
∑

n= 1

S[n])AT . (12)

We multiply each right side of Equation (12) by a desired
demixing matrixW to result in the following

(

k
∑

n= 1

X[n])W = A

k
∑

n= 1

S[n], (13)

and the original mixing matrix A can be written as,

(

k
∑

n= 1

X[n])W(

k
∑

n= 1

S[n])−1 = A. (14)

The goal here is to find the minimum sum to kth lag covariance
matrix that constructs an eigenvalue decomposition problem to
best approximate the demixing matrixWT . With the substitution
of the original mixing matrix A derived in Equation (14) in the
zeroth covariance form derived in Equation (8) we get

X[0]W = (

k
∑

n= 1

X[n])W(

k
∑

n= 1

S[n])−1S[0]. (15)

The above expression can be further written as

X[0]W = (

k
∑

n= 1

X[n])W3, (16)

where 3 = (
∑k

n= 1 S[n])
−1S[0] is a diagonal matrix and S[0],

S[1] ... S[k] have the same diagonalization property over a short
period of time.

For simplicity, we want to produces a diagonal matrixD=3 of
generalized eigenvalues and a full matrix V=W whose columns
are the corresponding eigenvectors where A=X[0] and B in this

case is nothing but
∑k

n=1 X[n] so that the problem is in the form
of an eigenvalue decomposition problem:

AV = BVD. (17)

The idea in Equation (16) is that the full matrixW is nothing but
the eigenvectors matrix constructed not only from the covariance
matrix X[0], but also from the sum of the minimum kth lag cross

covariance matrix
∑k

n= 1 X[n]. Because the sources are non-
white, this method is described as using second order statistics in

the form of cross-covariance for different time lags. In this way,
the issue is transfered to the correlation maximization problem.

As previously discussed and shown in Equation (2), e matrix
disables any bad channels or dismiss any operating window
if they are not sufficiently correlated. A linear set of channels
tend to have high degree of correlation because the independent
components are available in every channel but with different
weights. Let C(i, j) be the zeroth lag of a normalized covariance
matrix between the ith and the jth channels; the correlation
coefficient R(i, j) is, then, defined as

R(i, j) =
C(i, j)

√

C(i, i)C(j, j)
, (18)

where a matrix R written in a form of table. Table 1 gives the
degree of correlation between all the channels. Performing such

FIGURE 3 | The process of generating three synthetic channels containing

three mixed sources through a single iteration, randomly generated,

well-conditioned matrix.
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practice would give us valuable information on the channels
similarities. The goal here is to extract a binary control matrix
e to be multiplied by the raw collected signals xo[n] and disable
any noisy (less correlated channels).

The upper triangle in Table 1 is converted to binary, based on
a threshold value (initially set as 0.3); hence, any |R(i, j)| < 0.3
is set to 0 while those ≥ 0.3 are set to 1. Such practice would
disable channels that are less correlated and would improve the
blind source separation results. The control matrix e can be
extracted from the logicOR gate of the R(i, j) values of the current
channel with the remaining channels. The control matrix e is
constructed as

e =









e(1) 0 0 0
0 e(2) 0 0
0 0 e(3) 0
0 0 0 e(4)









where if any e(i) value is set to zero the raw containing it is
removed. This method can disable noisy channels and dismiss
all of the sensors if all of them are noisy. Table 1 summarizes the
proposed process.

The algorithm described in this section gives a close
approximation of the original mixing matrix. In other words, the
estimated demixingmatrixWT is able to recover the independent
components, which are the maternal breathing, mHS and the
desired fHS, respectively.
Steps through application:

1. Construct input matrix: x[n] = exo[n].
2. Find X[0].
3. Find

∑k
n= 1 X[n], up to predefined kth-lag sample.

4. Construct the eigenvalue decomposition problem: [W,D] =

eig(X[0],
∑k

n= 1 X[n]), where 3=D.
5. Find the sources: s[n] = WTx[n].

2.3. Creating a Synthetically Mixed Signal
An actual maternal breathing pattern (recorded through
vibration sensor), fetal ECG (fECG), and maternal ECG (mECG)
signals were recorded to create synthetic channels. Because of
the nature of the abdominal fading coefficients, the abdominal
channel between the sources and the sensors are in continuous
change due to mainly lung inhalation and exhalation and
accordingly, its effect on themedium. In an attempt to mimic this
scenario, 50 iterations of different positive normally distributed
pseudorandom mixing matrices are used to mix the original
sources as seen in Figure 3. The constructed mixing signals were
then used to test the derived algorithm and to estimate the
demixing matrix at each iteration with different k-values.

2.4. Applying the Proposed Algorithm on
the Sensors Readings
The source separation process for abdominal phonogram
signals is described in Figure 4. The proposed method was
tested on abdominal phonogram signals from 20 pregnant
women; their anthropometric characteristics are listed in

FIGURE 4 | Block diagram of source separation process to separate the phonogram into maternal breathing, mHS, fHS, and other noise.
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Table 2. Initially, the electric hum of 50 Hz was removed,
using a notch filter with quality factor of 60. Then, the
proposed source separation technique (Section 2.2) was applied
to the filtered data and the mHS and fHS were extracted.
These were further denoised using a wavelet transform-based
stationary-non-stationary filter (WTST-NST) (Hadjileontiadis
and Panas, 1997). The WTST-NST filter basically utilizes
the multi-resolution wavelet decomposition with dynamic
threshold values at each level to separate non-stationary signal
components (noise) from stationary signal components (heart
sounds). The peaks of the heart sounds were identified by
finding the local maxima in a pre-specified peak-to-peak time
distance of 0.3 s (assuming maximum fHR of 180 bpm).
In this window, the data samples were compared to their
neighboring values, where the peak of maximum energy
was highlighted. If any element of data was larger than
its neighbors, the element was considered as a local heart
sound peak. The separated denoised fHS were then used to
estimate the fHR for comparison with the same from the CTG
machine.

2.4.1. Fetal Heart Rate Assessment

Based on the American College of Obstetricians and
Gynecologists, obstetric medical assessment are those used
to assess the medical condition of a fetus. For such purpose,
many fHR pattern definitions have been classified and agreed
(ACO, 2009, 2010; Graham Gaylord Ashmead, 2011). In
this study, the fHRs derived from both the fPCG and the
CTG approaches were used to assess only the baseline

fHR values of 20 pregnant women participated in the
study.

3. RESULTS AND DISCUSSION

3.1. Simulation
Figures 5A–D show a comparison between the approximated
mixing vectors (plotted in red) using the expression derived in
Equation (16) and the original mixing vectors (plotted in blue),
for a full rank mixing matrix of 3 and for k= 1, 6, 50, and 100,
respectively. The main purpose here is to overlap the vectors
as much as possible or, in other words, minimize the 2-norm
between the approximated mixing matrix and the original one.
In addition, Figure 6 shows the abs 2-norm difference between
the approximated mixing matrix W and the original one to
indicate the suitable sum of the kth lag. The least 2-norm range
occurs in the range from 6th lag (equivalent to 0.006 s) to a
max of 60th lag (equivalent to 0.06 s) for the given fs (1,000
Hz). The 6th lag sum gives the best approximation results, while
minimizing the computational process. The 0.006–0.06 s gives
the indication that in practical scenarios the time lagged cross-
covariancematrices can not share across all the time lags the same
A, because practically we can partially assume that the signal
is stationary over a short period of time just as the 0.06 s. The
sampling frequency here will not affect the ideology as generally
we define its sufficient value to make sure that we detect the
maximum needed frequency in our collected data. To be more
specific, the advantage of using a 1,000 Hz sampling frequency

FIGURE 5 | Overlapping the approximated mixing vectors (red) with the original ones (blue) for different k values (A–D) on a random iteration.
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FIGURE 6 | Random iteration: The abs 2-norm difference between the

approximated mixing matrix and the original one, the shaded area indicates

the good values of k to be used in the separation.

appears when it comes to record the peaks of the detected fHS, a
less sampling frequency would still collect the desired frequency
component but would miss a peak point in fHS. It is very
critical to obtain clear set of signals. The ECG data set that was
collected to construct our synthetic model was recorded using
AD instrument power lab four channel data acquisition system at
a 1,000 Hz sampling rate, which produced smooth heart sounds.
In industry, an ECG sampling interval of 1 ms is recommended
to get accurate time domain measures. Accordingly, our PCG
data were recorded at a 1,000 Hz, to acquire enough time domain
measure. It is worth mentioning that a less sampling rate would
result in a less number of time lags, but the time sample which
happens to be at sample number 60 in Figure 6 would be missed
in a less number of time lags. So, a less number of time lags due
to a reduced sampling frequency would affect the resolution of
Figure 6 and would not give us a clear picture of our kth-lag
range.

Figure 7 shows the results of the proposed source separation
approach when applied to the simulated data, using the 6th lag.
When comparing the initial sources used for mixing (Figure 3)
with the ones estimated in Figure 7, a clear source separation
can be noticed, since the maternal breathing pattern, mHS and
the fHS are correctly separated. In approximately all of the
50 iterations (program runs), the suitable k-value range was
concluded the same.

3.2. Separating Key Fetal and Maternal
Source Signals
The raw data shown in Figure 2 of subject ID 145 were separated
intro their source components, as seen in Figure 8, i.e., the
maternal breathing, mHS, and fHS. The extracted fetal heart
rates were then compared with the same obtained from Monica
wireless CTG AN24 over the same time span, as shown in
Figure 9. In general, the PCG-based fHR shows good similarity
with the one obtained by Monica wireless CTG AN24, except
from some sudden changes noticed in baseline (e.g., around
12th second in Figure 9). This is however expected, as Monica
CTG AN24 uses a 3.75 s averaging window; hence, the original

FIGURE 7 | The results from the proposed source separation approach when

applied to the simulated signals with mixed sources shown in Figure 3 for k=6.

variation in fHR might have been lost due to this averaging
process.

Furthermore, fHR extracted from fPCG were also compared
with the same from the Phillips Avalon FM300 CTG device.
In Figure 10, the fHR has been obtained from the same fHS
panel but extended to 60 s (inset panel) to produce the same
CTG portion highlighted within a square. The 60 s window
is used, since the Phillips Avalon FM300 CTG device has a
resolution of 60 s data/cm as the drawn 1 cm red square
shows in Figure 10. The corresponding fPCG-based fHR (in the
embedded subfigure of Figure 10 connected with the red square)
shows good similarity with the same from the Philips device, as
seen in the drawing pattern of the fHR, where the variability
pattern is approximately similar. Acceleration and deceleration
of the fHR are important signs for fetal well being. Figure 11
shows the denoised fHS detected of subject ID 195. Using fPCG-
based monitoring, clear signs of acceleration and deceleration
were noticed. The fPCG-based fHR were plotted and compared
with the same from its Monica wireless CTG AN24 version,
exhibiting a good matching in the acceleration/deceleration
periods.

3.3. Overall Comparative Performance
From an overall comparative perspective, Figure 12 shows the
generated Bland-Altman plot of the mean fHR values (fPCG
vs. CTG) in all 20 subjects, where Bland–Altman mean =

−0.21 BPM and ±2 SD = ±3 BPM are identified. Moreover,
Figure 13 depicts the Spearman correlation between the fHR
from fPCG and fECG, respectively, exhibiting a ρ value of
0.95 (significance level of p < 0.001). Apparently, these results
confirm that the fPCG-based fHR is comparable to those
obtained by Monica wireless CTG AN24 and by Phillips Avalon
FM300 CTG device. Such sensors setup and signal processing
algorithm is of low cost and can be run on any PC and
it is safe for long term monitoring. There is be no need
for skilled operator to be able to operate the system, as the
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FIGURE 8 | Subject ID 145: The results of extraction process of Figure 2

using the method mentioned in Figure 4, from the top to the bottom are the

maternal breathing, mHS, fHS, and other noises. Two possible heart sounds

(S1 and S2) of fetal heart are also seen and highlighted by a circle in the

expanded view.

sensors harness can easily be placed on the abdomen, which
could open up the possibility for home monitoring of fetal
well-being.

FIGURE 9 | Subject ID 145: Comparison between fHR (bpm) obtained using

fPCG vs. Monica wireless CTG AN24.

FIGURE 10 | Subject ID 189: The results of extraction using the method

mentioned in Figure 4, where the maternal breathing, fHS and (CTG vs. fPCG)

fHR are shown.

The acceptable matches of mean fHR values and fHR baseline
between the PCG and CTG data, verified by Bland–Altman
and the Spearman correlation plots, support the application of
PCG-based obstetric medical assessment rules on all the tested
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FIGURE 11 | Subject ID 195: the results from the proposed source separation

approach (Figure 4), where the maternal breathing, fHS and (CTG vs. fPCG)

fHR are shown (top to bottom panels). Note that acceleration and deceleration

periods have been picked by the PCG, in accordance to the ones picked by

the Monica wireless CTG AN24, as shown in the bottom panel.

subjects. However, both PCG and CTG scan-based obstetric
medical assessment suggested that the tested subjects had no
urgent clinical issues in this study.

The novelty of this study includes the proof of concept
that multi-channel low-cost vibration sensors harnessed in high
definition 3D printed casings were able to reliably pick the
fetal heart sounds. The control matrix e extracted from the OR
logic of the zeroth lag covariance has been used to disable bad
channels before applying any processing. Our proposed signal
processing technique introduces the concept of summing multi-
lag cross covariance matrices in an eigen value decomposition
form. The multi-lag cross covariance sum is up to kth-lag
sample. Depending on the final kth-lag cross covariance sum,
the approximated demixing matrix performance changes, where
we showed that multi-lag cross covariance sum up to kth-lag =
6–60 is reliable to separate fetal heart sounds from abdominal
phonograms. In this acceptable range, choosing k = 6 gives
the best optimization in terms of extraction performance and
computational power as less sums will be computed. Besides, the
multi-resolution wavelet decomposition with dynamic threshold
values at each level to separate non-stationary signal components
(noise) from stationary signal components (heart sounds) proved

FIGURE 12 | The Bland Altman plot of the fHR (fPCG vs. CTG) in the tested

20 subjects with mean = −0.21 BPM and ±2 SD = ±3 BPM.

FIGURE 13 | The estimated Spearman correlation coefficient of ρ = 0.95

(significance p < 0.001) yields a linear regression between fHRfPCG (bpm) and

fHRCTG (bpm).

to be effective in denoising extracted noisy fetal heart sounds.
The proposed method does not assume independent signals as
this is a hardly met condition on abdominal surface due to
different sources of noises. However, it looks at the best way to
maximally decorrelate the sources. Due to the fact that it involves
decomposition of the sources using extracted eigenvectors, puts
it as a good candidate for fast processing specially in real-
time processes. The length of the extracting vector equals the
number of the maximally decorrelated channels, which imposes
no storage limitation. The algorithm does not need any complex
operations, while it only involves multiplications and additions
which would not impose any heavy computation on the CPU.
These advantages would qualify the algorithm to be run on any
smart phone for domestic use.
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The setup of our data acquisition system helped our recording
environment to be as close to non-noisy as possible. The
high definition 3D printed sensors holders harness robustly the
vibration sensors on the abdomen that isolate them from possible
unneeded external BSS context; such as, any speech signal. This
along with our e control matrix narrow down the channels into
maximally correlated ones. This helps our four sensors or less
(depending on the e matrix) to receive the desired BSS context
but with different linear combination due to the medium.

Possible unneeded abdominal BSS context; such as, muscle
noise and baby kicks are not a big concern. These events don’t
happen all the time and can be tracked if a loss of fHS is witnessed.
This is similar to the methodology used in the CTG scans.

However, further validations of PCG-based fHR on a variety of
non-reassuring patterns of fHR, as seen in clinical scenarios, such
as early decelerations, late decelerations, prolonged deceleration,
recurrent, sinusoidal fHR, and variable decelerations are needed
before the proposed technique could be used for a potential
low cost antenatal care system. It is important to mention that
we did not investigate how maternal weight such abdominal
adiposity could influence the phonocardiogram signal quality in
this study.

4. CONCLUSION

In this study, four channel low-cost vibration sensors in a square
configuration harness were shown to capture fetal phonogram
signals that were separated into source signals, such as fetal and
maternal heart sounds and maternal breathing, by using a multi-
lag cross covariance matrix-based eigenvalue decomposition
technique. The carefully designed sensors casings by using HD
3D printing technology allowed us to dampen the noises caused
by sheer due to maternal movements or external environmental
disturbances. The validation results with clinically accepted
standard CTG machines showed good agreements, which could
open the future potential for such system to be used in clinical
fetal monitoring. However, more validations on a variety of

early, mid, and late gestational normal and abnormal cases are
needed before it could be considered as a clinical fetal monitoring
tool.
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