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Abstract: Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the
cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects
millions of people globally. The articular cartilage is composed of a dense extracellular matrix
(ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different
functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and
understanding the interplay between these chondrocyte subtypes and other cell types in the joint
will greatly expand our understanding of joint biology and OA pathology. Although recent advances
in high-throughput OMICS technologies have enabled molecular-level characterization of tissues
and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes
has not yet been undertaken, which may be in part due to the technical difficulties in isolating
chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy
and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes
with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes.
We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the
extent of molecular similarity between mice and humans. This work expands our view of chondrocyte
heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma
and highlights potential mechanisms that trigger cartilage degeneration.

Keywords: osteoarthritis; chondrocyte heterogeneity; scRNA-seq; PTOA; cartilage; gene expression;
knee injury

1. Introduction

Osteoarthritis (OA) is a degenerative joint disorder that affects more than 300 million
people worldwide, often resulting in diminished quality of life and disability [1,2]. Al-
though OA prevalence is on the rise and the Center for Disease Control estimates that as
many as 78 million Americans (or one in four) will suffer from OA by 2040, an in-depth
understanding of the joint microarchitecture and molecular mechanisms that contribute
to OA initiation and progression is still in its infancy [1]. Furthermore, the lack of suffi-
cient progress in this area has severely hindered the development of effective therapeutic
approaches for the early diagnosis, prevention, and treatment of OA.

The knee joint is a complex structure composed of several tissues including articular
cartilage, synovial membrane, joint capsule, menisci, subchondral bone, infrapatellar and
suprapatellar fat pads, and tensile connective tissues including tendons and ligaments [3].
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Degeneration of the articular cartilage, the connective tissue lining the articular surfaces of
synovial joints, is a hallmark of OA. This type of cartilage has unique viscoelastic properties
with an extraordinary capacity to withstand high cyclic loads, but it is also avascular with
limited potential to self-renew [4]. It is composed of a densely packed extracellular matrix
(ECM) with a sparse distribution of chondrocytes of varying morphology and number
depending on the anatomical position within the articular cartilage [5]. While distinct
chondrocyte morphologies have been recognized histologically, we have yet to determine
the molecular profiles underlying chondrocyte heterogeneity to further our understanding
of how specific transcripts corroborate chondrogenic phenotypes in the healthy joint as
well as how perturbations in individual cells mediate OA pathology.

Several studies have transcriptionally profiled articular cartilage/chondrocytes using
human tissue samples obtained during joint replacement surgeries, but generally these
results represent late-stage OA cartilage only [6–9], and may lack details on disease etiol-
ogy. Although these studies yielded new insights into the molecular programs involved
in OA progression, they provided limited information about the molecular profiles of
chondrocytes isolated from healthy joints. These studies were also unable to distinguish
early from late molecular changes associated with cartilage degeneration. Animal models
are widely used to study joint biology and offer a unique opportunity to study early stages
of OA and mechanisms of disease progression. In recent years, several groups, including
ours, have employed techniques such as bulk tissue RNA sequencing (RNA-seq) and
microarrays to investigate the molecular changes in the mouse joint that contribute to the
development of OA [10–13]. However, whole-joint gene expression profiling does not pro-
vide any information about the underlying cellular heterogeneity and fails to distinguish
cell type-specific changes versus transcriptional changes happening in multiple cell types.
Although several studies have attempted to profile specific components of micro-dissected
joints to obtain more ‘tissue-specific’ gene expression profiles, such undertakings have been
technically challenging and likely generate samples contaminated by some of the adjacent
tissues [14,15]. Single-cell RNA sequencing (scRNA-seq) enables us to overcome these limi-
tations [16] by allowing us to profile gene expression in all individual cells purified from a
complex structure such as the knee joint. This will in turn help us understand molecular
differences between various cell types and subtypes as a function of disease progression
and will lead to the discovery of previously unknown cell populations, cell type-specific
transcriptional profiles, and molecular pathways responsible for the development of OA.

Isolating chondrocytes from the articular cartilage is technically challenging due to
the cells being embedded within a dense, fibrous ECM [17]. In the present study, we
successfully isolated articular chondrocytes from adult mouse knee joints before and af-
ter traumatic injury, and profiled their transcriptomes using scRNA-seq. Through this
approach we identified nine transcriptionally distinct chondrocyte subpopulations and
determined the injury-induced molecular changes in these subpopulations within 7 days
post-injury. Furthermore, we compared the repertoire of mouse chondrocyte subtypes to
human chondrocytes harvested from OA cartilage to evaluate the extent of cross-species
translatability of pre-clinical results from animal models of OA. We identified six mouse
chondrocyte subtypes with highly molecular fidelity to the human subtypes. This study
allowed us to elucidate the full extent of heterogeneity among articular chondrocytes
in healthy and injured mouse cartilage, and identify several chondrocyte subtypes with
defined markers. The injury-induced early molecular changes described in these chondro-
cytes may represent new therapeutic targets for evaluating therapeutic interventions for
the prevention of cartilage degeneration in response to traumatic injury.

2. Materials and Methods
2.1. Anterior Cruciate Ligament (ACL) Injury Model

Ten-week-old male C57Bl/6J (BL6) mice (purchased from Jackson Laboratory Bar Har-
bor, ME, USA; Stock No: 000664) were subjected to anterior cruciate ligament injury using a
single non-invasive tibial compressive overload, as previously described [12,13,18,19]. Tib-
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ial compression was applied at 1 mm/s, and loading was manually stopped immediately
after ACL injury.

2.2. Histological Assessment of Disease Severity

Knee joints were collected from uninjured, 3 days post injury (DPI), 7DPI, and 6-weeks
post injury (n ≥ 3/group) mice and processed for histological evaluation as previously
described [12]. Briefly, whole joints were fixed in 10% neutral buffered formalin (NBF),
decalcified using 0.5 M ethylenediamine tetraacetic acid (EDTA), and processed for paraffin
embedding. Joints were sectioned in the sagittal plane at 6 µm and serial medial sections
that included the femoral condyles, menisci, and tibial plateaus were prepared for histolog-
ical assessment of joint tissue integrity. Sections were stained on glass slides using 0.1%
Safranin-O (0.1%, Sigma, St. Louis, MO, USA; S8884) and 0.05% Fast Green (0.05%, Sigma,
St. Louis, MO, USA; F7252) using standard procedures (IHC World, Woodstock, MD, USA),
and then imaged using a Leica DM5000 microscope.

2.3. Immunohistochemistry (IHC)

Sagittal sections from uninjured, 3DPI, and 7DPI knee joints of BL6 mice were used for
IHC (n ≥ 3/group). Primary antibodies were incubated overnight at 4 ◦C in a dark, humid
chamber following antigen retrieval. Secondary antibodies were incubated for 2 h at room
temperature in a dark, humid chamber at 1:500. Negative control slides were incubated
with secondary antibody only. Stained slides were mounted with Prolong Gold with
DAPI (Molecular Probes, Eugene, OR, USA). Slides were imaged using a Leica DM5000
microscope (Leica Microsystems, Wetzlar, Germany). ImagePro Plus V7.0 Software, a
QIClick CCD camera (QImaging, Surrey, BC, Canada), and ImageJ V1.53 Software were
used for imaging and photo editing. Primary antibodies included: CYTL1 (Proteintech,
Rosemont, IL, USA; 15856-1-AP (1:75)); MATN3 (R&D, Minneapolis, MN, USA; AF3357
(1:100)); SPP1 (Abcam, Cambridge, UK; ab218237 (1:100)); MMP3 (Abcam, Cambridge,
UK; ab52915 (1:100)); CHIL1 (Thermofisher, Waltham, MA, USA; MA5-36122 (1:100)); and
INHBA (Thermofisher, Waltham, MA, USA; 10651-1-AP (1:100)). Secondary antibodies
included: Chicken anti-rabbit 488 (Thermofisher, Waltham, MA, USA; A21441), Chicken
anti-rabbit 594 (Thermofisher, Waltham, MA, USA; 21442), and Donkey anti-goat 594
(Thermofisher, Waltham, MA, USA; A11058).

2.4. Single-Cell RNA Sequencing (scRNA-seq)

Uninjured, 3DPI, and 7DPI joints (n = 5/group) were used for scRNA-seq analysis.
Mice were euthanized and hindlimbs were collected by removing the legs at the hip joint
and storing on ice in Dulbecco’s Modified Eagle Medium Nutrient Mixture F-12 (DMEM/F-
12) (Thermo Fisher Scientific, Waltham, MA, USA). Articular cartilage from tibia and
femora was isolated by cutting ~1 mm of tissue from the end of both long bones at the knee
joint. For each experimental group, cartilage tissue from 5 mice was pooled, and digested
to a single-cell suspension homogenate in 5 mL of 0.2% Collagenase 2 solution (2 mg/mL
Thermo Fisher Scientific, Waltham, MA, USA) while shaking at 37 ◦C for a total of 2 h in
30-minute intervals. After each 30-minute interval, fractions were filtered through a 70 µm
Nylon cell strainer into DMEM/F12 with 10% fetal bovine serum (FBS) and kept on ice.
Remaining undigested cartilage tissue was further digested in 5 mL of fresh Collagenase 2
digestion media. After the final digestion interval, cells were pelleted via centrifugation
for 10 min at 500 G at 4 ◦C, and incubated on ice with ACK lysis buffer (Thermo Fisher
Scientific, Waltham, MA, USA) to remove red blood cells. Cells were stained with the
following antibodies for flow cytometry and fluorescently activated cell sorting (FACS)
analysis: CD45 APC-Cy7 (BioLegend, San Diego, CA, USA, 103116 (1:100)), Ter119 APC
(Miltenyi Biotec, Bergisch Gladbach, Germany, 130-102-290, (1:10)), and DAPI (Thermo
Fisher Scientific, Waltham, MA, USA). Immune and erythroid contamination was depleted
via double-negative selection (CD45−; Ter119−) using the BD FACSMelody (San Jose, CA,
USA). Final cell counts after FACS were performed manually using a hemocytometer and
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then resuspended in PBS + 0.04% nonacetylated BSA for preparation of scRNA-seq using
a Chromium Controller (10× Genomics, Pleasanton, CA, USA). Library preparation was
performed using Chromium Single Cell 3′ GEM, Library & Gel Bead Kit v3 (10× Genomics,
Pleasanton, CA, USA; Catalog no. 1000075) following the manufacturer’s protocol and
sequenced using Illumina NextSeq 500 targeting approximately 50,000 reads per cells.

2.5. scRNA-seq Data Analysis of Chondrocytes from Uninjured Joints

Alignment of scRNA-seq data to the mouse genome (mm10) and gene counting was
completed utilizing the 10× Genomics Cell Ranger pipeline (10× Genomics, Pleasanton,
CA, USA). Subsequently, output files from the Cell Ranger ‘count’ were read into Seurat
v3 [20] for further analysis. Cells with fewer than 500 detected genes or genes that were
expressed by fewer than 5 cells were excluded from the analysis. Dead cells and doublets
were also removed as previously described [21]. After removing all the unwanted cells
from the dataset, the data was normalized by employing a global-scaling normalization
method ‘LogNormalize’. Subsequently, the 2000 most variable genes were identified, the
data were scaled, and the dimensionality of the data was reduced by principal component
analysis (PCA). Subsequently, we constructed a K-nearest-neighbor (KNN) graph based
on the Euclidean distance in PCA space using the ‘FindNeighbors’ function and applied
Louvain algorithm to iteratively group cells together by the ‘FindClusters’ function. A
non-linear dimensional reduction was then performed via uniform manifold approxi-
mation and projection (UMAP) and various cell clusters were identified. Then, clusters
expressing immune and blood cell markers were removed and the remaining data were
normalized, scaled, and, after variable feature identification, the data were re-clustered
to identify clusters of non-immune cells in the joint. To identify chondrocyte subtypes,
clusters expressing chondrocyte markers Acan, Sox9, and Col2a were extracted and further
analyzed as described above. Marker genes per cluster were calculated using Seurat’s
‘FindAllMarkers’ function and the ‘wilcox’ test option. All scRNA-seq data described
herein were deposited in the Gene Expression Omnibus (GEO) database, GEO accession
ID GSE172500.

2.6. Analysis of Human Chondrocyte scRNA-seq Data

Human chondrocyte scRNA-seq data [6] were downloaded from Gene Expression
Omnibus (GEO) database (GSE104782) and a text file was obtained with raw expression
values. The data were analyzed using Seurat [6], as described above to identify various cell
types. Subclusters were annotated based on the markers provided by Ji et al. [6].

2.7. Comparison of Chondrocytes from Uninjured and Injured Joints

scRNA-seq data from uninjured, 3DPI, and 7DPI joints were analyzed using Seurat
v3 [6]. After data pre-processing, variable features were selected based on a variance
stabilizing transformation (‘vst’). Then, we identified anchors for data integration using the
‘FindIntegrationAnchors’ function. Next, these anchors were passed to the ‘IntegrateData’
function and new integrated matrix with all 3 datasets were generated. Subsequent dimen-
sionality reduction, clustering, and visualization were performed in Seurat as described
above. Clusters of cells expressing the chondrocyte markers Sox9, Acan, and Col2a1 were
extracted and further analyzed to identify various chondrocyte subpopulations. Genes dif-
ferentially expressed between chondrocyte subtypes at various timepoints were identified
using ‘FindMarkers’ function implemented in Seurat.

2.8. Pseudotime Trajectory Finding

Pseudotime trajectory of chondrocytes was constructed with Monocle [22]. Expression
data, phenotype data, and feature data were extracted from the Seurat object and a Monocle
‘CellDataSet’ object was constructed. Highly variable genes from Seurat object were used as
ordering genes in Monocle. Dimensionality reduction was performed using the DDRTree
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algorithm implemented Monocle via the ‘reduceDimension’ function. Cells were ordered
along the trajectory using the ‘orderCells’ method with default parameters.

2.9. Ontology Enrichment Analysis

Genes enriched in each chondrocyte subtype were identified using ‘FindAllMarkers’
function from Seurat [6]. Genes with >1.25-fold enrichment in each cluster with an adjusted
p-value < 0.1 were used for ontology enrichment analysis using ToppGene Suite [23] and
Metascape [24]. Dot plots of enriched ontology terms were generated in R using the
ggplot2 package.

3. Results
3.1. Single-Cell Profiling Reveals Cellular Heterogeneity in Healthy Murine Knee Joints

To characterize articular chondrocyte heterogeneity, we profiled uninjured knee carti-
lage from adult mouse joints at a single-cell resolution. About 1 mm wide articular cartilage
tissue was dissected from the ends of tibia and femora, enzymatically digested to a single
cell suspension, and depleted of immune and blood cells to obtain a chondrocyte-enriched
(CD45−; Ter119−) cell fraction that was subjected to sequencing (Figure 1A). Unsupervised
clustering of the data resulted in 13 cell type clusters including some remnant immune
(CD45+/Ptprchigh) and blood cell (Hemgnhigh) clusters (Figure S1). These immune and
blood cells were computationally filtered and excluded from subsequent analysis. Analysis
of the remaining 2490 cells resulted in 10 cell clusters with distinct gene expression profiles
(Figure 1B and S2A). Cell type identities were assigned based on previously published
cell-type specific markers [21,25–33] (Figure 1B). Cells in clusters 0, 1, 3, and 4 expressed
high levels of chondrocyte markers Sox9, Col2a1, and Acan [25] and were labeled ‘chon-
drocytes’ (Figure 1C,D). Cluster 7 also expressed high levels of Sox9, Col2a1, and Acan.
However, this cluster also showed enrichment for several cell cycle genes, including Mki67,
Cdk1, Stmn1, Top2a, and Cenpa [26]; this cluster was therefore annotated as ‘proliferating
chondrocytes’ (Figure 1D and S2A,B). Cluster 2 expressed markers of synovial subintimal
fibroblasts (SSF) including Cxcl12, Col3a1, and Col14a1 [7] along with many other mes-
enchymal and fibroblast markers including Pdgfra, Pdpn, Clec3b, Abi3bp, Col3a1, Col14a1,
fibroblast-specific protein 1 (FSP1/S100a4), and Thy1, and was labeled as the ‘mesenchymal
cells/fibroblasts’ cluster (Figure 1D and S2C) [21,27,28]. As we previously reported for
fibroblasts isolated from the mammary fat pad [21], fibroblast/mesenchymal cells from
the joint also expressed cytokines Ccl2, Ccl7, Cxcl1, and Cxcl12 and complement pathway
genes C3 and C4b (Figure S2C). Cluster 5 was labeled ‘osteoblasts’ based on enrichment
of the well-known osteoblast markers Col1a1, Col1a2, osteocalcin (Bglap), and alkaline
phosphatase (Alpl) (Figure 1D) [29]. Cluster 6 showed high expression of endothelial cell
markers Pecam1, Ptprb, and VE-Cadherin (Cdh5) [21,30] whereas cluster 8 showed enrich-
ment for pericyte markers including Rgs5, Myh11, and Mcam [28,31–33], and were classified
as ‘endothelial’ and ‘pericytes’, respectively (Figure 1D). We also identified a small cluster
of ‘synovial intimal fibroblasts’ (SIFs). SIFs expressed fibroblast markers Pdgfra and Pdpn,
along with high levels of the SIF markers lubricin (Prg4), Has1, and Htra1 (Figure 1D) [7].
A cluster tree revealed the relationship between these cell populations. As expected, all
chondrocyte clusters showed tight similarities in their expression profiles (Figure S2D).
Osteoblasts and mesenchymal cells/fibroblasts were found closer to each other, while
endothelial cells and pericytes appeared to be more similar to each other (Figure S2D),
than to all other cluster types. SIFs were distinct from all other cells and formed a separate
branch on the cluster tree (Figure S2D).

Next, we compared the gene expression profiles of chondrocytes to all other cell
type clusters (clusters 2, 5, 6, 8, 9) to identify genes enriched in healthy chondrocytes
compared to other connective tissue-forming cells in the joint (Table S1, Figure S3). The
master chondrocyte transcription factor Sox9 [25] and several other transcription factors
(Nfatc2, Runx3, Bhlhe40, Bhlhe41, Lef1, Tsc22d1, and Sox5) showed significant enrichment
in all chondrocyte clusters, suggesting that these transcription factors play major roles in
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regulating chondrocyte differentiation or homeostasis (Figure 1E and S3A). Previously,
it has been shown that the ECM of articular cartilage is distinct from other types of
connective tissues [4]. In addition to the well-established chondrocyte marker Col2a1, we
identified several collagens differentially expressed by chondrocytes relative to other cell
types including Col9a1, Col9a2, Col9a3, Col11a1, Col11a2, Col12a1, and Col27a1 (Figure S3B).
Chondrocytes also showed enrichment for numerous proteoglycans (Acan, Chad, Epyc,
Prelp, and Hapln1) and glycoproteins (Cilp, Cilp2, Crispld1, Thbs1, Matn3, Comp, and Smoc2)
(Figure S3C). Several members of the serpin family (Serpina1a, Serpina1b, Serpina1d, and
Serpine1), Smpd3 (an enzyme involved in sphingolipid metabolism) [34], and Papss2 and
Chst11 (enzymes involved in the glycosaminoglycan metabolic process) [35,36] also showed
significantly higher expression in chondrocytes compared to other cell types from the
murine articular joint (Figure S3C). This analysis provides novel insights into cellular
heterogeneity in synovial joints and highlights differences in the transcriptome of articular
chondrocytes relative to other connective tissues in the healthy knee.

Figure 1. Single-cell analysis of 10-week-old BL6 mouse knee joints. (A) Graphical representation of the experimental
workflow. Cartilage from mouse knee joints was dissected, dissociated into single cells, and subjected to immune and blood
cell depletion. Viable cells from the remaining fraction were sequenced. (B) Cell clusters from scRNA-seq analysis visualized
by Uniform Manifold Approximation and Projection (UMAP). Colors indicate clusters of various cell types. (C) Feature plot
showing the expression of chondrocyte marker Acan. (D) Dot plot showing the expression of selected markers of various
cell types. Dot size represents the % of cells expressing a specific marker, while the intensity of color indicates the average
expression level for that gene, in that cluster. (E) Violin plot showing the expression of key transcription factors enriched
in chondrocytes.
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3.2. Identification of Potential OA Targets Enriched in Chondrocytes

OA is a complex disease which affects multiple tissue types in the joint. Several human
and animal model-based bulk gene expression studies have identified thousands of genes
dysregulated in OA joints. However, for many of these genes the tissue/cell types that
express these genes are not known. To identify OA-associated genes that are primarily ex-
pressed by chondrocytes we obtained a list of potential OA targets from OAtarget, a recently
developed knowledgebase of genes associated with OA, and determined their expression
levels in various cell types in the mouse joint [37]. A total of 62 OA target genes identified
by 3 or more independent studies were ≥2-fold enriched in chondrocytes compared to
other cell types (Figure 2A, Table S2). SIFs showed ≥2-fold enrichment for 60 genes, while
mesenchymal cells/fibroblasts showed enrichment for 29 OA targets (Table S3). Twenty-six
OA targets were enriched in osteoblasts. We also noted that both pericytes and endothelial
cells showed enrichment for ~100 potential OA targets (Table S3), suggesting the complex
molecular contribution of many different cell types to OA pathology.

Figure 2. Identification of potential OA targets enriched in chondrocytes. (A) Heatmap showing
potential OA targets enriched in chondrocyte clusters compared to other connective-tissue forming
cell types in the joint. (B) Violin plot showing the expression of selected OA targets that are expressed
in all chondrocyte subtypes and OA targets with a restricted expression pattern. (C) Dot plot showing
the expression of selected markers of various chondrocyte clusters. Dot size represents the fraction
of cells expressing a specific marker and color intensity indicates the average expression level in
that cluster.

Although many of the potential OA targets were expressed by multiple cell types at a
comparable level, significant enrichment for a select group of these genes in chondrocytes
could indicate their direct involvement in regulating cartilage metabolism and other cellular
processes. Potential OA targets significantly enriched in chondrocytes compared to other
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cell types included Col2a1, Acan, Cnmd, Chad, Scrg1, Wwp2, cartilage intermediate layer
protein (Cilp), Smpd3, osteoprotegerin (OPG/Tnfrsf11b), Wnt inhibitory factor 1 (Wif1),
Matrilin 3 (Matn3), Col9a1-3, and Hapln1 (Figure 2A,B). We also observed that some of
these genes had their expression restricted to specific chondrocyte subpopulations, which
points to a substantial heterogeneity within chondrocyte subtypes. Among chondrocytes,
cluster 0 showed enrichment for Matn3, Col9a1-3, and Hapln1, whereas cluster 1 showed
enrichment for cytokine-like 1 (Cytl1), Bmp2, Ibsp, and cartilage intermediate layer protein
2 (Cilp2) (Figure 2A,C, S2A and S3B,C). This cluster also showed significant enrichment for
OA targets including osteoprotegerin (OPG/Tnfrsf11b), Wif1, and Cilp (Figure 2B). Cluster
3 showed enrichment for Krt16, M1ap, and Dusp5, whereas cluster 4 showed enrichment
for chitinase-like 1 (Chil1), Mgp, and Apoe (Figure 2C and S2A). To define chondrocyte
subtypes more in depth, we next analyzed the transcriptional profiles of chondrocyte
clusters separately.

3.3. scRNA-seq Analysis Identified Nine Chondrocyte Subtypes in Mouse Knee Joints

All cells from clusters expressing chondrocyte markers (clusters 0, 1, 3, 4, and 7) were
extracted and re-examined in greater detail. This included 1625 cells expressing high levels
of Sox9, Col2a1, and Acan (Figure 3A), accounting for ~65% of all stromal cells analyzed.
The analysis of these chondrocytes revealed nine clusters with distinct gene expression
profiles (Figure 3B–D and S4A,B, Table S4). Cluster 0 showed enrichment for Ucma, Matn3,
Papss2, and Scrg1 (Figure 3C,D and S4A, Table S4) and was annotated ‘Ucmahigh’. These
genes were also enriched in clusters 2, 3, and 6, but these clusters had additional cluster-
specific markers (Figure S4A,B). Cluster 2 showed enrichment for Mef2c, Ihh, and Pth1r,
markers of pre-hypertrophic chondrocytes [38–40], and this cluster was named ‘Mef2chigh’
(Figure 3C,D and S4A). A subset of cell from the Mef2chigh cluster also expressed Col10a1, a
marker of chondrocyte hypertrophy [38] (Figure S4C). Cluster 3 had unique markers Krt16,
M1ap, Ngf, and Srxn1 and was annotated as ‘Krt16high’ (Figure 3C,D and S4A, Table S4).
Cluster 6 expressed high levels of cell cycle-associated genes Cdk1, Top2a, Cenpf, and H2afz,
and was identified as ‘dividing chondrocytes’ (divC).

Cluster 1 expressed high levels of cytokine-like 1 (Cytl1), Cilp2, and Prg4, and was
annotated ‘Cytl1high’ (Figure 3C,D and S4A). Clusters 7 and 8 also robustly expressed these
genes, but cluster 7 showed enrichment for additional genes including Tnfaip6, Smoc2, Clu,
and Gas1, whereas cluster 8 showed enrichment for fibroblast/fibrosis markers, fibroblast-
specific protein 1 (S100a4/FSP1), and Col1a1, Col3a1, and Abi3bp, in addition to Npy and
osteopontin (OPN)/secreted phosphoprotein 1 (Spp1) (Figure 3C,D and Figure S4A,D).
Cluster 7 was annotated as ‘Tnfaip6high’ and cluster 8 was annotated as ‘S100a4high’.
Tnfaip6high cluster also expressed many fibroblast markers and regulators of fibrosis
including Abi3bp, Inhba, and Spp1, but the expression levels for many of these genes
were not as high as in the S100a4high cluster [41,42] (Figure S4D and Table S4). It is
likely that the Tnfaip6high cluster represents pre-fibrotic chondrocytes and the S100a4high

cluster represents chondrocytes with a more mature fibrotic phenotype (Table S4). Cluster 4
expressed high levels of Chil1 (CHI3L1), Efemp1, Spon1, Mgp, and Fxyd3, and was annotated
‘Chil1high’ (Figure 3C,D and S4A). Cluster 5 shared several markers with other subtypes
but also had higher expression of Neat1, Malat1, Ogt, and Wwp2, and was denoted the
‘Neat1high’ cluster (Figure S4E, Table S4).

To understand the relationship among these chondrocyte subpopulations, we con-
structed a transcriptional trajectory of these cells on a pseudotime scale using Monocle [22].
Pseudotemporal trajectory analysis predicted a branched trajectory where divCs resided at
one end, while Tnfaip6high and S100a4high cells were observed at the opposing end of the
trajectory (Figure 3E,F). Cytl1high cells were closer to the Tnfaip6high and S100a4high clusters.
Cells from the Chil1high and Neat1high clusters resided along the trajectory (Figure 3D,E),
while the Krt16high, and Mef2chigh clusters formed distinct branches (Figure 3E). Ucmahigh

cells resided closer to cells from the Krt16high and Mef2chigh clusters and DivCs. This
analysis suggested that the Tnfaip6high, S100a4high, and Cytl1high clusters were closer in
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developmental time while Krt16high and Mef2chigh clusters were developmentally closer to
the Ucmahigh cluster, which begged the question as to whether the physical relationship to
each other translated to similarity in localization or function.

Figure 3. Characterization of chondrocyte subtypes. (A) Feature plots showing the expression of key chondrocyte markers.
Blue: high expression, grey: low expression. (B) UMAP plots of various chondrocyte subtypes in mouse knee joints. Colors
indicate clusters of various cell types with distinct gene expression profiles. (C) Heatmap showing the scaled expression of
top genes differentially expressed in each cluster. (D) Violin plots showing the expression of selected markers of various
chondrocyte subtypes. (E) Monocle pseudotime trajectory colored based on chondrocyte clusters in (A). (F) Expression of
chondrocyte subtype markers on a pseudotime scale (colored based on clusters in (A)).
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3.4. Molecular and Functional-Level Characterization of Chondrocyte Subpopulations

To further understand the potential functional roles of these chondrocyte subtypes in
maintaining articular cartilage metabolism and joint homeostasis, we performed a gene
ontology enrichment analysis with genes upregulated in each chondrocyte subpopulation
relative to all other subtypes (Figure S4A). As expected, all chondrocyte subtypes showed
significant enrichment for the ontology terms ‘cartilage development’ and ‘ECM organiza-
tion’ (Figure 4A). However, many of the cartilage ECM genes were differentially expressed
among the subtypes. For example, collagens Col9a1-a3, Col11a1-a2, and Col12a2 showed
significant enrichment in the Ucmahigh, Krt16high, and Mef2chigh clusters, whereas Col1a1,
Col1a2, and Col3a1 showed enrichment in the Cytl1high and S100a4high clusters (Figure S4F).
In addition to the Mef2chigh cluster, Col10a1 expression was detected in the Tnfaip6high

cluster (Figure S4C). Collagen-processing enzymes such as Lox, Loxl1, and P3h2 were also
differentially expressed between these chondrocyte subtypes (Figure S4G). We also identi-
fied several proteoglycans and proteoglycan-processing enzymes differentially expressed
among these chondrocyte subtypes (Figure S5A). Notably, Acan, Bgn, Epyc, Hapln, Chadl,
Gpc1, and two enzymes involved in proteoglycan metabolism, Papss2 and Chst12, were
significantly enriched in the Ucmahigh, Krt16high, and Mef2chigh clusters (Figure 3A and
S5A). Proteoglycans lubricin (Prg4), Dcn, and Chad showed enrichment in the Cytl1high,
Tnfaip6high, and S100a4high clusters, and Lum, Srgn, Ogn, and Omd showed enrichment in
the Chil1high cluster (Figure S5A). We also found that genes enriched in Chil1high cluster
had a minimal overlap with other clusters, suggesting that this cluster has a transcriptome
profile distinct from all other articular chondrocytes (Figure 4B).

The Ucmahigh and Krt16high clusters also showed enrichment for ontology terms
‘mRNA metabolism’ and ‘translation’ and had high expression of several ribosomal pro-
teins (Figure 4A, Table S3). Biological processes such as ‘cell adhesion’ and ‘cell migration’
were enriched in all clusters except Ucmahigh and Mef2chigh (Figure 4A). We also found
that the Mef2chigh cluster showed enrichment for many genes associated with ‘biominer-
alization’ including Alpl, Sp7, Bglap, and Pth1r, in addition to Mef2c (Figure 4A and S5B).
Some of these genes are also associated with pre-hypertrophic/hypertrophic chondrocyte
phenotypes and may also reside in the growth plate [38–40,43].

The Wnt signaling pathway was enriched in the Chil1high cluster (Figure 4A). This
cluster showed enrichment for Wnt pathway inhibitors Notum, Sfrp5, Dact1, and Wnt
inhibitory factor 1 (Wif1) (Table S4, Figure S5C). Several other members of the Wnt signaling
pathway including Lef1, Daam2, and Fzd9 were also enriched in this cluster (Table S4,
Figure S5C). Interestingly, the Mef2chigh cluster showed enrichment for Wnt5b, but Wnt4
had the highest expression in cells from the Krt16high cluster (Figure S5C, Table S4). The
Chil1high cluster also showed enrichment for cytokines Cxcl14, Il17d, and Apoe (Figure S5D,
Table S4), but Il17b was robustly expressed by Mef2chigh, Ucmahigh, Krt16high, and divCs
chondrocytes (Figure S5D). Additionally, the Krt16high cluster showed enrichment for Il11
(Figure S5D, Table S4). These results suggest that active signal transduction networks may
be initiated between individual chondrocyte subpopulations and they may be responsible
for specific biological functions in joint crosstalk to bone and other tissues.

Several genes associated with ‘mesenchymal cell proliferation’ including Prrx1, Bmp2,
and Nifb were enriched in the Cytl1high, Tnfaip6high, and S100a4high clusters (Figure 4A and
S6A). These clusters also showed enrichment for TGF-beta/BMP signaling pathway genes
including Bmp2, Tgfbr1, Acvr1, and Inhba (Figure S6A,B). In addition, the Tnfaip6high cluster
showed enrichment for genes associated with Foxo signaling including Foxo1, Sirt1, and Irs1
(Figure S6C). Foxo1 was also enriched in the S100a4high cluster (Figure S6C). Additionally,
the S100a4high cluster showed enrichment for several fibroblast/fibrosis-associated genes
including S100a4, Col3a1, Ly6c1, Abi3bp, and Dcn, along with genes such as Sod3, an
enzyme involved in reactive oxygen species degradation and Mustn1, a regulator of tissue
regeneration (Figures S4D and S6D, Table S4). The Neat1high cluster showed enrichment
for genes involved in RNA processing and splicing such as Fus, Luc7l2, Malat1 and Tra2a
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(Table S4; Figure S6E). It also showed enrichment for Wwp2, an HECT-type E3 ubiquitin
ligase that plays a major role in maintenance of cartilage homeostasis (Table S4) [44].

Figure 4. Functional characterization of chondrocyte subtypes. (A) Enriched ontologies for each
chondrocyte subtype. Circle size indicates the number of genes associated with each category.
(B) Circos plot showing overlap between genes enriched (>1.25-fold) in each cluster compared to
all other clusters. The purple curves link identical genes. (C) Feature plots showing the expression
of Matn3, Cytl1, Spp1, and Chil1. (D) Protein-level expression of Matn3 (red) and Cytl1 (green).
(E) Protein-level expression of Chil1/CHI3L1 (red). (F) Protein-level expression of Spp1 (red). DAPI
(blue); C: cartilage; B: bone; M: meniscus.

Next, we performed immunohistochemistry (IHC) with antibodies targeting four
chondrocyte subtype markers marking distinct populations. Cytl1, which was robustly ex-
pressed in Cytl1high and Tnfaip6high clusters (Figures 3D and 4C) was primarily expressed
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in the mid layer of the articular cartilage with minimal to no expression in the superficial
layer, whereas Matn3, which was robustly expressed in Ucmahigh, Mef2chigh, Krt16high

clusters, and divCs (Figure 4C and S4A), showed significant protein expression in the
chondrocytes residing in the superficial layer (Figure 4D). Matn3 and Cytl1 expression was
also detected in few cells from deep/calcified layers. Chil1, which was highly enriched in
the Chil1high cluster (Figures 3D and 4C), was primarily detected in a subset of superficial
and mid-layer chondrocytes (Figure 4E). Spp1, which was highly enriched in S100a4high

cluster (Figure 4C and S4D), was expressed by chondrocytes in the deep/calcified layers of
the articular cartilage (Figure 4F). Robust Spp1 expression was also detected in the bone
(Figure 4F). These findings suggest that chondrocytes from different regions of the articular
cartilage have distinct molecular profiles and potentially different functions.

3.5. Comparative Transcriptomic Analysis Identified Similarities and Differences between Mouse
and Human Chondrocyte Subtypes

Ji et al. recently profiled human osteoarthritic chondrocytes using scRNA-seq and
identified seven major chondrocyte subtypes labeled proliferative chondrocytes (proCs),
pre-hypertrophic chondrocytes (pre-HTCs), hypertrophic chondrocytes (HTCs), fibrocarti-
lage chondrocytes (FCs), effector chondrocytes (ECs), regulatory chondrocytes (RegCs),
and homeostatic chondrocytes (HomCs) [6]. Here, we compared the mouse chondrocyte
scRNA-seq data to this human chondrocyte scRNA-seq dataset. Re-analysis of the human
OA chondrocytes resulted in seven chondrocyte subclusters (Figure 5A,B).

Figure 5. Comparison of human and mouse articular chondrocytes. (A) UMAP plots of various chon-
drocyte subtypes in human osteoarthritic knee joints. Colors indicate clusters of various cell types
with distinct gene expression profiles. (B) Feature plots showing the expression of key chondrocyte
markers in human chondrocytes. Blue: high expression, grey: low expression. (C) Violin plot show-
ing the expression of Cytl1 and Col10a1 in human chondrocyte subtypes. (D) Dot plot showing the
expression of selected markers of various clusters. Dot size represents the fraction of cells expressing
a specific marker in a particular cluster and intensity of color indicates the average expression level
in that cluster. (E) Feature plots showing the expression Jun and Fos in mouse chondrocytes.
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Cytl1 was described as a gene highly expressed in ECs [6], and we found its transcripts
significantly enriched in cluster 0 (Figure 5B,C). We also noted that Cytl1 was robustly
expressed in clusters 3, 4, and 5 as well (Figure 5A–C). Similar to the mouse Cytl1high

chondrocytes, the human Cytl1high cluster (cluster 0) showed enrichment for Chad, Wif1,
and Phlda1 (Figure 5D, Tables S4 and S5). Cluster 1 showed enrichment for Tnfaip6,
which was described as a preHTC marker by Ji et al. [6]. This human Tnfaip6high cluster
shared markers (Tnfaip6, Abi3bp, Prg4, S100a4, etc.) with the mouse Tnfaip6high and
S100a4high clusters (Figure 5A,D, Tables S4 and S5) but did not show enrichment for pre-
hypertrophic chondrocyte markers including Ihh, Mef2c, and Pth1r [38–40] (Figure 5A,D,
Tables S4 and S5). Chil1 (CHI3L1), which marked RegCs [6], was enriched in cluster 2
(Figure 5A,D, Tables S4 and S5). Other markers of murine Chil1high chondrocytes including
Efemp1, Prnp, and Thbs1 also showed enrichment in this cluster (Figure 5D, Table S4).
Ji et al. identified Jun as a marker of HomCs which also showed enrichment for Fos and
Fosb (Figure 5B,D, Table S5). In mice, these transcription factors were robustly expressed
in almost all chondrocyte subtypes, whereas in humans, the expression was restricted to
cluster 3 (Figure 5D,E). Krt16, a marker of proCs, was primarily expressed by cluster 4,
which also showed enrichment for Il11, Ngf, Matn3, and Smox like the mouse Krt16high

cluster (Figure 5D, Tables S4 and S5). Cluster 5 highly expressed the HTC marker Col10a1
along with Bhlhe41 and Wwp2, while cluster 6 showed enrichment for markers of FCs
including S100a4, Col1a1, Col1a2, and Thy1 (Figure 5D) [6]. FCs also showed enrichment
for Col10a1 along with Alpl, Mef2c, and Pth1r, regulators of chondrocyte hypertrophy as
well as biomineralization. Ji et al. also described a small population of cartilage progenitor
cells (CPCs) expressing cell-cycle genes like the mouse divCs [6].

This analysis showed that Cytl1high, Chil1high, Krt16high, Tnfaip6high, and S100a4high

chondrocyte subtypes and divCs exist in both human and mouse joints. Although Ucmahigh

cluster was a major chondrocyte subtype in mice, we could not find an Ucmahigh cluster
in human OA cartilage (Figure 5B), suggesting that this population may be diminished in
advanced stages of the disease.

3.6. Identification of Injury-Induced Early Molecular Changes in the Articular Chondrocytes

Joint trauma is a major contributing factor to OA. To understand injury-induced early
molecular changes in the articular chondrocytes that may contribute to cartilage degen-
eration, we compared chondrocytes purified from uninjured joints to those isolated from
3-day (3DPI) and 7-day post-injury joints (7DP1). Knee injury was induced by a tibial
compression injury model in which the mice develop severe post-traumatic osteoarthritis
(PTOA) by 6 weeks post-injury (Figure 6A) [12,13,19,45–47]. Histologically, the cartilage ap-
peared normal at 3DPI, but slight proteoglycan loss was observed at 7DPI, as indicated by
a lighter Safranin-O staining intensity (Figure 6A). However, scRNA-seq analysis revealed
several significant injury-induced transcriptional changes in chondrocyte subpopulations.
Like healthy joints, nine chondrocyte subpopulations were identified at 3DPI and 7DPI
(Figure 6B–E). These clusters were highly consistent between groups and expressed similar
markers in both injured and uninjured joints (Figure 6E and S7A,B). However, we obtained
significantly lower numbers of chondrocytes from 3DPI joints compared to other groups,
but the numbers of fibroblast and other connective tissue-forming cells were comparable to
uninjured controls (Figure S8). Transcripts encoding for enzymes from oxidative phospho-
rylation pathway (OXPHOS) were significantly enriched in cells from 3DPI (Figure S8). It is
likely that the reactive oxygen species (ROS) produced by OXPHOS could have contributed
to cellular stress and reduced chondrocyte viability at 3DPI. Most of the chondrocytes
we obtained from 3DPI belonged to Tnfaip6high and S100a4high clusters which expressed
fibroblast/fibrosis markers including Col3a1, Col1a1, and Abi3bp (Figure 6F and S7A).
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Figure 6. Injury-induced changes in chondrocytes. (A) Histological assessment of uninjured and
injured joints at 3 days (3DPI), 7 days (7DPI), and 6 weeks (6WPI) post-injury using Safranin-O and
Fast Green staining. Severe cartilage degeneration was observed at 6WPI and minor proteoglycan loss
was observed at 1WPI (yellow arrow). (B) UMAP plots of various chondrocyte subtypes identified in
uninjured, 3DPI, and 7DPI joints. Colors indicate clusters of various cell types with distinct gene
expression profiles. (C) UMAP plots of various chondrocyte subtypes identified in uninjured, 3DPI,
and 7DPI joints. Colors indicate cells from each experimental group. (D) Feature plots showing the
expression of chondrocyte markers Col2a1 and Acan; high expression (blue), low expression (grey).
(E) Violin plot showing the expression of chondrocyte subtype markers. (F) Sequenced cells per
chondrocyte cluster.

Differential expression analysis was primarily focused on uninjured controls and
chondrocytes from 7DPI as these timepoints had comparable numbers of chondrocytes
present in each cluster (Figure 6F). By comparing all chondrocytes (except divCs) from
uninjured and 7DPI joints, we identified 51 genes differentially expressed in response to
injury. Col9a1-a3, Sox9, Prelp, Il17b, and Cilp were significantly downregulated, whereas
Mmp3, Mmp13, Slpi, and Col10a1 were significantly upregulated in response to injury
(Table S6). By analyzing cells from each cluster separately, we also determined that Mmp3,
Inhba, Sfn, Il11, Ptgs2, Dusp2, and Mmp13 were upregulated, whereas Cytl1, Il17b, Fgfr2,
Ptch1, Dbp, and Rrad were downregulated in various chondrocyte subtypes in response to
injury (Figure 7A, Figures S9 and S10, Table S6). Protein-level validation using IHC further
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confirmed that Mmp3 and Inhba were upregulated, while Cytl1 was down-regulated at as
early as 3DPI (Figure 7B). We also observed an expansion in Chil1 expression after injury
(Figure S11), suggesting that injury activated Chil1 expression in chondrocytes that do not
normally express this gene. Future experimental validation will be required to determine
whether some of these markers transcriptionally affected by injury are direct contributors
to OA pathogenesis or whether they represent biomarkers of disease progression.

Figure 7. Injury-induced early molecular changes in articular chondrocytes. (A) Heatmaps showing
key differentially expressed genes in each chondrocyte cluster. U: uninjured; 7D: 7 days post-injury.
(B) Immunohistochemistry analysis showing protein-level expression of Cytl1 (20×, Mmp3 (40×),
and Inhba (20×) in uninjured and 3DPI joints. B: bone; C: cartilage, M: meniscus.

4. Discussion

In recent years, considerable efforts have been invested in understanding joint biology
and pathophysiology of OA, using joint tissues from both human patients and animal
models. However, because most of these studies investigated gene/protein expression at
the bulk level of the joint tissue, the contribution of the individual cell type/subtype to
joint degeneration was not determined. Recent advances in single-cell sequencing technolo-
gies now permit us to profile the transcriptomes of individual cells at an unprecedented
resolution, expanding our understanding of molecular responses in health and disease
states. In a recent scRNA-seq study, Ji et al. defined seven populations of articular chon-
drocytes in the human OA cartilage and highlighted some OA progression-associated
changes [6]. Chou et al. also examined human specimens using scRNA-seq to investigate
molecular crosstalk between cartilage and synovium in OA [7]. Our study extends the
findings obtained from individual OA patients by successfully characterizing the cellular
and transcriptional heterogeneity of chondrocytes purified from healthy and injured joints,
and provides a detailed account of cross-species comparison at single cell level.

Here we give a first account of nine chondrocyte subtypes identified in the articular
cartilage of the healthy mouse knee joint and provide detailed molecular definitions of
Ucmahigh, Cytl1high, Chil1high, Mef2chigh, Krt16high, Tnfaip6high, S100a4high, Neat1high, and
divCs chondrocyte clusters. All these clusters had distinct transcriptome profiles, including
enrichment for specific cartilage ECM proteins and ECM-modifying enzymes (Figure 4E,F,
and Figure 5A). We found that Cytl1high, Chil1high, Tnfaip6high, and S100a4high clusters
express several genes with signaling and regulatory functions. Ucmahigh and Krt16high

clusters showed enrichment for genes involved in protein synthesis and mRNA metabolism,
including numerous ribosomal proteins indicating active protein synthesis. The Ucmahigh

and Krt16high clusters also had a distinct EMC profile with increased expression of several
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key ECM proteins including Col2a1, Col9a1-a3, and Acan (Figures S4F and S5A). Although
the Mef2chigh cluster shared several markers with Ucmahigh and Krt16high clusters, it
showed significant enrichment for markers of pre-hypertrophic/hypertrophic chondrocytes
including Ihh, Alpl, Mef2c, Pth1r, and Col10a1 [38,39] suggesting that this cluster may
represent pre-hypertrophic/hypertrophic chondrocytes (Figure 2C and S4A,B). We could
not obtain significant information about the Neat1high cluster, as this cluster had minimal
genes enriched in its cells.

We also identified differences in chondrocyte transcriptome relative to other connec-
tive tissue-forming cells in the joint including fibroblast, osteoblast, SIF, and endothelial
cells. These differentially enriched genes include transcription factors Nfatc2, Runx3,
Bhlhe40, Bhlhe41, Lef1, Tsc22d1, Sox9, and Sox5, which may play a crucial role in chondrocyte
development and homeostasis. Sox5 along with Sox9 has been shown to regulate chon-
drogenic pathway [48]. Sox6, another known regulator of chondrocyte differentiation was
also highly expressed in chondrocytes [48] (Table S1). Deletion of Nfatc2 in mice has been
shown to cause early onset, aggressive OA affecting multiple joints, suggesting that Nfatc2
plays a key role in maintaining cartilage homeostasis [49]. Runx3 plays an important
role in chondrocyte maturation [50]. Lef1 has been shown to regulate Ihh expression in
pre-hypertrophic chondrocytes and matrix metalloproteinase 13 (MMP13) gene expres-
sion in OA chondrocytes [51,52]. Further studies are required to understand if Bhlhe40,
Bhlhe41, or Tsc22d1 play a significant role in maintaining cartilage homeostasis. We also
identified several potential OA targets enriched in chondrocytes compared to other cell
types including Scrg1, Smpd3, Ppa1, Tsc22d1, and Msmo1, suggesting that these genes play a
role in maintaining articular cartilage integrity (Figure 2A).

Our study also revealed both similarities and differences between mouse and human
chondrocyte transcriptomes. We found mouse Cytl1high, Chil1high, Krt16high, S100a4high,
and divCs clusters to correspond to human ECs, RegCs, proCs, FCs, and CPCs clusters, re-
spectively [6], but gene expression profiles did not show a direct one-to-one correspondence
(Table S4, Figure 5D). However, we identified several markers shared between these human
and mouse chondrocyte subtypes. The Tnfaip6high human chondrocytes we identified
through the reanalysis of the data of Ji et al. were named ‘pre-HTCs’ in their manuscript,
but this cluster did not show enrichment for some known pre-hypertrophic chondrocyte
markers such as Ihh, Mef2c, and Pth1r. In our mouse data, pre-hypertrophic markers
were expressed predominantly in the Mef2chigh cluster. However, the human Tnfaip6high

cluster did not share any markers with the mouse Mef2chigh cluster. Instead, it shared
markers with both the mouse Tnfaip6high and S100a4high clusters. This raises the question
whether human Tnfaip6high cluster represented a pre-fibrotic subtype of a pre-hypertrophic
phenotype. We also noted the absence of the mouse Ucmahigh population in the human
scRNA-seq OA data. This would suggest that this cluster is either rodent-specific or is lost
during OA development. Ucma has been shown to play a cartilage protective role in the
context of inflammatory arthritis [53]. A continued survey of mouse joints at later stages of
the disease will help determine whether this Ucmahigh mouse population also disappears
as a function of disease progression. Furthermore, several homeostatic genes (Jun, Fos, Fob,
etc.) exhibited broad expression patterns across many chondrocyte subtypes in the mouse
(Figure 5E), while their expression was restricted to a subset of chondrocytes in human
data (Figure 5B,D), suggesting that these differences reflect OA-induced changes in the
human articular cartilage.

Wnt signaling is a major regulator of chondrogenic differentiation. Inhibition of Wnt
signaling has been shown to enhance chondrogenesis [54], and our group has previously
shown that upregulation of Wnt-inhibitor sclerostin in the articular cartilage blunts the
outcomes of trauma-induced OA [19]. It has also been shown that human iPSC-derived
chondrogenic pellets treated with individual Wnts exhibited increased Col10a1 staining,
suggesting that Wnts promote chondrocyte hypertrophy [54]. Consistent with these prior
reports, the Mef2chigh cluster, which expresses several genes associated with chondrocyte
hypertrophy, also expressed high levels of Wnt5b (Table S3). Interestingly, Chil1high cluster
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showed significant enrichment for several Wnt inhibitors including Wif1, Sfrp5, Notum, Frzb,
and Dact1. The Chil1high cluster (RegCs) showed enrichment for the Wnt signaling pathway
in the human chondrocyte data as well [6], suggesting that these cells may mitigate the
cartilage-catabolic effects of Wnt signaling through the secretion of several Wnt antagonists.

TGF-beta/Bmp signaling pathway, another major regulator of skeletal development,
was enriched in the Cytl1high, Tnfaip6high, and S100a4high clusters. These clusters showed
significant enrichment for Bmp2 (Figure S6A), which is a crucial regulator of chondroge-
nesis and a potential mediator of cartilage repair [55,56]. The Tnfaip6high and S100a4high

clusters also showed significant enrichment for regulators of mesenchymal cell prolifera-
tion including Prrx1, Nfib, and Msx1 (Figure S6A), suggesting that these cells may possess
stem/progenitor cell-like properties.

We also identified several injury-induced early molecular changes in chondrocytes,
including up-regulation of Mmp3, Mmp13, Ptgs2, Inhba, Sfn, and Il11 and down-regulation
of Cytl1, Errfi1, and Il17b. Previous studies have identified elevated expression of Mmp3,
Mmp13, Ptgs2, Il11, and Inhba in OA [57–59], and our results confirm that articular chon-
drocytes are a main source of this elevated expression in the injured joint. Furthermore,
polymorphisms in matrix metalloproteinase 3 (MMP3), Prostaglandin-endoperoxide syn-
thase 2 (PTGS2), and interleukin (Il)11 have been identified as risk factors for OA [60–62],
and celecoxib, a selective PTGS2 (COX-2) inhibitor, has been shown to have chondroprotec-
tive effects [63,64], strengthening the functional role of these proteins in OA. Sulforaphane
(SFN), which was also induced after injury, may have a chondroprotective effect [65]. Il17b,
a member of the interleukin (IL)17 superfamily of cytokines [66], was downregulated after
injury and very little is known about its function in chondrocytes. The dynamic tran-
scriptional changes that we describe in individual chondrocyte subpopulations from the
injured joint highlight the importance of elucidating which changes are part of the normal
healing process and which ones are disease-promoting in order to effectively develop
early therapeutic interventions that will promote healing and prevent cartilage damage
after injury.

The joint is a complex structure composed of articular cartilage, subchondral bone,
synovium, synovial fluid, joint capsule, menisci, infrapatellar and suprapatellar fat pads,
nerves, vasculature, and tensile tissues including tendons and ligaments. It also includes
resident immune cells that become activated during injury and tissue repair [67]. Tra-
ditionally, OA was perceived primarily as a disease of the articular cartilage; however,
emerging evidence suggests that changes in almost all tissues of the joint contribute to
OA pathology [68,69]. While our current study focused exclusively on examining tran-
scriptional changes in chondrocyte subpopulations, we recognize that future studies will
need to include other cells in the joint microenvironment such as synovial cells, osteoblasts,
endothelial cells, mesenchymal cells, and infiltrating immune cells to identify the role
played by each cell type in maintenance of joint homeostasis and OA pathogenesis. Al-
though our study highlighted several potential OA targets enriched in these connective
tissue-forming cells, an in-depth analysis these cell types as well as immune cells in the
joint is necessary to obtain a comprehensive understanding of early molecular changes in
the joint that contribute to OA.

While we were able to identify nine subpopulations of chondrocytes, the possibility
still exists that more subpopulations are present in the healthy articular cartilage of rodents,
as well as in humans. As tissue digests protocols improve, and viable cells are released
from densely packed ECM and mineralized tissues like bones and cartilage, we will be
able to sequence an exhausting number of cells, expanding our knowledge of rare and
novel cell populations. The detailed transcriptional profiling of chondrocytes from injured
and uninjured mouse joints allowed us to report here, for the first time, discriminative
molecular markers for various chondrocyte subtypes in healthy joints as well as significant
transcriptional changes at the single chondrocyte level, as a function of joint injury. These
results provide insights into the potential roles some of these genes play in maintaining
cartilage homeostasis. Furthermore, the genes we identified as differentially expressed in
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chondrocytes post injury may play a role in early OA development. Our findings expand
our knowledge of cartilage biology and open new avenues for developing improved
diagnostic and preventive strategies for mitigating the long-term damaging effects of joint
trauma on the articular cartilage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10061462/s1, Figure S1: Single-cell analysis of 10-week-old BL6 mouse knee joints,
Figure S2: Characterization of connective tissue-forming cells in the joint, Figure S3: Comparison
of chondrocytes to other connective tissue-forming cells, Figure S4: Characterization of chondro-
cyte subpopulations, Figure S5: Proteoglycans and Wnt signaling pathway genes are differentially
expressed between chondrocyte subpopulations, Figure S6: TGFβ/BMP signaling pathway genes
and regulators of mesenchymal cell proliferation are differentially expressed between chondrocyte
subpopulations, Figure S7: Characterization of chondrocyte subpopulations from injured and unin-
jured knee joints, Figure S8: Cellular and molecular changes at 3 days post-injury (3DPI), Figure S9:
Genes upregulated after injury, Figure S10: Genes downregulated after injury, Figure S11: Expan-
sion of Chil1 expressing region after injury, Table S1: Genes enriched in chondrocytes compared
to other connective tissue-forming cells, Table S2: Potential OA targets enriched in chondrocytes
compared to other connective tissue-forming cells, Table S3: Potential OA targets enriched in various
clusters of connective tissue-forming cells, Table S4: Genes enriched in various murine chondrocyte
subpopulations, Table S5: Genes enriched in various human chondrocyte subpopulations, Table S6:
Genes differentially expressed between chondrocytes from uninjured mouse knee joints and 7 days
post-injury (7DPI) joints.

Author Contributions: Conceptualization: A.S. and G.G.L.; methodology: A.S., J.L.M., N.R.H.,
D.K.M. and B.A.C.; formal analysis, A.S., J.L.M. and S.P.W.; writing—original draft: A.S. and G.G.L.;
review and editing: J.L.M., N.R.H., D.K.M., B.A.C. and S.P.W.; project management: A.S. and G.G.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This study received funding from DOD PR192271, LDRD 2020 20-LW-002, and DOD PR180268.

Institutional Review Board Statement: All animal experiments were approved by the Lawrence
Livermore National Laboratory and University of California, Davis Institutional Animal Care and
Use Committee and conformed to the Guide for the care and use of laboratory animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Single-cell sequence data that support the findings of this study
are available through the National Center for Biotechnology Information Gene Expression Om-
nibus (GSE172500).

Acknowledgments: This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of

pathological mechanism. Bone Res. 2017, 5, 16044. [CrossRef] [PubMed]
2. Blixen, C.E.; Kippes, C. Depression, social support, and quality of life in older adults with osteoarthritis. Image J. Nurs. Sch. 1999,

31, 221–226. [CrossRef] [PubMed]
3. Blalock, D.; Miller, A.; Tilley, M.; Wang, J. Joint instability and osteoarthritis. Clin. Med. Insights Arthritis Musculoskelet. Disords

2015, 8, 15–23. [CrossRef]
4. Steinert, A.F.; Ghivizzani, S.C.; Rethwilm, A.; Tuan, R.S.; Evans, C.H.; Noth, U. Major biological obstacles for persistent cell-based

regeneration of articular cartilage. Arthritis Res. Ther. 2007, 9, 213. [CrossRef] [PubMed]
5. Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health

2009, 1, 461–468. [CrossRef] [PubMed]
6. Ji, Q.; Zheng, Y.; Zhang, G.; Hu, Y.; Fan, X.; Hou, Y.; Wen, L.; Li, L.; Xu, Y.; Wang, Y.; et al. Single-cell RNA-seq analysis reveals the

progression of human osteoarthritis. Ann. Rheum. Dis. 2019, 78, 100–110. [CrossRef] [PubMed]
7. Chou, C.H.; Jain, V.; Gibson, J.; Attarian, D.E.; Haraden, C.A.; Yohn, C.B.; Laberge, R.M.; Gregory, S.; Kraus, V.B. Synovial cell

cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 2020, 10, 10868. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cells10061462/s1
https://www.mdpi.com/article/10.3390/cells10061462/s1
http://doi.org/10.1038/boneres.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/28149655
http://doi.org/10.1111/j.1547-5069.1999.tb00484.x
http://www.ncbi.nlm.nih.gov/pubmed/10528450
http://doi.org/10.4137/CMAMD.S22147
http://doi.org/10.1186/ar2195
http://www.ncbi.nlm.nih.gov/pubmed/17561986
http://doi.org/10.1177/1941738109350438
http://www.ncbi.nlm.nih.gov/pubmed/23015907
http://doi.org/10.1136/annrheumdis-2017-212863
http://www.ncbi.nlm.nih.gov/pubmed/30026257
http://doi.org/10.1038/s41598-020-67730-y
http://www.ncbi.nlm.nih.gov/pubmed/32616761


Cells 2021, 10, 1462 19 of 21

8. Ramos, Y.F.; den Hollander, W.; Bovee, J.V.; Bomer, N.; van der Breggen, R.; Lakenberg, N.; Keurentjes, J.C.; Goeman, J.J.;
Slagboom, P.E.; Nelissen, R.G.; et al. Genes involved in the osteoarthritis process identified through genome wide expression
analysis in articular cartilage; the RAAK study. PLoS ONE 2014, 9, e103056. [CrossRef]

9. He, A.; Ning, Y.; Wen, Y.; Cai, Y.; Xu, K.; Cai, Y.; Han, J.; Liu, L.; Du, Y.; Liang, X.; et al. Use of integrative epigenetic and mRNA
expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res.
2018, 7, 343–350. [CrossRef]

10. Little, C.B.; Hunter, D.J. Post-traumatic osteoarthritis: From mouse models to clinical trials. Nat. Rev. Rheumatol. 2013, 9, 485–497.
[CrossRef]

11. Loeser, R.F.; Olex, A.L.; McNulty, M.A.; Carlson, C.S.; Callahan, M.; Ferguson, C.; Fetrow, J.S. Disease progression and phasic
changes in gene expression in a mouse model of osteoarthritis. PLoS ONE 2013, 8, e54633. [CrossRef]

12. JChang, C.; Sebastian, A.; Murugesh, D.K.; Hatsell, S.; Economides, A.N.; Christiansen, B.A.; Loots, G.G. Global molecular
changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis. J. Orthop. Res. 2017, 35, 474–485.
[CrossRef]

13. Sebastian, A.; Chang, J.C.; Mendez, M.E.; Murugesh, D.K.; Hatsell, S.; Economides, A.N.; Christiansen, B.A.; Loots, G.G.
Comparative Transcriptomics Identifies Novel Genes and Pathways Involved in Post-Traumatic Osteoarthritis Development and
Progression. Int. J. Mol. Sci. 2018, 19, 2657. [CrossRef]

14. Kung, L.H.W.; Ravi, V.; Rowley, L.; Bell, K.M.; Little, C.B.; Bateman, J.F. Comprehensive Expression Analysis of microRNAs and
mRNAs in Synovial Tissue from a Mouse Model of Early Post-Traumatic Osteoarthritis. Sci. Rep. 2017, 7, 17701. [CrossRef]

15. Zhang, R.; Fang, H.; Chen, Y.; Shen, J.; Lu, H.; Zeng, C.; Ren, J.; Zeng, H.; Li, Z.; Chen, S.; et al. Gene expression analyses of
subchondral bone in early experimental osteoarthritis by microarray. PLoS ONE 2012, 7, e32356. [CrossRef]

16. Tang, F.; Lao, K.; Surani, M.A. Development and applications of single-cell transcriptome analysis. Nat. Methods 2011, 8, S6–S11.
[CrossRef]

17. Jonason, J.H.; Hoak, D.; O′Keefe, R.J. Primary murine growth plate and articular chondrocyte isolation and cell culture. Methods
Mol. Biol. 2015, 1226, 11–18.

18. Christiansen, B.A.; Anderson, M.J.; Lee, C.A.; Williams, J.C.; Yik, J.H.; Haudenschild, D.R. Musculoskeletal changes following
non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr. Cartil. 2012, 20, 773–782.
[CrossRef]

19. Chang, J.C.; Christiansen, B.A.; Murugesh, D.K.; Sebastian, A.; Hum, N.R.; Collette, N.M.; Hatsell, S.; Economides, A.N.;
Blanchette, C.D.; Loots, G.G. SOST/Sclerostin Improves Posttraumatic Osteoarthritis and Inhibits MMP2/3 Expression After
Injury. J. Bone Miner Res. 2018, 33, 1105–1113. [CrossRef]

20. Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [CrossRef]

21. Sebastian, A.; Hum, N.R.; Martin, K.A.; Gilmore, S.F.; Peran, I.; Byers, S.W.; Wheeler, E.K.; Coleman, M.A.; Loots, G.G. Single-Cell
Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity
in Breast Cancer. Cancers 2020, 12, 1307. [CrossRef]

22. Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32,
381–386. [CrossRef]

23. Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization.
Nucleic Acids Res. 2009, 37, W305–W311. [CrossRef]

24. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a
biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [CrossRef]

25. Haseeb, A.; Kc, R.; Angelozzi, M.; de Charleroy, C.; Rux, D.; Tower, R.J.; Yao, L.; da Silva, R.P.; Pacifici, M.; Qin, L.; et al. SOX9
keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation.
Proc. Natl. Acad. Sci. USA 2021, 118, e2019152118. [CrossRef]

26. Scott, R.E.; Ghule, P.N.; Stein, J.L.; Stein, G.S. Cell cycle gene expression networks discovered using systems biology: Significance
in carcinogenesis. J. Cell Physiol. 2015, 230, 2533–2542. [CrossRef]

27. Zhong, L.; Yao, L.; Tower, R.J.; Wei, Y.; Miao, Z.; Park, J.; Shrestha, R.; Wang, L.; Yu, W.; Holdreith, N.; et al. Single cell
transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife 2020, 9, e54695.
[CrossRef]

28. Muhl, L.; Genove, G.; Leptidis, S.; Liu, J.; He, L.; Mocci, G.; Sun, Y.; Gustafsson, S.; Buyandelger, B.; Chivukula, I.V.; et al.
Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination.
Nat. Commun. 2020, 11, 3953. [CrossRef] [PubMed]

29. Tikhonova, A.N.; Dolgalev, I.; Hu, H.; Sivaraj, K.K.; Hoxha, E.; Cuesta-Dominguez, A.; Pinho, S.; Akhmetzyanova, I.; Gao, J.;
Witkowski, M.; et al. The bone marrow microenvironment at single-cell resolution. Nature 2019, 569, 222–228. [CrossRef]

30. Thomson, B.R.; Carota, I.A.; Souma, T.; Soman, S.; Vestweber, D.; Quaggin, S.E. Targeting the vascular-specific phosphatase
PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. Elife 2019, 8, e48474. [CrossRef]

31. Esteves, C.L.; Donadeu, F.X. Pericytes and their potential in regenerative medicine across species. Cytom. A 2018, 93, 50–59.
[CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0103056
http://doi.org/10.1302/2046-3758.75.BJR-2017-0284.R1
http://doi.org/10.1038/nrrheum.2013.72
http://doi.org/10.1371/journal.pone.0054633
http://doi.org/10.1002/jor.23263
http://doi.org/10.3390/ijms19092657
http://doi.org/10.1038/s41598-017-17545-1
http://doi.org/10.1371/journal.pone.0032356
http://doi.org/10.1038/nmeth.1557
http://doi.org/10.1016/j.joca.2012.04.014
http://doi.org/10.1002/jbmr.3397
http://doi.org/10.1038/nbt.4096
http://doi.org/10.3390/cancers12051307
http://doi.org/10.1038/nbt.2859
http://doi.org/10.1093/nar/gkp427
http://doi.org/10.1038/s41467-019-09234-6
http://doi.org/10.1073/pnas.2019152118
http://doi.org/10.1002/jcp.24990
http://doi.org/10.7554/eLife.54695
http://doi.org/10.1038/s41467-020-17740-1
http://www.ncbi.nlm.nih.gov/pubmed/32769974
http://doi.org/10.1038/s41586-019-1104-8
http://doi.org/10.7554/eLife.48474
http://doi.org/10.1002/cyto.a.23243
http://www.ncbi.nlm.nih.gov/pubmed/28941046


Cells 2021, 10, 1462 20 of 21

32. Shen, J.; Shrestha, S.; Yen, Y.H.; Scott, M.A.; Soo, C.; Ting, K.; Peault, B.; Dry, S.M.; James, A.W. The pericyte antigen RGS5 in
perivascular soft tissue tumors. Hum. Pathol. 2016, 47, 121–131. [CrossRef] [PubMed]

33. Hess, D.L.; Kelly-Goss, M.R.; Cherepanova, O.A.; Nguyen, A.T.; Baylis, R.A.; Tkachenko, S.; Annex, B.H.; Peirce, S.M.; Owens,
G.K. Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. Nat. Commun. 2019, 10, 967.
[CrossRef] [PubMed]

34. Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Adv. Exp. Med.
Biol. 2010, 688, 1–23.

35. Luo, M.; Chen, J.; Li, S.; Sun, H.; Zhang, Z.; Fu, Q.; Li, J.; Wang, J.; Hughes, C.E.; Caterson, B.; et al. Changes in the metabolism of
chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin-Beck disease. Osteoarthr. Cartil. 2014, 22,
986–995. [CrossRef]

36. Tasdelen, I.; Berger, R.; Kalkhoven, E. PPARgamma regulates expression of carbohydrate sulfotransferase 11 (CHST11/C4ST1), a
regulator of LPL cell surface binding. PLoS ONE 2013, 8, e64284. [CrossRef]

37. Soul, J.; Barter, M.J.; Little, C.B.; Young, D.A. OATargets: A knowledge base of genes associated with osteoarthritis joint damage
in animals. Ann. Rheum. Dis. 2020. [CrossRef]

38. Li, J.; Dong, S. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation. Stem. Cells Int.
2016, 2016, 2470351. [CrossRef]

39. Bian, Q.; Cheng, Y.H.; Wilson, J.P.; Su, E.Y.; Kim, D.W.; Wang, H.; Yoo, S.; Blackshaw, S.; Cahan, P. A single cell transcriptional
atlas of early synovial joint development. Development 2020, 147, dev185777. [CrossRef]

40. Kozhemyakina, E.; Lassar, A.B.; Zelzer, E. A pathway to bone: Signaling molecules and transcription factors involved in
chondrocyte development and maturation. Development 2015, 142, 817–831. [CrossRef]

41. Myllarniemi, M.; Tikkanen, J.; Hulmi, J.J.; Pasternack, A.; Sutinen, E.; Ronty, M.; Lepparanta, O.; Ma, H.; Ritvos, O.; Koli, K.
Upregulation of activin-B and follistatin in pulmonary fibrosis—A translational study using human biopsies and a specific
inhibitor in mouse fibrosis models. BMC Pulm. Med. 2014, 14, 170. [CrossRef]

42. Song, Z.; Chen, W.; Athavale, D.; Ge, X.; Desert, R.; Das, S.; Han, H.; Nieto, N. Osteopontin takes center stage in chronic liver
disease. Hepatology 2020. [CrossRef]

43. Kishimoto, H.; Akagi, M.; Zushi, S.; Teramura, T.; Onodera, Y.; Sawamura, T.; Hamanishi, C. Induction of hypertrophic
chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress.
Osteoarthr. Cartil. 2010, 18, 1284–1290. [CrossRef]

44. Mokuda, S.; Nakamichi, R.; Matsuzaki, T.; Ito, Y.; Sato, T.; Miyata, K.; Inui, M.; Olmer, M.; Sugiyama, E.; Lotz, M.; et al. Wwp2
maintains cartilage homeostasis through regulation of Adamts5. Nat. Commun. 2019, 10, 2429. [CrossRef]

45. Mendez, M.E.; Murugesh, D.K.; Sebastian, A.; Hum, N.R.; McCloy, S.A.; Kuhn, E.A.; Christiansen, B.A.; Loots, G.G. Antibiotic
Treatment Prior to Injury Improves Post-Traumatic Osteoarthritis Outcomes in Mice. Int. J. Mol. Sci. 2020, 21, 6424. [CrossRef]

46. Mendez, M.E.; Sebastian, A.; Murugesh, D.K.; Hum, N.R.; McCool, J.L.; Hsia, A.W.; Christiansen, B.A.; Loots, G.G. LPS-Induced
Inflammation Prior to Injury Exacerbates the Development of Post-Traumatic Osteoarthritis in Mice. J. Bone Miner Res. 2020.
[CrossRef]

47. Sebastian, A.; Murugesh, D.K.; Mendez, M.E.; Hum, N.R.; Rios-Arce, N.D.; McCool, J.L.; Christiansen, B.A.; Loots, G.G.
Global Gene Expression Analysis Identifies Age-Related Differences in Knee Joint Transcriptome during the Development of
Post-Traumatic Osteoarthritis in Mice. Int. J. Mol. Sci. 2020, 21, 364. [CrossRef]

48. Lefebvre, V.; Behringer, R.R.; de Crombrugghe, B. L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation
pathway. Osteoarthr. Cartil. 2001, 9 (Suppl. SA), S69–S75. [CrossRef]

49. Greenblatt, M.B.; Ritter, S.Y.; Wright, J.; Tsang, K.; Hu, D.; Glimcher, L.H.; Aliprantis, A.O. NFATc1 and NFATc2 repress
spontaneous osteoarthritis. Proc. Natl. Acad. Sci. USA 2013, 110, 19914–19919. [CrossRef]

50. Yoshida, C.A.; Yamamoto, H.; Fujita, T.; Furuichi, T.; Ito, K.; Inoue, K.; Yamana, K.; Zanma, A.; Takada, K.; Ito, Y.; et al. Runx2 and
Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes
Dev. 2004, 18, 952–963. [CrossRef]

51. Spater, D.; Hill, T.P.; O’sullivan, R.J.; Gruber, M.; Conner, D.A.; Hartmann, C. Wnt9a signaling is required for joint integrity and
regulation of Ihh during chondrogenesis. Development 2006, 133, 3039–3049. [CrossRef]

52. Elayyan, J.; Lee, E.J.; Gabay, O.; Smith, C.A.; Qiq, O.; Reich, E.; Mobasheri, A.; Henrotin, Y.; Kimber, S.J.; Dvir-Ginzberg, M.
LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes. FASEB J. 2017, 31, 3116–3125. [CrossRef]

53. Seuffert, F.; Weidner, D.; Baum, W.; Schett, G.; Stock, M. Upper zone of growth plate and cartilage matrix associated protein
protects cartilage during inflammatory arthritis. Arthritis Res. Ther. 2018, 20, 88. [CrossRef]

54. Wu, C.L.; Dicks, A.; Steward, N.; Tang, R.; Katz, D.B.; Choi, Y.R.; Guilak, F. Single cell transcriptomic analysis of human
pluripotent stem cell chondrogenesis. Nat. Commun. 2021, 12, 362. [CrossRef]

55. Davidson, E.N.B.; Vitters, E.L.; van Lent, P.L.; van de Loo, F.A.; van den Berg, W.B.; van der Kraan, P.M. Elevated extracellular
matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in
cartilage repair and remodeling. Arthritis Res. Ther. 2007, 9, R102. [CrossRef]

56. Shu, B.; Zhang, M.; Xie, R.; Wang, M.; Jin, H.; Hou, W.; Tang, D.; Harris, S.E.; Mishina, Y.; O’Keefe, R.J.; et al. BMP2, but not BMP4,
is crucial for chondrocyte proliferation and maturation during endochondral bone development. J. Cell Sci. 2011, 124, 3428–3440.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.humpath.2015.09.013
http://www.ncbi.nlm.nih.gov/pubmed/26558691
http://doi.org/10.1038/s41467-019-08811-z
http://www.ncbi.nlm.nih.gov/pubmed/30814500
http://doi.org/10.1016/j.joca.2014.05.012
http://doi.org/10.1371/journal.pone.0064284
http://doi.org/10.1136/annrheumdis-2020-218344
http://doi.org/10.1155/2016/2470351
http://doi.org/10.1242/dev.185777
http://doi.org/10.1242/dev.105536
http://doi.org/10.1186/1471-2466-14-170
http://doi.org/10.1002/hep.31582
http://doi.org/10.1016/j.joca.2010.05.021
http://doi.org/10.1038/s41467-019-10177-1
http://doi.org/10.3390/ijms21176424
http://doi.org/10.1002/jbmr.4117
http://doi.org/10.3390/ijms21010364
http://doi.org/10.1053/joca.2001.0447
http://doi.org/10.1073/pnas.1320036110
http://doi.org/10.1101/gad.1174704
http://doi.org/10.1242/dev.02471
http://doi.org/10.1096/fj.201601253R
http://doi.org/10.1186/s13075-018-1583-2
http://doi.org/10.1038/s41467-020-20598-y
http://doi.org/10.1186/ar2305
http://doi.org/10.1242/jcs.083659
http://www.ncbi.nlm.nih.gov/pubmed/21984813


Cells 2021, 10, 1462 21 of 21

57. Pengas, I.; Eldridge, S.; Assiotis, A.; McNicholas, M.; Mendes, J.E.; Laver, L. MMP-3 in the peripheral serum as a biomarker of
knee osteoarthritis, 40 years after open total knee meniscectomy. J. Exp. Orthop. 2018, 5, 21. [CrossRef] [PubMed]

58. Wang, M.; Sampson, E.R.; Jin, H.; Li, J.; Ke, Q.H.; Im, H.J.; Chen, D. MMP13 is a critical target gene during the progression of
osteoarthritis. Arthritis Res. Ther. 2013, 15, R5. [CrossRef]

59. Chou, C.H.; Lee, M.T.; Song, I.W.; Lu, L.S.; Shen, H.C.; Lee, C.H.; Wu, J.Y.; Chen, Y.T.; Kraus, V.B.; Wu, C.C. Insights into
osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. Osteoarthr. Cartil. 2015, 23, 571–580.
[CrossRef]

60. Tong, Z.; Liu, Y.; Chen, B.; Yan, L.; Hao, D. Association between MMP3 and TIMP3 polymorphisms and risk of osteoarthritis.
Oncotarget 2017, 8, 83563–83569. [CrossRef]

61. Valdes, A.M.; Loughlin, J.; Timms, K.M.; van Meurs, J.J.; Southam, L.; Wilson, S.G.; Doherty, S.; Lories, R.J.; Luyten, F.P.; Gutin,
A.; et al. Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee
osteoarthritis. Am. J. Hum. Genet. 2008, 82, 1231–1240. [CrossRef] [PubMed]

62. Styrkarsdottir, U.; Lund, S.H.; Thorleifsson, G.; Zink, F.; Stefansson, O.A.; Sigurdsson, J.K.; Juliusson, K.; Bjarnadottir, K.;
Sigurbjornsdottir, S.; Jonsson, S.; et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11,
COL11A1 and 13 more new loci associated with osteoarthritis. Nat. Genet. 2018, 50, 1681–1687. [CrossRef] [PubMed]

63. Mastbergen, S.C.; Jansen, N.W.; Bijlsma, J.W.; Lafeber, F.P. Differential direct effects of cyclo-oxygenase-1/2 inhibition on
proteoglycan turnover of human osteoarthritic cartilage: An in vitro study. Arthritis Res. Ther. 2006, 8, R2. [CrossRef]

64. De Boer, T.N.; Huisman, A.M.; Polak, A.A.; Niehoff, A.G.; van Rinsum, A.C.; Saris, D.; Bijlsma, J.W.; Lafeber, F.J.; Mastbergen, S.C.
The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: Ex vivo evaluation of human cartilage tissue after
in vivo treatment. Osteoarthr. Cartil. 2009, 17, 482–488. [CrossRef]

65. Davidson, R.K.; Jupp, O.; de Ferrars, R.; Kay, C.D.; Culley, K.L.; Norton, R.; Driscoll, C.; Vincent, T.L.; Donell, S.T.; Bao, Y.; et al.
Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthritis Rheum.
2013, 65, 3130–3140. [CrossRef]

66. Bie, Q.; Jin, C.; Zhang, B.; Dong, H. IL-17B: A new area of study in the IL-17 family. Mol. Immunol. 2017, 90, 50–56. [CrossRef]
67. Kurowska-Stolarska, M.; Alivernini, S. Synovial tissue macrophages: Friend or foe? RMD Open 2017, 3, e000527. [CrossRef]
68. Brandt, K.D.; Radin, E.L.; Dieppe, P.A.; van de Putte, L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann.

Rheum. Dis. 2006, 65, 1261–1264. [CrossRef]
69. Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum.

2012, 64, 1697–1707. [CrossRef]

http://doi.org/10.1186/s40634-018-0132-x
http://www.ncbi.nlm.nih.gov/pubmed/29904905
http://doi.org/10.1186/ar4133
http://doi.org/10.1016/j.joca.2014.12.020
http://doi.org/10.18632/oncotarget.18745
http://doi.org/10.1016/j.ajhg.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18471798
http://doi.org/10.1038/s41588-018-0247-0
http://www.ncbi.nlm.nih.gov/pubmed/30374069
http://doi.org/10.1186/ar1846
http://doi.org/10.1016/j.joca.2008.09.002
http://doi.org/10.1002/art.38133
http://doi.org/10.1016/j.molimm.2017.07.004
http://doi.org/10.1136/rmdopen-2017-000527
http://doi.org/10.1136/ard.2006.058347
http://doi.org/10.1002/art.34453

	Introduction 
	Materials and Methods 
	Anterior Cruciate Ligament (ACL) Injury Model 
	Histological Assessment of Disease Severity 
	Immunohistochemistry (IHC) 
	Single-Cell RNA Sequencing (scRNA-seq) 
	scRNA-seq Data Analysis of Chondrocytes from Uninjured Joints 
	Analysis of Human Chondrocyte scRNA-seq Data 
	Comparison of Chondrocytes from Uninjured and Injured Joints 
	Pseudotime Trajectory Finding 
	Ontology Enrichment Analysis 

	Results 
	Single-Cell Profiling Reveals Cellular Heterogeneity in Healthy Murine Knee Joints 
	Identification of Potential OA Targets Enriched in Chondrocytes 
	scRNA-seq Analysis Identified Nine Chondrocyte Subtypes in Mouse Knee Joints 
	Molecular and Functional-Level Characterization of Chondrocyte Subpopulations 
	Comparative Transcriptomic Analysis Identified Similarities and Differences between Mouse and Human Chondrocyte Subtypes 
	Identification of Injury-Induced Early Molecular Changes in the Articular Chondrocytes 

	Discussion 
	References

