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Research points out that it is particularly important to comprehensively evaluate immune
microenvironmental indicators and gene mutation characteristics to select the best
treatment plan. Therefore, exploring the relevant genes of pulmonary injury is an
important basis for the improvement of survival. In recent years, with the massive
production of omics data, a large number of computational methods have been
applied in the field of biomedicine. Most of these computational methods are devel-
oped for a certain type of diseases or whole diseases. Algorithms that specifically identify
genes associated with pulmonary injury have not yet been developed. To fill this gap, we
developed a novel method, named AdaRVM, to identify pulmonary injury-related genes in
large scale. AdaRVM is the fusion of Adaboost and Relevance Vector Machine (RVM) to
achieve fast and high-precision pattern recognition of pulmonary injury genetic
mechanism. AdaRVM found that Cavin-2 gene has strong potential to be related to
pulmonary injury. As we known, the formation and function of Caveolae are mediated by
two family proteins: Caveolin and Cavin. Many studies have explored the role of Caveolin
proteins, but people still knew little about Cavin family members. To verify our method and
reveal the functions of cavin-2, we integrated six genome-wide association studies
(GWAS) data related to lung function traits, four expression Quantitative Trait Loci
(eQTL) data, and one methylation Quantitative Trait Loci (mQTL) data by Summary
data level Mendelian Randomization (SMR). We found strong relationship between
cavin-2 and canonical signaling pathways ERK1/2, AKT, and STAT3 which are all
known to be related to lung injury.
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INTRODUCTION

The decline of lung function could predict mortality. Several studies have found that the decline of
lung function is closely related to the occurrence of many diseases such as cardiovascular disease,
lung cancer, and non-respiratory cancer (Duprez and Jacobs, 2018). Moreover, the measurement of
lung function changes is the key to the diagnosis of many lung diseases such as Chronic Obstructive
Pulmonary Disease (COPD) and Cystic Fibrosis (CF) (Shrine et al., 2019). These lung diseases
especially COPD and CF are one of the causes of significant morbidity, mortality worldwide. For
example, according to a study by (Ding et al., 2019), COPD is the fourth leading cause of death on
Earth. In the diagnosis of these pulmonary diseases, the measurement of lung function indicators is
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the main basis to judge the changes in the disease condition and
degree. Therefore, it is necessary to understand the regulatory
mechanism behind lung function to prevent and treat lung
function decline.

The regulation of lung function is complicated and has not
been revealed yet. Governing lung function is mediated by a
variety of cells such as complex endothelial and epithelial cells,
dendritic cells, alveolar macrophages, and fibroblasts (Suzuki
et al., 2008). They work together to deal with lung injury by
triggering inflammation and an immune response. Caveolae are
commonly found in lung epithelial cells, endothelial cells,
adipocytes and fibroblasts (Murata et al., 2007). Caveolae are
flask—shaped invaginated structures on the plasma membrane of
mammalian cells, and are involved in many important cellular
functions, such as endocytosis and endocytosis transport, and cell
signal transduction (Parton et al., 2018). Also, this structure has
been proved to play an important role in regulating various lung
diseases such as asthma, COPD, CF, and acute lung injury. The
structure and function of Caveolae are mediated by Caveolins
family proteins and Cavins family proteins (Parton et al., 2020).
These proteins are highly expressed in a variety of lung cells. To
sum up, further research of these proteins is helpful to reveal the
mechanism of lung function injury.

Cavin family proteins include Cavin-1, Cavin-2, Cavin-3, and
Cavin-4, which govern the expression and morphology of
Caveolae. Cavin-2 protein is mainly responsible for controlling
the change of the Caveolae shape. For instance, the over-
expression of Cavin-2 could cause the deeper invagination of
Caveolae. Cavin2, also known as Serum Deprivation Protein
Response (SDPR) protein was described as a protein induced
during serum deprivation (Chettimada et al., 2015). Subsequently
researchers undertook an in-depth study of Cavin-2 and found
that this protein is essential for cell proliferation, migration and
invasion. SDPR has been reported as a tumor suppressor in a
variety of cancers, such as breast, liver, stomach, and endometrial
cancers. Studies have shown that SDPR works in cancers because
of the SDPR gene inactivation by methylation (Ozturk et al.,
2016). Additionally, the absence of Cavin-2 was found to result in
the loss of Caveolae of endothelial cells in lung tissues (Hansen
et al., 2013). However, little information was available on the role
of Cavin-2 in the lung function injury.

Thousands of SNPs associated with complex traits have been
identified through GWAS. Most of these identified loci are
located in intergenic regions and how they affect phenotypes
through genes or pathways is difficult to elucidate (Watanabe
et al., 2017). One possible explanation is that these susceptible
sites alter complex traits in individuals by regulating methylation
levels of a gene or inhibiting its expression. As eQTL refers to
some variation sites on chromosomes that specifically regulate
mRNA and protein expression levels of a gene, some of the
variants overlap with SNPs found by GWAS, suggesting that they
may be involved in the regulation of gene expression (Li et al.,
2015). Moreover, mQTL was applied to recognize SNP sites
significantly correlated with the methylation level of a gene
(McRae et al., 2018). DNA methylation usually acts as an
inhibitor of gene transcription. It is clear that both mQTL and
eQTL can change their expression patterns bymutating at a single

locus. Therefore, the association between Cavin-2 gene
expression and lung function injury can be found through the
conjoint analysis of GWAS and two different types of QTL data.

Although the previous studies have found multiple genes that
are related to pulmonary injury, the speed of revealing the
disease-causing genes of pulmonary injury still does not meet
the needs of treatment. With the continuous maturity of
sequencing technology, multi omics data showed a blowout
growth. This provides support for the application of
computing methods in biomedical field (Zhao et al., 2020a;
Zhao et al., 2021a). Computational methods have been applied
to the association and interaction between mutation sites (Peng
and Zhao, 2020), genes (McKinney et al., 2006; Zhao et al.,
2020b), various RNAs (Asefpour Vakilian, 2020), proteins
(Zhao et al., 2020c; Noé et al., 2020), metabolites (Zhao et al.,
2020d), drugs (Tianyi et al., 2020) and diseases, and various
databases have emerged (Zhao et al., 2021b). It has become a
common method to mine disease pathogenesis on a large scale by
integrating a variety of different data for modeling and analysis.
However, most of these methods focus on one kind of disease or
all diseases. Each disease has its own specificity, which makes us
need to design algorithms to identify its related genes for the
study of pulmonary injury. In this paper, we fused Adaboost with
Relevance Vector Machine (RVM) to design a pipeline for the
identification of pulmonary injury-related genes.

METHODS

Workflow
Firstly, we obtained 193 genes which are reported to be related to
pulmonary injury in DisGeNET (Piñero et al., 2020). Then, we
extracted the gene interaction information from String database
(Szklarczyk et al., 2021). We extracted expression information of
these genes from biogps database (Wu et al., 2016). Then, we did
feature combination for each gene. Finally, we identified
pulmonary injury-related genes by AdaRVM.

The whole workflow is shown in Figure 1.

Feature Combination
We obtained the expression of all genes in different tissues from
Biogps database. We totally obtained gene expression in 13
tissues. For each gene, the feature of it would be:

Gene1 � [E1, E2, ..., E13] (1)

Ei represents the expression of gene in ith tissue.
Then,we obtained gene interaction information from string database.

We obtained 193 pulmonary injury-related genes in DisGeNET
and found 1,019 genes can interact with at least one of them. The
interactions between them could be the second feature of genes.

Gene1 � [G1, G2, ..., G1212] (2)

Gi represents whether ith gene can interact with gene 1. If gene1
can interact with ith gene, Gi � 1, otherwise, Gi � 0.

Since the dimension of interaction feature for each gene is very
high, we used Principal components analysis (PCA) to reduce the
dimension.We put all genes together and used PCA to remain the
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99% information. After PCA, the dimension of interaction feature
for each gene is 237.

Finally, we combined interaction feature and expression
feature together to get the final gene feature.

RVM
The RVMmodel can give the conditional probability distribution
of the target variable t given an input vector x:

p(t∣∣∣∣x,w, β) � N(t∣∣∣∣y(x), β−1) (3)

β � σ−2 is the noise accuracy.
The mean value is given by the linear model:

y(x) � ∑M
i�1
wiφi(x) � wTφ(x) (4)

The basis function is given by the kernel function. Each data
point in the training set is associated with a kernel function. The
general expression is:

y(x) � ∑N
n�1

wnk(x, xn) + b (5)

The formula here is similar to the predictive model formula in
support vector regression.

Suppose the N observation data of the input vector x
are aggregated into a data matrix X, the n th row is xT

n ,
the objective value is t � (t1, ..., tN)T, the likelihood function
is:

p(t∣∣∣∣X,w, β) � ∏N
n�1

p(tn∣∣∣∣xn, w, β) (6)

The prior distribution on the parameter vector w is
introduced, and the Gaussian prior of zero mean is
considered. However, the key difference of RVM is that a
separate super parameter wi is introduced for each weight
parameter ai, rather than a shared super parameter. The prior
form of weight is:

FIGURE 1 | Workflow of identifying pulmonary injury-related genes.
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p(w|a) � ∏M
i�1

N(wi

∣∣∣∣0, a−1i ) (7)

ai represents the accuracy of the corresponding parameter wi.
When the model evidence for these hyperparameters is

maximized, most of them tend to infinity, and the posterior
probability distribution of the corresponding weight parameters
is concentrated near 0. Then the associated basis function will
have no effect on the prediction of the model, so it can be
removed to form sparsity.

The posterior probability distribution of weights is still
Gaussian, in the form:

p(w∣∣∣∣t, X, a, β) � N(w∣∣∣∣∣m,∑) (8)

where m � β∑φTt,∑ � (aI + βφTφ)−1.
After convergence, it can be found that part of the hyperparameter

ai values tend to infinity, and the weight parameterwi corresponding
to these hyperparameters has a posterior probability distribution
with a mean and variance of 0. Then the corresponding parameters
and basis function φi(x) are erased from the model.

AdaRVM
Adaboost generally uses a single-layer decision tree as its weak
classifier. The single-layer decision tree is the most simplified
version of the decision tree. It has only one decision point. That is
to say, if the training data has multi-dimensional features, the
single-layer decision tree can only select one of the one-
dimensional features to make decisions. In our method,
AdaRVM uses RVM as a weak classifier.

There are four steps to achieve Adaboost. Suppose our training
set sample is:

T � {(x1, y1), (x2, y2), ..., (xm, ym)} (9)

The output weight of the kth weak learner of the training set is:

D(k) � (wk1,wk2, ...,wkm)w1i � 1
m

(10)

Where m is the number of training samples.
The first step is to get the weighted error rate of the kth weak

classifier Gk(x) on the training set.

ek � p(Gk(xi) ≠ yi) � ∑m
i�1
wkiI(Gk(xi) ≠ yi) (11)

The second step is to obtain the weight coefficient of the weak
learner. For the binary classification problem, the weight
coefficient of the kth weak classifier Gk(x) is

ak � 1
2
log

1 − ek
ek

(12)

It can be seen from the above formula that if the classification
error rate ek is larger, the corresponding weak classifier weight
coefficient ak is smaller. In other words, a weak classifier with a
small error rate has a larger weight coefficient.

The third step is to update the sample weight D. Assuming that
the weight coefficient of the sample set of the kth weak classifier is

D(k) � (wk1,wk2, ...,wkm)w1i � 1
m, the weight coefficient of the

sample set of the corresponding k+1 weak classifier is:

wk+1,i � wki

ZK
exp( − akyiGk(xi)) (13)

Where ZK is normalization factor

Zk � ∑m
i�1
wki exp( − akyiGk(xi)) (14)

The last step is weighted voting, and the final strong
classifier is:

f(x) � gn⎛⎝∑K
k�1

akGk(x)⎞⎠ (15)

RESULTS

Method Evaluation
Since AdaRVM needs to construct multiple RVM models, the
number of RVM models determines the accuracy of AdaRVM.
Although in theory, the more the number of RVM models,
the more accurate AdaRVM. But the huge number of RVM
will cause the training time to rise sharply, and after reaching a
certain amount, the accuracy of AdaRVM will be stable.
Therefore, we need to try to build AdaRVM with multiple
numbers of RVM models to know the most suitable number
of models. We used 10, 50, 100, 200, 500 RVM models to
construct AdaRVM respectively. We used 90% data to train
the model and used the rest 10% data to test the performance
of different AdaRVMs. The AUC and AUPR of these models are
shown in Figures 2, 3.

FIGURE 2 | ROC curves of different RVM models.
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As we can see in Figures 2, 3, as the number of RVM models
increases, the AUC and AUPR of AdaRVM have improved
significantly. But as the number of RVM reached 200, both
AUC and AUPR stabilized and remained at 0.91 and 0.88.
Therefore, we used 200 RVM models to construct the final
AdaRVM.

After obtaining the final AdaRVM, we need to test the
performance of it. 10-cross validation has been applied to test
the stability of AdaRVM.

Figure 4 shows the AUC and AUPR of AdaRVM in 10-cross
validation. Since we tested AdaRVM 10 times, the mean AUC is
0.921 and the mean AUPR is 0.882. The standard deviation is
0.006 and 0.005, respectively.

The experiments showed the high accuracy of AdaRVM. At
the same time, in 10 cross-validation experiments, AdaRVMhas a
small variance of AUC and AUPR, indicating that the
performance of the method is very stable, and it is a reliable
method for predicting pulmonary injury-related genes.

Revealing the Functions of Cavin-2
AdaRVM found that Cavin-2 has strong potential to be related to
pulmonary injury. To verify our method and explore the function
of cavin-2, we used Summary data level Mendelian
Randomization (SMR) to integrate GWAS, eQTL, and mQTL
to deeply reveal the role of cavin-2 in lung injury.

Lung function indicators contain the lung volume, the forced
vital capacity (FVC), the forced expiratory volume in one second
(FEV1), and the ratio of FEV1 to FVC (FEV1/FVC), and the peak
expiratory flow (PEF). Lung volume represents the volume of gas
passing through the lungs at different stages of the respiratory
cycle. FVC refers to the maximum amount of air that can be
exhaled as soon as possible after inhaling as much as possible.
FEV1 is the volume of expiratory breath in the first second after

the maximum inhalation. FEV1/FVC is a common indicator to
judge airway obstruction and can reflect the type and degree of
ventilation disorders. PEF is the maximum flow when exhaling
forcefully. These indicators are important basis for the diagnosis
of lung diseases. Additionally, when lung damage is caused by a
variety of reasons, the interstitium secretes collagen for repair.
The excessive repair can lead to the formation of cystic
pulmonary fibrosis. Based on the above, we selected GWAS
data related to the six lung function injury traits (lung volume,
FVC, FEV1, FEV1/FVC, PEF, and CF) for the following analysis.

Four datasets of GWAS data were derived from the same study
results (Shrine et al., 2019). These four data individually described
FVC, FEV1, FEV1/FVC, and PEF traits. The acquisition of CF
GWAS data depends on the BioBank Japan (BBJ) Project, a
prospective BioBank that collected different kinds of biological
samples from 12 medical institutions in Japan (Sakaue et al.,
2021).

To focus the SNPs localized in the region of Cavin-2 gene, we
searched the location of Cavin-2 gene in GeneCards website. The
site contains detailed information about all type of genes such as
protein-coding genes, RNA genes, gene clusters. The gene
information showed in this website includes gene aliases,
related position information in the genome, gene function,
gene mapping, gene involved in pathways, and so on.
According to the search results, Cavin-2 gene was located at
192,699,028- 192,711,981 on chromosome 2. Thus, we eliminated
SNPs that did not exist in that range. Finally, six GWAS subsets of
Cavin-2 gene SNPs were generated. Then we utilized these
subsets for the next step of association analysis with eQTL
and mQTL.

In our study, we employed four eQTL data including three
blood eQTL and one lung tissue eQTL, and one mQTL data. Two
datasets of eQTL were downloaded from Genotype-Tissue
Expression (GTEx) website. The GTEx project collected and
analyzed samples from 53 non-diseased tissues across nearly

FIGURE 3 | PR curves of different RVM models.

FIGURE 4 | The AUC and AUPR of AdaRVM in 10-cross validation.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 8271085

Li et al. Cavin-2 Gene Function in Lung

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


1,000 individuals to investigate tissue-specific gene expression
patterns. Since we studied lung function traits, we selected one
lung eQTL data, and one blood eQTL data. The remaining two
eQTL datasets were obtained by RNA sequencing of the whole
peripheral blood of 2,116 healthy adults from four Dutch cohort
(CODAM, LLD, LLS, and RS). One eQTL data contains 23,060
gene level effects, while the other dataset contain 21,888 exon
level effects (Zhernakova et al., 2017). Similarly, the mQTL
dataset was downloaded from the same browser. This study
analyzed the data from the five Dutch biobank study
(CODAM, LLD, LLS, NTR, and RS) of 3,841 whole blood
samples (Bonder et al., 2017). The mQTL dataset contained
272,037 independent cis-mQTL effects. The whole datasets
used in this paper are listed in Table 1.

First, we conducted co-localization analysis on two datasets of
GWAS and eQTL to find overlapping SNPs and generate a new
data containing these SNPs (Figure 5). Then the Z-Score method
was used to standardized GWAS and eQTL data for the
subsequent analysis. Accoding to the Z-Score formula (① c �
qnorm(1 − p÷2); Beta> 0, c � Z Score, Beta< 0; ②

c � −Z Score; Z Score � Beta÷SE), the Z value could calculated
through using any two of the three values. Beta/OR value refers to
the value of regression coefficient, while SE value refers to the
standard error of the regression coefficient. Z values could
compute the TSMR value using Eq. 16, and then calculated the
p values (PSMR) corresponding to each variation by chi-square
test.

TSMR � Z2
GWASpZ

2
eQTL

Z2
GWAS + Z2

eQTL

(16)

PSMR value of 0.05 was taken as the statistically significant
threshold. If the PSMR value of some variations is less than 0.05,
these variations may affect the pulmonary phenotype by affecting
Cavin-2 gene expression. To determine the relationship between
these variation points and the classical signal pathways related to
lung injury, we performed further signal pathway analysis to
verify whether the changes of Cavin-2 gene expression mediated
by these variation points could interact with the components of
ERK1/2, AKT, and STAT3 classical signal pathways related to
lung injury, revealing the function of Cavin-2 gene in lung injury
and further confirming the accuracy of our analysis results.

We first conducted the conjoint analysis between the pair of
GWAS and eQTL data, and a total of 24 times SMR analyses were
performed. First of all, we need to find the same mutation locus
between GWAS dataset and eQTL dataset and then combine the
information of the mutation locus in the two datasets to generate
a new SMR dataset. As the GWAS data subset had a very small list

of SNPs, the overlapping SNPs found were much rarer in the new
SMR datasets. No more than 10 SNPs were found in all SMR
datasets. There were 3 overlapping SNPs in the dataset, which was
the dataset containing themost overlapping SNPs. These data sets
generally contain only one overlapping susceptible site
information.

In total, we discovered 3 susceptible loci in 24 SMR datasets.
These SNPs were rs111946466, rs1128965, and rs6718527. These
three sites were repeated in these SMR datasets. Half of the SMR
datasets contained the rs1128965 information, suggesting this
SNPs may closely associated with the Cavin-2 gene expression.
Additionally, the rs6718527 site may exhibit a tissue-specific as it
is identified only by three SMR datasets containing eQTL
information for lung.

Then, we performed SMR analysis on these datasets to verify
whether these three loci affect lung functional phenotypes by
influencing Cavin-2 gene expression. The Z value of GWAS and
eQTL in the dataset was used to calculate the TSMR value of the
mutation locus. Then, the Chi-square test of TSMR was performed
to obtain the PSMR value. The p value was compared with the
threshold value of 0.05. It was found that the four data sets had
the susceptible site rs1128965. Besides, the PSMR value obtained
after analyzing the susceptible site was below 0.05. These four
data sets are consistent with the lung function impairment
phenotype of FVC and PEF. This suggests that the mutation
locus can down-regulate the expression of the Cavin-2 gene,
resulting in abnormal lung function of FVC and PEF.

The SMR dataset of the 6 mQTL also had SNPs information of
three susceptible loci. The three SNPs include rs12477095,
rs11681727, and rs58245883. These three susceptibility loci
appeared in all six datasets. However, only the SMR dataset of
FEV1 trait identified rs12477095 as significant through SMR
analysis. This suggests that this site may perform DNA
methylation of Cavin-2, affecting the FEV1 phenotype
associated with lung function.

The Cavin-2 signal pathway was analyzed to further explain
the association between the changes in gene expression mediated
by Cavin-2-point mutation and ERK1/2, PI3K-AKT signal
pathway, and STAT3. The extracellular signal-regulated kinase
(ERK) pathway is activated by various extracellular factors, such
as growth factors and hormones, to participate in cell
proliferation and differentiation, stress response, etc. SDPR is
a metastasis inhibitor that inhibits epithelial-mesenchymal
transformation (EMT) and migration, promoting apoptosis by
interacting with ERK analysis to inhibit the extracellular ERK
pathway in breast tumors. Therefore, SDPR may inhibit the ERK
pathway to regulate lung injury.

Additionally, AKT-related signaling pathways help regulate
cell functions such as cell survival, proliferation, differentiation,
and migration. They are also important compensation
mechanisms for the body in responding to various harmful
stimuli. The PI3K/AKT/eNOS signaling pathway is a signal
transduction pathway that plays an essential regulatory role in
endothelial cells. The endothelial nitric oxide synthase (eNOS) is
an important downstream target of AKT and helps in regulating
vascular growth and endothelial function. Cavin-2 regulates nitric
oxide (NO) production in endothelial cells by controlling eNOS

FIGURE 5 | The process of GWAS, eQTL, and mQTL conjoint analysis.
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stability and activity. Cavin-2 can also help regulate lung injury by
regulating eNOS associated with the PI3K-Akt signal pathway of
lung injury.

As a stress-induced inflammatory signaling pathway, signal
transducers and activators of transcription 3 (STAT3) play an
essential role in regulating various biological behaviors of a
normal organism, such as immune response, tissue repair, cell
growth, etc. STAT3 is an indispensable key molecule in the
tumorigenesis and tumor-associated inflammation process,
which is promoted by chronic inflammation and abnormal
activation of STAT3. This causes various diseases since signal
transduction and STAT3 help protect respiratory epithelial cells
during injury. Cavin-2 is abundant in lung epithelial cells and is
closely associated with cell signal transduction. Cavin-2 helps
regulate the function of the lung during an injury by affecting
signal transduction in the STAT3 signaling pathway.

CONCLUSION

Gene mutations play an important role in the occurrence of
pulmonary injury, and many mutated genes and genomes have
been identified. With the widespread application of machine
learning methods in the biomedical field, a large number of
researchers use such methods to study disease-related
biomolecules on a large scale. But no method has been
developed specifically to study pulmonary injury-related genes.
In this paper, we developed AdaRVMwhich used gene expression
and gene interaction features to identify pulmonary injury-
related genes. We extracted the expression of genes in 13
tissues and 1,212 genes interaction. Due to the high dimension
of features, PCA was applied to reduce the dimension and remain
the key information. Then, we have determined the method of
constructing AdaRVM through 200 RVM models through many
experimental attempts. Through the idea of Adaboost, the output
results of 200 RVM models are aggregated to obtain the final
prediction result.

The 10-cross validation showed the high precision of
AdaRVM, with AUC of 0.921 and AUPR of 0.882, which
proves the effectiveness of our method. To verify the accuracy
of our results, we selected Cavin-2 gene which is predicted as
pulmonary injury-related genes by AdaRVM to do case study.We

investigated the relationship between the Cavin-2 gene and three
signaling pathways associated with lung injury. ERK is a classic
pathway of the mitogen-activated protein kinase (MAPK) signal
transduction system. Typically, ERK is located in the cytoplasm
and is activated only after phosphorylation. ERK regulates the
activity of some transcription factors, such as STATs, Jun, Fos,
and ATF2, through phosphorylation. These transcription factors
further regulate the transcription of their respective target genes,
leading to changes in the expression or activity of specific
proteins, ultimately regulating cell function, and metabolism.
ERK also regulates various activities such as cell growth,
apoptosis, and embryogenesis. The ERK1/2 signaling pathway
is essential in the EMT process and helps regulate cancermetastasis
(Sheng et al., 2017). Typically, EMT occurs in epithelial cells, and
various signals can induce it. Members of the transforming growth
factor β family (TGFβ) are some important cytokines that can
induce the transformation process of EMT. Besides, they can treat
fibrotic diseases and tumor diseases. TGFβ signaling can induce
EMT conversion through several different signaling mechanisms.
The EMT induced by the transforming growth factor (TGF-β1) is
important pathogenesis of silicosis fibrosis. TGF-β1 can induce
EMT by activating the downstream ERK1/2 pathway and
promoting silicosis fibrosis development. SDPR can act as a
metastasis inhibitor and regulate the ERK pathway to inhibit
EMT. Therefore, SDPR may inhibit the ERK pathway to
regulate lung injury. The eNOS is a common downstream
substrate of AKT, which is activated to promote eNOS protein
expression. The eNOS is a kind of nitric oxide synthase isoenzyme,
primarily distributed in vascular endothelium and catalyzes
l-arginine to produce NO, which vasodilates and increases
vascular permeability.

PI3K/AKT/eNOS is an important signal transduction pathway
in endothelial cells. This pathway regulates inflammatory responses
and the expression of inflammatory mediators, such as eNOS,
primarily through downstream proteins of AKT (Everaert et al.,
2010). Inactivation of eNOS is associated with oxidative stress,
inflammatory response, and adhesion to the vascular endothelium.
Endothelial dysfunction helps in atherosclerosis and ischemia-
reperfusion injury. Endothelial dysfunction is characterized by
reduced eNOS-induced NO bioavailability, which dilates blood
vessels and inhibits inflammation. Cavin-2 also regulates NO
production in endothelial cells by controlling the stability and

TABLE 1 | The new dataset list for SMR analysis. Thirty SMR datasets were created for this analysis.

GWAS eQTL SMR GWAS eQTL SMR

FEV1 GTEx_Blood FEV1_GTEx_Blood FVC GTEx_Blood FVC_GTEx_Blood
GTEx_Lung FEV1_GTEx_Lung GTEx_Lung FVC_GTEx_Lung
GENE_Blood FEV1_GENE_Blood GENE_Blood FVC_GENE_Blood
EXON_Blood FEV1_EXON_Blood EXON_Blood FVC_EXON_Blood

FEV1/FVC GTEx_Blood FEV1/FVC_GTEx_Blood PEF GTEx_Blood PEF_GTEx_Blood
GTEx_Lung FEV1/FVC_GTEx_Lung GTEx_Lung PEF_GTEx_Lung
GENE_Blood FEV1/FVC_GENE_Blood GENE_Blood PEF_GENE_Blood
EXON_Blood FEV1/FVC_EXON_Blood EXON_Blood PEF_EXON_Blood

Lung volume GTEx_Blood LungVolume_GTEx_Blood CF GTEx_Blood CF_GTEx_Blood
GTEx_Lung LungVolume_GTEx_Lung GTEx_Lung CF_GTEx_Lung
GENE_Blood LungVolume_GENE_Blood GENE_Blood CF_GENE_Blood
EXON_Blood LungVolume_EXON_Blood EXON_Blood CF_EXON_Blood
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activity of eNOS, and cavin-2 knockdown cells produce much less
NO than WT cells. The binding of estrogen, vascular endothelial
growth factor, insulin, and other signal molecules with
corresponding receptors on the cell surface can activate
intracellular PI3K. Besides, the activated PI3K can generate PIP3
through phosphorylation. PIP3 binds to intracellular signals to
promote PDK1 phosphorylation of AKT, activating the
expression of its downstream target protein.

JAK-STAT comprises three parts: The receptor tyrosine
kinase-associated receptor for receiving the signal, the tyrosine
kinase JAK for transmitting the signal, and the transcription
factor STAT for producing the effect (Johnson et al., 2018).
Cytokines or other extracellular signal ligands on the cell
membrane induce the aggregation of the corresponding
receptors to form homologous or heterologous dimers. This
brings the protein JAK together in the cytoplasm, leading to
autophosphorylation. Activation of JAK leads to further
phosphorylation of the tyrosine residues in the cytoplasmic
region of the receptor and mediates STAT3 to bind to the
phosphorylated tyrosine residues on the receptor through its
Src homology 2 (SH2) domain, phosphorylating the tyrosine
residues of STAT3. After phosphorylation, STAT3 is transferred
to the nucleus in the form of a homologous or heterologous dimer
and binds to the DNA promoter of the target gene to activate the

transcription of the target gene. Interstitial lung disease (ILD)
includes fibrotic lung diseases characterized by cell proliferation,
interstitial inflammation, and fibrosis. The JAK/STAT pathway is
activated in response to the interaction of many pro-fibrotic/pro-
inflammatory cytokines such as IL-6, IL-11, and IL-13, elevated in
various ILD. Similarly, several overexpressed growth factors in
ILD, such as platelet-derived growth factor (PDGF), TGF-β1, and
fibroblast growth factor (FGF), activate JAK/STAT via classical or
non-classical signaling pathways. This suggests that JAK/STAT
plays a dominant role in ILD.
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