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Abstract

Machine learning approaches are becoming increasingly widespread and are now present

in most areas of research. Their recent surge can be explained in part due to our ability to

generate and store enormous amounts of data with which to train these models. The

requirement for large training sets is also responsible for limiting further potential applica-

tions of machine learning, particularly in fields where data tend to be scarce such as devel-

opmental biology. However, recent research seems to indicate that machine learning and

Big Data can sometimes be decoupled to train models with modest amounts of data. In this

work we set out to train a CNN-based classifier to stage zebrafish tail buds at four different

stages of development using small information-rich data sets. Our results show that two and

three dimensional convolutional neural networks can be trained to stage developing zebra-

fish tail buds based on both morphological and gene expression confocal microscopy

images, achieving in each case up to 100% test accuracy scores. Importantly, we show that

high accuracy can be achieved with data set sizes of under 100 images, much smaller than

the typical training set size for a convolutional neural net. Furthermore, our classifier shows

that it is possible to stage isolated embryonic structures without the need to refer to classic

developmental landmarks in the whole embryo, which will be particularly useful to stage 3D

culture in vitro systems such as organoids. We hope that this work will provide a proof of

principle that will help dispel the myth that large data set sizes are always required to train

CNNs, and encourage researchers in fields where data are scarce to also apply ML

approaches.

Introduction

Machine learning (ML) approaches are not new, with early works dating as far back as the

1950s [1]. However, in the last two decades, the field has experienced an astonishing surge in

productivity and progress. This soar can be explained, at least in part, by our new-found ability

to generate and store ever larger amounts of data (Big Data) with which to train ML models

coupled with unprecedented computational speed and power. It is becoming difficult to find a
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field that hasn’t yet adopted ML approaches in one way or another, with applications ranging

all the way from the humanities (see [2–4] for some examples) to paleontology [5] or health

care [6]. The biological sciences are indeed no exception [7–10], having entered into the era of

Big Data thanks to technological advances such as next generation sequencing and multi-

omics approaches [11]. Machine learning, and deep learning in particular, have been used to

predict sequence specifities of both DNA- and RNA- binding proteins, as well as enhancers

and other types of regulatory regions [12, 13]. A few other notable examples include the wide

use of ML approaches to address questions in population and evolutionary genetics [14], pre-

dicting transcript abundance from DNA sequence [15], predicting methylation states in single

cells [16], imputation of missing SNPs [17] as well as variant calling [18].

Deep learning, and in particular convolutional neural networks (CNNs), are being increas-

ingly applied to problems involving various types of microscopy images in both biology and

medicine [19–22]. CNNs are a family of algorithms that have gained popularity in recent years

thanks to their remarkable levels of accuracy when applied to computer vision problems such

as image classification, analysis and object detection [23]. The design of CNNs has been

inspired by animal nervous systems: they are made up of high numbers of interconnected

computational nodes (known as neurons) across various different layers, and together they

manage to optimise the network parameters by learning collectively to improve the network’s

performance during training [24]. CNNs differ from other machine learning algorithms also

used in computer vision such as support vector machines and random forests in that they

don’t rely on the manual annotation of identifiable features in the images used. Instead, CNNs

take image pixels as inputs directly, without the need for any manual annotation of the images

themselves. This aspect is particularly attractive for the analysis of image-based biological data

as it allows for conclusions to be drawn from the image data itself, without requiring any initial

image analysis, eliminating the any biasing during feature detection. CNNs have been opti-

mised to make the most of recent advances in GPU technologies resulting in impressively high

accuracies and classification speeds when compared to similar methods [25–28]. In addition,

formulating and training CNNs has become more accessible in recent years thanks to the

development of various user-friendly softwares [29–31].

Deep learning algorithms have been proving their prowess at classifying natural images

ever since the convolutional neural network AlexNet won the ImageNet Large Scale Visual

Recognition in 2012 [32]. Since then, this methodology has been successfully applied to object

detection and classification in biological microscopy image data revolutionising the field. In

one of the first examples, a CNN model was trained to identify and stage cells in brightfield

microscopy images of malaria-infected blood [33]. Subsequently, CNNs have been used to

obtain morphological profiles of cultured cells from fluorescence microscopy images [34, 35],

identify changes in cell state [36–38], determine protein localisation within the cell by classify-

ing spatial patterns in fluorescence images [39–42] and detect bacteria in a zebrafishes diges-

tive tract [25], to name just a few examples.

While the availability of Big Data has allowed for ML approaches to be readily applied to

many areas in biology, the requirement for large training sets is also responsible for limiting

further potential applications. This challenge is not unique to biology. Personalised medicine,

where the aim is to use data from single patients to train models that will inform their diagno-

sis and treatment, is another promising field which suffers from data scarcity. To overcome

such pitfalls, an active area of research has emerged to find ways to train accurate ML models

with smaller data set sizes to hopefully uncouple ML from Big Data [43–48].

Data in developmental biology is often scarce: embryos are rarely available in high num-

bers, and even when they are, staining and imaging is time consuming, limiting the amount of

data that can be collected. However scarce, such data sets are also increasingly information-
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rich, often consisting of stacks of high-resolution z-slices that together make up a complete 3D

image of the embryo or region under study. Moreover, advances in the multi-plexed detection

of mRNA distribution means that such 3D structural information can be coupled with infor-

mation about the distribution and quantification of multiple mRNA species from the tissue to

sub-cellular level [49–52]. With ML approaches it is often unclear at the onset, exactly how

much data is going to be required to achieve a certain test accuracy. Inspired by previous work

showing that CNN-based classifiers could be trained with information-rich small data sets

[43–48], we set out to see if we would be able to train a CNN to classify zebrafish tail buds of

different stages with the limited data that was available to us in the lab.

Zebrafish (Danio rerio) is a very popular model organism in developmental biology. Its

embryos go from fertilization to free swimming larvae in three days [53]. In the first day of

their development, zebrafish embryos enter the segmentation period [53]. During this time,

the embryo elongates, somites (precursors of the dermis, skeletal muscle, cartilage, tendons,

and vertebrae) appear sequentially in an anterior to posterior manner and the tail bud becomes

more prominent (Fig 1A). Zebrafish embryos are routinely staged based on their overall shape

and the total number of somites that they have formed. However, during these stages the over-

all shape of the tail bud also changes, although more subtly, to become shorter, thinner and

overall straighter (Fig 1B).

In this work we set out to test whether it would be possible to use a small albeit informa-

tion-rich data set of confocal images to train a CNN to accurately classify images of zebrafish

tail buds at four different stages during the segmentation period. In addition to the challenge

regarding the small size of our training set, we also wanted to see whether a CNN would be

able to learn to classify based on subtle changes in the shape of an isolated embryonic struc-

ture, in this case the tail bud. Such a classifier would solve the problem of asynchronous devel-

opment within clutches and save man-hours by automating the staging step in laboratories

across the world.

In this paper we show that, contrary to popular belief, small information-rich data sets can

also be used to train CNN-based classifiers to a high accuracy. We have focused on building

and training CNNs to correctly stage two and three dimensional morphological and gene

expression image data of zebrafish tail buds at four different stages during the segmentation

period of development. We found that CNN-based classifiers can yield test accuracies of 100%

when trained with less than 100 images. Furthermore, our results show that this is the case

both when morphological and gene expression image data were used as the training set. Sur-

prisingly, higher dimensional data (3D versus 2D) isn’t always associated with a higher accu-

racy score. We hope that our work will provide a precedent and encourage others in the life

sciences to apply ML approaches even when their data are relatively scarce.

Results and discussion

Data

In this work, we set out to train convolutional neural networks to classify 2D and 3D confocal

images of dissected tailbuds taken from zebrafish embryos at four close but different stages in

development: 16-18 somite stage, 20-22 somite stage, 24-26 somite stage and 28-30 somite

stage (Fig 1A). The chosen classes cover approximately 1.5hrs of embryonic development

each, and are fine enough for our general research purposes, which aim to understanding fate

specification in the tail bud during the segmentation period.

Whole embryos were stained for three gene products, Tbxta, Tbx16 and Sox2, using HCR

V.3 [54]. Tbxta is expressed in the notochord and mesoderm progenitor zone (Fig 2A and

2D), Tbx16 is also expressed in the mesoderm progenitor zone and is present in the posterior
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pre-somitic mesoderm, but not in the notochord (Fig 2A and 2C) [55, 56]. Sox 2 is a neural

marker which is expressed in the neural progenitor zone (Figs 1C and 2A and 2B) [57]. All

embryos were also stained with DAPI, a nuclear marker (Fig 1B) which allows us to visualise

the morphology of the entire tail. The staining protocol takes three days and has been opti-

mised to allow us to stain larger numbers of embryos at a time (see Materials and methods).

Fig 1. Zebrafish development and the tail bud classification problem. A. Schematic drawings of zebrafish embryos at 18, 21, 25 and 30 somite stages.

The tail bud region of the 18 somite stage embryo schematic is shown inside the dotted square and below, rotated 90˚ to the right and zoomed in. Black

line on the boxes to help visualise alignment. Posterior to the right, anterior to the left, dorsal up and ventral down. The spinal cord (SC) is shown in

cyan, alternate somites (Ss) are shown in different shades of orange, the notochord (NC) is shown in green and the pre-somitic mesoderm (PSM) is

shown in pink. B. Maximum projection images of the tail buds of embryos at the 18, 21, 25 and 30 somite stages respectively, stained with Dapi and

imaged on a confocal microscope. C. Maximum projection images of the same tail buds as in B, stained for the mRNA of tbxta (green in the posterios

PSM and notochord), tbx16 (red in the PSM) and sox2 (blue in the spinal cord) using HCR V.3 and imaged on a confocal microscope.

https://doi.org/10.1371/journal.pone.0244151.g001
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Once the tails had been staged and stained, they were imaged on a confocal microscope.

The resulting images consist of four channels, one for each stained gene product plus DAPI,

and we image over three spatial dimensions. Images were subsequently passed through a pre-

processing pipeline in preparation to be used for network training and testing (see details in

the Materials and methods section). It is important to note that the tails in all images presented

to the CNN were in the same orientation: anterior to the left, posterior to the right, dorsal up

and ventral down as in Fig 1B and 1C. We obtained a total of 120 images stained with DAPI,

56 images stained for tbxta, 56 for sox2 and 56 for tbx16. Of the 120 DAPI stained images

obtained, 96 were used for training (with 24 images per class) and the remaining 24 images

were used for testing (with 6 images per class). Of the 56 images obtained for each gene of

interest, 48 were used for training (with 12 images per class) and the remaining 8 were used

for testing (with 2 images per class) (for more details please see the Final Data Sets section in

the Materials and methods and in particular Table 2). These are very small data set sizes com-

pared to those usually used for deep learning classification problems, which typically range

from the hundreds to the millions.

All images are three dimensional, with x, y and z axes. By adding an an additional pre-pro-

cessing step, we obtained a maximum intensity projection along the z axis for every image in

order to obtain its two-dimensional representation. In this way we generated an associated 2D

version of the 3D data set. This dimensionality reduction was accompanied by a subsequent

reduction in the size of the images compared with their 3D counterparts. As a result we were

able to increase the dimensions of the x and y axes to 128 x 128 pixels. All data are available on

Figshare (see Materials and methods).

Convolutional neural network architecture

We chose a simple architecture, composed of two convolutional layers, each using rectified lin-

ear unit (ReLU) activation functions followed by a max pooling operation (Fig 3). The first

convolutional operation employs a kernel size of 5x5x5 and stride of 1x1x1 which produces 32

channels, and the second uses a kernel size of 4x4x4 and stride of 1x1x1, producing 64 chan-

nels. The number of channels produced by the convolution operation is arbitrary, and is often

used as a hyperparameter to optimise a network. Both convolutions are followed by a max

pooling layer with a kernel size of 3x3x3. Once passed through the convolutional layers, the

data is flattened into a one dimensional array of length 262144 (64x64x64), and passed into the

multi layered perceptron (MLP) part of the network. The MLP contains three fully-connected

Fig 2. Gene expression data. A. Same maximum projection image as in Fig 1C (third from the left) of a 25 somite stage embryo’s tail bud stained

for the mRNA of tbxta (green in the posterior PSM and notochord), tbx16 (red in the PSM) and sox2 (blue in the spinal cord). B. Same image as in

A. but only showing the sox2 (blue) channel. C. Same image as in A. but only showing the tbx16 (red) channel. D. Same image as in A. but only

showing the tbxta (green) channel.

https://doi.org/10.1371/journal.pone.0244151.g002
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hidden layers, followed by a third output layer consisting of 4 units—one for each of our

defined classes (16-18 somites, 20-22 somites, 24-26 somites and 28-30 somites). An activation

function is implemented after each of the first two layers, and the dropout regularisation tech-

nique applied with a dropout rate of 0.2. The final layer of the network is a third fully con-

nected layer containing four units which returns the log probabilities of each image belonging

to each of the four classes. Finally, a softmax activation function is applied to these probabili-

ties, which yields a percentage likelihood for each classification. During training, a cross

entropy function is used as the loss function, which is optimised using the Adam optimisation

function. The architecture described above corresponds to the 3D implementation of the clas-

sifier. The 2D implementation is generally identical, except for the necessary reduction in one

dimension (Fig 3A and 3B, more details in the Materials and methods section).

CNN-based classifiers trained on less than 100 morphological images of

zebrafish tail buds reach up to 100% accuracy

Our first objective was to train a classifier that would be able to distinguish between morpho-

logical (DAPI stained) images of zebrafish tail buds at four discrete stages in development. The

confocal images are three dimensional but can be reduced to two dimensions by performing a

maximum intensity projection along one of the axes on the image analysis software Imaris, as

detailed in the previous section. Given the small size of our data set, we wanted to see whether

a 2D or a 3D data set would be most suitable to train a CNN to accurately classify zebrafish tail

buds according to their developmental stage. To address this we trained both 2D and 3D ver-

sions of the network on 2D and 3D data sets respectively and compared them.

CNN reaches close to 80% accuracy classifying 3D morphological images of zebrafish

tail buds. The 3D CNN was initially parametrised using the optimisation algorithm SigOpt

(see Materials and methods section) to find the most appropriate activation functions and

number of units in the first and second hidden layers. This procedure found that ReLU

Fig 3. Convolutional neural network architecture. Convolution and pooling region of the 2D CNN architecture.

https://doi.org/10.1371/journal.pone.0244151.g003
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activation for both layers performed consistently better than Tanh activation for both layers,

or a combination of the two. The algorithm settled on a first hidden layer composed of 501

units and a second composed of 397 units, which we rounded up to 500 and 400 units respec-

tively (Materials and methods, Table 5). All other network parameters remained as described

in the previous section.

This network was further trained on the 3D DAPI data set for 100 epochs to allow learning

convergence and optimal classification results. The total training data set consisted of 96 3D

DAPI stained images, with 24 per class (see Table 2). As expected, extending the training time

results in a significant increase in accuracy and an associated decrease in loss. The training

accuracy peaked at a perfect score of 100% after 100 epochs, compared to the 62% accuracy

reached after 10 epochs during the initial parameter optimisation round. Similarly, test accu-

racy reached a maximum value of 79.16%, compared to the initial 58.33% test accuracy (Mate-

rials and methods, Table 5). A test accuracy of almost 80% is already a very good score, and a

surprising one too, considering the small size of the training set used.

CNN reaches 100% accuracy classifying 2D morphological images of zebrafish tail

buds. Next, we proceeded to train the 2D version of the classifier on the associated 2D data

set. As with the 3D classifier, we use an initial course grained parameter optimisation strategy

to find the best performing parameter combination before fine training the selected network

for longer times (more epochs, see Materials and methods). The resulting network also uses

ReLu activation functions, this time with 429 and 330 units in the first and second hidden lay-

ers respectively (see Table 6, cyan). Using these parameters, the network converged after as

few as 25 epochs; a small number compared to the 100 that were required for convergence in

the 3D classifier. The accuracy when the network was applied to the test data set reached a per-

fect score of 100%. This was expected since since in the course-grained training this network

had already scored 95.83% (see Table 6, cyan row represents the parameters that result in the

best performance).

Performance comparison of 2D vs 3D CNN-based classifiers of morphological images

of zebrafish tail buds. Both classifiers perform exceptionally well, especially considering that

less than 100 images were used to train four different classes. The 3D classifier reached an

accuracy of almost 80% while the 2D classifier achieved an accuracy of 100% (as shown in

Table 1). We had initially expected the increased information contained in the 3D images

when compared to their 2D counterparts, to result in a better performance of the 3D classifier.

Instead we find the opposite. Furthermore, the 2D network obtained a higher test accuracy at

a quarter of the computational time, converging after only 25 epochs as opposed to the 100

required to converge the 3D network. One possible explanation for this result might have to

do with our methodology: to train the 2D network we initialise using the some parameter val-

ues obtained from training the 3D network in a somewhat unusual application of transfer

learning. Transfer learning refers to using the weights obtained by training a network with a

given data set, as the starting point for training the network on a different data set and for

another classification task [58]. This method has already been shown to be extremely effective

Table 1. Comparison matrix of classification outcomes of 2D and 3D morphological images. Training accuracy is

derived from the highest average accuracy from all epochs and test accuracy, from testing on a subset of data that has

not been used during training.

DAPI

Training accuracy (%) Testing accuracy (%)

2D 100 100

3D 100 79.16

https://doi.org/10.1371/journal.pone.0244151.t001
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at reducing the amount of labelled image data required for training CNNs on biological

microscopy data [25, 41, 59–61]. Usually this approach is used to train networks on new data

sets and classification challenges. In our case, transfer learning was applied to the same classifi-

cation task and data, albeit in a different format, which yielded an improved performance and

faster convergence time.

In practical terms, this result dispels the myth that training a CNN to a high test accuracy

always requires prohibitive amounts of data, and shows how transfer learning can help make

the most out of the available data, in this case to further improve the levels of accuracy to

obtain a perfect score on the 2D version of the same set. This result suggests that CNNs can be

successfully applied to myriads of classification tasks in the life sciences, where data are scarce.

CNN-based classifiers trained on less than 50 3D images of gene expression

domains in zebrafish tail buds reach up to 100% test accuracy

Next, we applied a traditional transfer learning approach to ask whether 2D and 3D classifiers

could be trained to stage gene expression domains on zebrafish tail buds at the same four

developmental stages considered before (Fig 2B–2D). To do this, we used the network archi-

tecture and weights obtained in the previous section from training using 2D and 3D morpho-

logical (DAPI stained) images of zebrafish tail buds, and re-trained these networks using the

gene expression data. Gene expression data is fundamentally different from the previously

used DAPI stains (compare Fig 1A and 1B and Fig 2B–2D). While DAPI stains the nucleus of

every cell, hence building an image of the tail bud’s morphology, HCR V.3. stains the mRNA

of the gene of interest anywhere in the cell and surroundings, resulting in hazy coloured

clouds. To add to the challenge of staging hazy gene expression domains, the data sets used

were half the size with respect to those used to train for morphological classification in the pre-

vious section (Table 2), with a training set size of 48 images for each gene.

CNNs stage 3D gene expression domains in zebrafish tail buds with a minimum of

87.5% accuracy. We used the 3D network obtained by training using the 3D morphological

image data set (previous section) as the starting point from which to train three networks, each

of which will learn to classify 3D gene expression image data for one gene (Sox2, Tbx16 or Ntl

respectively. See Fig 2). The gene expression image data set for each gene is smaller than the

morphological image data sets used in the previous section, with each containing less than half

the number of samples (56 as opposed to 120, see Materials and methods, Table 2). To reduce

the risk of over-fitting that is commonplace when training networks with small data sets, we

reduced the number of epochs to 25. Preliminary experiments showed that the models tended

to converge quicker with the smaller data sets, corroborating our choice of a reduced training

time.

Table 2. Data set summary. Our data were divided into two data sets, the 2D and the 3D datasets. Within those data sets there were image stained for DAPI, Tbxta, Tbx16

and Sox2. The table shows the total number of images of each kind (Total column), and how many images were used for training (Training column) and Testing (Testing

column). In brackets, the number of images per class.

2D 3D

Total Training Testing Total Training Testing

DAPI 120 96 (24) 24 (6) 120 96 (24) 24 (6)

Tbxta 56 48 (12) 8 (2) 56 48 (12) 8 (2)

Tbx16 56 48 (12) 8 (2) 56 48 (12) 8 (2)

Sox2 56 48 (12) 8 (2) 56 48 (12) 8 (2)

https://doi.org/10.1371/journal.pone.0244151.t002
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After 25 epochs, the networks trained to stage 3D Ntl and Sox2 expression domains in the

tail bud both achieved a test accuracy of 100% while the network trained to stage 3D Tbx16

expression patterns reached a lower, but also impressive, maximum test accuracy of 87.5%

(Table 3). The observed differences in accuracy could be due to a number of reasons including

differences in the level of background staining between each of the three genes or they could

be rooted in the existing differences between the shapes of the expression domains themselves.

The rates of convergence during training did not differ significantly between the three net-

works (S1 Fig).

CNN-based classifiers trained on less than 50 2D images of gene expression domains in

zebrafish tail buds score between 60 and 90% test accuracy. Again, we use a transfer learn-

ing approach where the 2D network pre-trained on morphological image data (section) was

taken as the starting point from which to train three new networks, each of which will learn to

stage 2D gene expression domains. As in the 3D case discussed in the previous section, we

train for 25 epochs to reduce potential over-fitting.

For each gene, the training accuracy of the 2D models plateaus soon after 10 epochs achiev-

ing between 70% and 80% in each case (Table 4). The range of testing accuracy that we obtain

for the 2D expression data is larger than that obtained from training: between 60% and 90%

(Table 4) and performing overall much worse than when the networks were trained on 3D

expression data.

Performance comparison of 2D vs 3D CNN-based classifiers of gene expression

images. Contrary to what we found with the networks trained on morphological (DAPI-

stained) tail bud images, networks trained on gene expression data sets tended to perform con-

sistently better when trained on the 3D image data as opposed to those trained on 2D image

data (except for Tbx16 where the test accuracy of the 3D and 2D networks are the same). It is

difficult to pinpoint exactly the reasons underlying the improved performance of the 3D net-

work, however it is possible that for these very small data set sizes, the training favours from

the extra information contained in the 3D images, and is able to take full advantage of it. The

2D images are rendered by projecting down all of the information in the Z axis, hence averag-

ing it out. While it seems that this information is expendable when training on DAPI-stained

images, it is definitely not when training on gene expression data. This suggests, at least for

such small training set sizes, that the changes undergone by gene expression domains in all

dimensions are learnt and used by the network.

Table 3. Classification outcomes of the CNNs trained with 3D gene expression image data. Training accuracy is derived from the highest average accuracy from all

epochs and test accuracy, from testing on a subset of data that has not been seen during training.

Ntl Sox2 Tbx16

Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%)

3D 95.55 100 100 100 100 87.5

https://doi.org/10.1371/journal.pone.0244151.t003

Table 4. Classification outcomes of the CNNs trained with 3D gene expression image data. Training accuracy is derived from the highest average accuracy from all

epochs and test accuracy, from testing on a subset of data that has not been seen during training.

Ntl Sox2 Tbx16

Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%)

2D 72.77 75 80 62.5 79.44 87.5

https://doi.org/10.1371/journal.pone.0244151.t004
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Conclusion

Our results have shown that two and three dimensional convolutional neural networks can be

trained to stage developing zebrafish tail buds based on both morphological and gene expres-

sion images. Importantly, we show that high accuracies can be achieved with data set sizes of

under 100 images, much smaller than the typical training set size for a convolutional neural

net, which tend to be at least in the tens of thousands range, if not larger.

By showing that we can we build a CNN-based classifier to stage isolated structures such as

tail buds, our work also highlights that it is not necessary to always rely on established develop-

mental landmarks such as somite formation for staging. This ability will make it possible to

directly stage developmental processes that are difficult to otherwise stage accurately based

solely on such landmarks. Furthermore, image series can be generated directly from tissue

explants to train a CNN-based classifier, leaving out entirely the additional step of having to

stage whole embryos. This approach should prove particularly useful considering the recent

rise in the use of 3D culture methods to derive specific tissue derivatives, or organoids.

Research on these systems requires the development of accurate staging systems since a tissue

or organ of interest developed in isolation on a dish can no longer be staged relative to the

development of the whole embryo [62]. A recent example highlighting the importance of

being able to stage such structures comes from work were the ability to order intestinal orga-

noids along a common morphogenetic trajectory was key for determining the mechanisms of

symmetry breaking at the early stages of their development [63]. We propose that the develop-

ment of CNN-staging methods will offer a broad range of advantages, allowing us to follow

developmental events in both embryonic explants and organoids.

Convolutional neural nets are becoming increasingly wide-spread and thanks to the various

user-friendly tools that are now available to implement them, we expect that their use to soon

extend even further. Although our results suggest that the data requirements for training a

CNN-based classifier are highly dependent on the nature of the data themselves, this work

constitutes a proof of principle that we hope will contribute to dispel the myth that large data

set sizes are always required to train CNNs, and encourage researchers in fields where data are

scarce to apply ML approaches.

Materials and methods

Ethics statement

This research was regulated under the Animals (Scientific Procedures) Act 1986 Amendment

Regulations 2012 and approved following ethical review by the University of Cambridge Ani-

mal Welfare and Ethical Review Body (AWERB).

Zebrafish husbandry, manipulation and embryo collection

Zebrafish from the wild-type Tupfel Long-fin line zebrafish (Danio rerio) were kept at 28.5˚C,

as recommended by standard protocols. Crosses with one male and one female were set up

and left overnight. The morning after, dividers were lifted and the fish allowed to mate for 15

minutes, after which the embryos were collected. This was done to favour the synchronous

developmental of embryos in the same batch. Embryos are kept in E3 embryo medium (Wes-

terfield, 2000) and incubated at between 26˚C and 32˚C until they reach the correct somite

stage range of one of the four classes (16-18 somites, 20-22 somites, 24-26 somites and 28-30

somites) according to the Kimmel et al (1995) staging table. Embryos are de-chorionated by

hand, fixed in 4% paraformaldehyde (PFA) and stored overnight at 4˚C.
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In situ hybridization

In situ hybridization was performed using third-generation DNA hybridization chain reaction

(HCR V3.0), and carried out as described by Choi et al. (2018). In brief, embryos are incubated

overnight at 37˚C in 30% probe hybridisation buffer containing 2pmol of each probe mixture.

Excess probes were washed off with 30% probe wash buffer at 37˚C and 5xSSCT at room tem-

perature. Embryos are then incubated overnight in the dark, at room temperature in amplifica-

tion buffer containing 15pmol of each fluorescently labelled hairpin. A shaker was used to

ensure a thorough mixing of the hairpin solution, which allowed us to increase the number of

embryos per eppendorf approximately 10-fold. Following HCR, embryos were bathed in

DAPI overnight at 4˚C. The protocol takes a total of three days. Probe sequences were

designed and manufactured by Molecular Instruments, Inc.

Sample preparation and imaging

A precision scalpel was used to dissect the posterior unsegmented and tail bud regions from

the embryo bodies while viewing through a Nikon Eclipse E200 in bright field at 10x objective.

Tail buds were then collected using a glass pippette, placed in the center of a glass-bottom dish

and mounted using methyl-cellulose. Particular emphasis was put on trying to not make the

cuts stereotypical, in order to reduce the likelihood of them being learnt by the neural net.

Images were acquired using a Zeiss LSM 700 laser-scanning confocal microscope, and the

accompanying Zeiss Zen 6.0 software. The z-dimension and laser intensity settings were modi-

fied on a batch-by-batch basis to account for variance in the depth range of the samples

between experiments, while the bit depth and pixel dimensions for the image capture were

kept constant at 12-bit and 256 x 256px, respectively.

All the raw data used in this project can be freely downloaded from https://figshare.com/

articles/dataset/Data_for_staging_proejct_Deep_learning_for_classification_of_4_different_

stages_of_embryos/13110599

Image processing

Image samples were processed using Imaris 9.2.2 (Bitplane) and FIJI (Schindelin et al., 2012).

Each image was processed manually according to the following workflow:

1. Images are first saved in Zeiss’ proprietary LSM (.lsm) format and are then imported into

Imaris. Each image is repositioned using the ‘Image Processing -> Free Rotate’ function.

The tail bud is moved in three dimensions such that the antero-posterior (AP) and dorso-

ventral (DV) axes are approximately positioned left-to-right and top-to-bottom,

respectively.

2. A surface is created using the DAPI channel. This surface is used to segment the whole

region of the image taken up by the unsegmented posterior embryonic axis and tail bud.

Masks are then used to set all voxels outside of this generated segment to zero on all four

channels, leaving the target region intact while removing all imaging noise/artifacts from

the sample. 3D images of each of the four channels (DAPI, Tbxta, Sox 2 and Tbx16) were

exported individually in .TIF format. In addition, maximum intensity projection images

(projections onto the z axis) were also obtained and exported for each channels and used to

assemble the 2D datasets (details below).

3. Once in .TIF format and before presenting the images to the model for training, they are

subject to a simple programmatic pre-processing pipeline where, first, the z axis is normal-

ised for all training samples. As a result, images which initially had varying counts of z-slices
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due to the batch-by-batch nature of the image acquisition procedure, will now all have been

normalised to the same size, as required by the neural net. Next, it is necessary to crop the x
and y dimensions of each slice to accommodate the computational bottleneck of fitting

heavy 3D images into memory. The last pre-processing step before inputting the data into

the network requires us to convert the images into Numpy array format (Walt et al, 2011).

Numpy arrays are an efficient and robust way of representing image data in the form of a

multi-dimensional matrix, and is how the downstream model will process and understand

the contents of the image.

4. Finally, images were converted into grayscale and reshaped to 1 x 64 x 64 x 64 pixels, where

the first dimension represents the number of channels (1 for a grayscale image) before

being presented to the network.

Final datasets

The final data sets consists of 2D and 3D collections of images for DAPI stained embryos, as

well as embryos for stained using HCR V3.0 for the gene products of three genes: Tbxta, Sox2

and Tbx16. The 2D and 3D DAPI image datasets contain each a total of 120 images: 96 of

which are used for training—24 images for each class—and 24 images for testing—6 per class.

The 2D and 3D HCR image datasets contain a total of 56 images for each gene: in each case, 48

are used for training (12 per class), and 8 were used for testing (2 for each class). An equal split

of samples per class maintained in all cases. No data augmentation was used.

2D CNN formulation

The CNN presented in the Results section corresponds to the 3D implementation of the net-

work. The 2D implementation is generally identical, except for the necessary reduction of one

dimension. To achieve this, the kernel size for the first convolution layer is reduced from

5x5x5 (in the 3D model), to 5x5. The flattened layer must also be adapted to the reduction in

dimensions, and in the 2D implementation takes the form of a vector of length 65536. Fig 3A

and 3B show a visual representation of the network architecture for the 2D network. All other

parameters were kept the same as in the 3D network.

Network training and initial parameter optimisation

The parameter optimisation algorithm SigOpt was used to parametrise the 3D classifier. Given

a series of parameter options, this algorithm will run the network with different parameter

combinations as it optimises the performance of a previously defined target metric. The metric

used in this case was the test accuracy, that is the accuracy of the classifier when applied to a

subset of images that have not been seen during training. We allowed each parameter set to be

trained during only 10 epochs. This suffices to highlight the best performing networks while

economising the time spent training the network.

The parameters to be optimised corresponded to the type of activation functions to be used

within each of the first two layers of the MLP region of the network, and the number of hidden

units in those same layers. Activation functions being considered were ReLU and Tanh, and

the search range for optimal number of units was 400-700 units for the first hidden layer and

300-500 for the second.

The outcome of the optimisation revealed that for this task the ReLU activation function

was consistently superior to Tanh, with the highest test accuracy scores coming from the net-

works which had a ReLU activation function at both layers (Table 5, conditions 5 and 9, gray
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and cyan rows). When comparing these conditions we realise that the precise number of hid-

den units in each layer seems to have less influence on the resulting test accuracy. We chose

parameters in condition 9, rounded to nearest 10 hidden units, as these gave the highest accu-

racy: 58.33% and re-trained this network with a significantly increased training time (100 or

20 epochs depending on the data, see Results section) to evaluate its maximum performance.

As with the 3D network, we use an initial course grained parameter optimisation strategy

using the SigOpt algorithm to find the best performing parameter combination of the 2D net-

work before fine training the selected network for longer times. We decided to use ReLu acti-

vation functions in order to keep the 3D and 2D networks as similar and therefore comparable

to each other as possible. Instead, only the number of units in the hidden layers were

optimised.

The optimisation process yielded a best configuration with a hidden unit count of 420 and

330 for the first and second layers, respectively (Table 6, condition 7, cyan row).

Code and computer specifications

The code for this project was written in Python (Python Software Foundation), making use of

the large ecosystem of data manipulation tools and libraries available therein. The machine

learning model development was set up using Pytorch, a Python API of the Torch ML

Table 5. Parameter optimisation results for the 3D CNN. The activation functions and hidden units refer to the parameters used in the first and second layers of the

MLP part of the network, respectively. Test accuracy was obtained on a test data set of 24 images unseen by the network during training.

condition number activation function 1 activation function 2 hidden units (layer 1, layer 2) test accuracy (%)

1 Tanh Tanh (664, 362) 25

2 Tanh ReLU (425, 391) 29.16

3 ReLu Tanh (694, 304) 25

4 ReLU Tanh (504, 497) 29.16

5 ReLU ReLU (473, 419) 54.16

6 ReLU Tanh (479, 347) 20.83

7 Tanh ReLU (564, 441) 29.16

8 Tanh ReLU (619, 336) 33.33

9 ReLU ReLU (501, 397) 58.33

10 Tanh Tanh (441, 421) 25

https://doi.org/10.1371/journal.pone.0244151.t005

Table 6. Parameter optimisation results for the 2D CNN. Hidden units refer to the parameters used in the first and

second layers of the MLP part of the network respectively. Test accuracy was obtained on a test data set of 24 images

unseen by the network during training.

condition number hidden units layer 1 hidden units layer 2 test accuracy (%)

1 452 431 83.33

2 691 480 91.66

3 428 323 83.33

4 458 398 91.66

5 504 463 87.50

6 587 438 87.50

7 418 327 95.83

8 609 381 87.50

9 654 320 91.66

10 428 429 91.66

https://doi.org/10.1371/journal.pone.0244151.t006
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framework. Pytorch allows for performing operations on a graphics processing unit (GPU),

which parallelizes the large mathematical operations, and increases performance time signifi-

cantly. The GPU used in this project was an Nvidia 2080Ti RTX. All the code used in this proj-

ect is available at: https://github.com/ajrp2/ss_classifier.

Supporting information

S1 Fig. Training accuracy of the 3D CNNs when trained on 3D gene expression data. Accu-

racy is obtained at every epoch by averaging the accuracy scores for that particular epoch.

(TIF)

S2 Fig. Training accuracy of the 2D CNNs when trained on 2D gene expression data. Accu-

racy is obtained at every epoch by averaging the accuracy scores for that particular epoch.

(TIF)

Acknowledgments

The authors would like to thank Rubén Pérez-Carrasco and Elia Benito-Gutiérrez for their

helpful comments on and extended version of this manuscript.

Author Contributions

Conceptualization: Berta Verd, Benjamin Steventon.

Data curation: Adam Joseph Ronald Pond, Berta Verd.

Formal analysis: Adam Joseph Ronald Pond.

Funding acquisition: Berta Verd, Benjamin Steventon.

Investigation: Berta Verd.

Methodology: Adam Joseph Ronald Pond, Berta Verd, Benjamin Steventon.

Project administration: Berta Verd, Benjamin Steventon.

Resources: Berta Verd, Benjamin Steventon.

Supervision: Berta Verd, Benjamin Steventon.

Validation: Seongwon Hwang.

Writing – original draft: Adam Joseph Ronald Pond, Berta Verd.

Writing – review & editing: Berta Verd, Benjamin Steventon.

References
1. Haenlein M, Kaplan A. A brief history of artificial intelligence: On the past, present, and future of artificial

intelligence. California management review. 2019; 61(4):5–14. https://doi.org/10.1177/

0008125619864925

2. Moretti F. Distant reading. Verso Books; 2013.

3. Barron AT, Huang J, Spang RL, DeDeo S. Individuals, institutions, and innovation in the debates of the

French Revolution. Proceedings of the National Academy of Sciences. 2018; 115(18):4607–4612.

https://doi.org/10.1073/pnas.1717729115 PMID: 29666239

4. Edelstein D, Findlen P, Ceserani G, Winterer C, Coleman N. Historical Research in a Digital Age:

Reflections from the Mapping the Republic of Letters Project Historical Research in a Digital Age. The

American Historical Review. 2017; 122(2):400–424.

PLOS ONE A deep learning approach for staging embryonic tissue isolates with small data

PLOS ONE | https://doi.org/10.1371/journal.pone.0244151 January 8, 2021 14 / 17

https://github.com/ajrp2/ss_classifier
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244151.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244151.s002
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1073/pnas.1717729115
http://www.ncbi.nlm.nih.gov/pubmed/29666239
https://doi.org/10.1371/journal.pone.0244151


5. Carvalho L, Fauth G, Fauth SB, Krahl G, Moreira AC, Fernandes CP, et al. Automated Microfossil Iden-

tification and Segmentation Using a Deep Learning Approach. Marine Micropaleontology. 2020;

p. 101890. https://doi.org/10.1016/j.marmicro.2020.101890

6. Beam AL, Kohane IS. Big data and machine learning in health care. Jama. 2018; 319(13):1317–1318.

https://doi.org/10.1001/jama.2017.18391 PMID: 29532063

7. Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating

data in biology and medicine: Principles, practice, and opportunities. Information Fusion. 2019; 50:71–

91. https://doi.org/10.1016/j.inffus.2018.09.012 PMID: 30467459

8. Silva JCF, Teixeira RM, Silva FF, Brommonschenkel SH, Fontes EP. Machine learning approaches

and their current application in plant molecular biology: A systematic review. Plant Science. 2019;

284:37–47. https://doi.org/10.1016/j.plantsci.2019.03.020 PMID: 31084877

9. Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration.

Briefings in bioinformatics. 2018; 19(2):325–340. PMID: 28011753

10. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for

biological networks. Cell. 2018; 173(7):1581–1592. https://doi.org/10.1016/j.cell.2018.05.015 PMID:

29887378

11. Xu C, Jackson SA. Machine learning and complex biological data. Genome Biol. 2019; 20(76). https://

doi.org/10.1186/s13059-019-1689-0 PMID: 30992073

12. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nature Reviews

Genetics. 2015; 16(6):321–332. https://doi.org/10.1038/nrg3920 PMID: 25948244

13. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics.

Nature genetics. 2019; 51(1):12–18. https://doi.org/10.1038/s41588-018-0295-5 PMID: 30478442

14. Schrider DR, Kern AD. Supervised machine learning for population genetics: a new paradigm. Trends

in Genetics. 2018; 34(4):301–312. https://doi.org/10.1016/j.tig.2017.12.005 PMID: 29331490

15. Washburn JD, Mejia-Guerra MK, Ramstein G, Kremling KA, Valluru R, Buckler ES, et al. Evolutionarily

informed deep learning methods for predicting relative transcript abundance from DNA sequence. Pro-

ceedings of the National Academy of Sciences. 2019; 116(12):5542–5549. https://doi.org/10.1073/

pnas.1814551116 PMID: 30842277

16. Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methyla-

tion states using deep learning. Genome biology. 2017; 18(1):1–13. https://doi.org/10.1186/s13059-

017-1189-z

17. Sun YV, Kardia SL. Imputing missing genotypic data of single-nucleotide polymorphisms using neural

networks. European Journal of Human Genetics. 2008; 16(4):487–495. https://doi.org/10.1038/sj.ejhg.

5201988 PMID: 18197192

18. Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-

indel variant caller using deep neural networks. Nature biotechnology. 2018; 36(10):983–987. https://

doi.org/10.1038/nbt.4235 PMID: 30247488

19. Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep learning for cellular image analysis.

Nature methods. 2019; p. 1–14. PMID: 31133758

20. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in

medical image analysis. Medical image analysis. 2017; 42:60–88. https://doi.org/10.1016/j.media.2017.

07.005 PMID: 28778026

21. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annual review of biomedical engineer-

ing. 2017; 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442 PMID: 28301734

22. nature com. Deep learning in microscopy;. Available from: https://www.nature.com/collections/

cfcdjceech.

23. Srinivas S, Sarvadevabhatla RK, Mopuri KR, Prabhu N, Kruthiventi SS, Babu RV. A taxonomy of deep

convolutional neural nets for computer vision. Frontiers in Robotics and AI. 2016; 2:36. https://doi.org/

10.3389/frobt.2015.00036

24. O’Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint arXiv:151108458.

2015.

25. Hay EA, Parthasarathy R. Performance of convolutional neural networks for identification of bacteria in

3D microscopy datasets. PLoS computational biology. 2018; 14(12):e1006628. https://doi.org/10.1371/

journal.pcbi.1006628 PMID: 30507940

26. Jeeva M. The Scuffle Between Two Algorithms -Neural Network vs. Support Vector Machine; 2018.

Available from: https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-

network-vs-support-vector-machine-16abe0eb4181.

PLOS ONE A deep learning approach for staging embryonic tissue isolates with small data

PLOS ONE | https://doi.org/10.1371/journal.pone.0244151 January 8, 2021 15 / 17

https://doi.org/10.1016/j.marmicro.2020.101890
https://doi.org/10.1001/jama.2017.18391
http://www.ncbi.nlm.nih.gov/pubmed/29532063
https://doi.org/10.1016/j.inffus.2018.09.012
http://www.ncbi.nlm.nih.gov/pubmed/30467459
https://doi.org/10.1016/j.plantsci.2019.03.020
http://www.ncbi.nlm.nih.gov/pubmed/31084877
http://www.ncbi.nlm.nih.gov/pubmed/28011753
https://doi.org/10.1016/j.cell.2018.05.015
http://www.ncbi.nlm.nih.gov/pubmed/29887378
https://doi.org/10.1186/s13059-019-1689-0
https://doi.org/10.1186/s13059-019-1689-0
http://www.ncbi.nlm.nih.gov/pubmed/30992073
https://doi.org/10.1038/nrg3920
http://www.ncbi.nlm.nih.gov/pubmed/25948244
https://doi.org/10.1038/s41588-018-0295-5
http://www.ncbi.nlm.nih.gov/pubmed/30478442
https://doi.org/10.1016/j.tig.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29331490
https://doi.org/10.1073/pnas.1814551116
https://doi.org/10.1073/pnas.1814551116
http://www.ncbi.nlm.nih.gov/pubmed/30842277
https://doi.org/10.1186/s13059-017-1189-z
https://doi.org/10.1186/s13059-017-1189-z
https://doi.org/10.1038/sj.ejhg.5201988
https://doi.org/10.1038/sj.ejhg.5201988
http://www.ncbi.nlm.nih.gov/pubmed/18197192
https://doi.org/10.1038/nbt.4235
https://doi.org/10.1038/nbt.4235
http://www.ncbi.nlm.nih.gov/pubmed/30247488
http://www.ncbi.nlm.nih.gov/pubmed/31133758
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
https://www.nature.com/collections/cfcdjceech
https://www.nature.com/collections/cfcdjceech
https://doi.org/10.3389/frobt.2015.00036
https://doi.org/10.3389/frobt.2015.00036
https://doi.org/10.1371/journal.pcbi.1006628
https://doi.org/10.1371/journal.pcbi.1006628
http://www.ncbi.nlm.nih.gov/pubmed/30507940
https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
https://doi.org/10.1371/journal.pone.0244151


27. Liu T, Abd-Elrahman A. Deep convolutional neural network training enrichment using multi-view object-

based analysis of Unmanned Aerial systems imagery for wetlands classification. ISPRS Journal of Pho-

togrammetry and Remote Sensing. 2018; 139:154–170. https://doi.org/10.1016/j.isprsjprs.2018.03.006

28. Raczko E, Zagajewski B. Comparison of support vector machine, random forest and neural network

classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of

Remote Sensing. 2017; 50(1):144–154. https://doi.org/10.1080/22797254.2017.1299557

29. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale

machine learning. In: 12th {USENIX} symposium on operating systems design and implementation

({OSDI} 16); 2016. p. 265–283.

30. Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, et al. Theano: A Python frame-

work for fast computation of mathematical expressions. arXiv. 2016; p. arXiv–1605.

31. Gulli A, Pal S. Deep learning with Keras. Packt Publishing Ltd; 2017.

32. Krizhevsky A, Sutskever I, Hinton G. 2012 AlexNet. Adv Neural Inf Process Syst. 2012; p. 1–9.

33. Hung J, Carpenter A. Applying faster R-CNN for object detection on malaria images. In: Proceedings of

the IEEE conference on computer vision and pattern recognition workshops; 2017. p. 56–61.

34. Pawlowski N, Caicedo JC, Singh S, Carpenter AE, Storkey A. Automating morphological profiling with

generic deep convolutional networks. BioRxiv. 2016; p. 085118.

35. Godinez WJ, Hossain I, Lazic SE, Davies JW, Zhang X. A multi-scale convolutional neural network for

phenotyping high-content cellular images. Bioinformatics. 2017; 33(13):2010–2019. https://doi.org/10.

1093/bioinformatics/btx069 PMID: 28203779

36. Sommer C, Hoefler R, Samwer M, Gerlich DW. A deep learning and novelty detection framework for

rapid phenotyping in high-content screening. Molecular biology of the cell. 2017; 28(23):3428–3436.

https://doi.org/10.1091/mbc.E17-05-0333 PMID: 28954863

37. Simm J, Klambauer G, Arany A, Steijaert M, Wegner JK, Gustin E, et al. Repurposing high-throughput

image assays enables biological activity prediction for drug discovery. Cell chemical biology. 2018; 25

(5):611–618. https://doi.org/10.1016/j.chembiol.2018.01.015 PMID: 29503208

38. Buggenthin F, Buettner F, Hoppe PS, Endele M, Kroiss M, Strasser M, et al. Prospective identification

of hematopoietic lineage choice by deep learning. Nature methods. 2017; 14(4):403–406. https://doi.

org/10.1038/nmeth.4182 PMID: 28218899

39. Sullivan DP, Winsnes CF, Åkesson L, Hjelmare M, Wiking M, Schutten R, et al. Deep learning is com-

bined with massive-scale citizen science to improve large-scale image classification. Nature biotechnol-

ogy. 2018; 36(9):820–828. https://doi.org/10.1038/nbt.4225 PMID: 30125267

40. Kraus OZ, Ba JL, Frey BJ. Classifying and segmenting microscopy images with deep multiple instance

learning. Bioinformatics. 2016; 32(12):i52–i59. https://doi.org/10.1093/bioinformatics/btw252 PMID:

27307644

41. Kraus OZ, Grys BT, Ba J, Chong Y, Frey BJ, Boone C, et al. Automated analysis of high-content micros-

copy data with deep learning. Molecular systems biology. 2017; 13(4). https://doi.org/10.15252/msb.

20177551 PMID: 28420678

42. Pärnamaa T, Parts L. Accurate classification of protein subcellular localization from high-throughput

microscopy images using deep learning. G3: Genes, Genomes, Genetics. 2017; 7(5):1385–1392.

https://doi.org/10.1534/g3.116.033654 PMID: 28391243

43. Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification per-

formance. BMC medical informatics and decision making. 2012; 12(1):8. https://doi.org/10.1186/1472-

6947-12-8 PMID: 22336388

44. Somorjai RL, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and

proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics. 2003; 19(12):1484–

1491. https://doi.org/10.1093/bioinformatics/btg182 PMID: 12912828

45. Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In:

2012 IEEE conference on computer vision and pattern recognition. IEEE; 2012. p. 3642–3649.

46. Liu S, Deng W. Very deep convolutional neural network based image classification using small training

sample size. In: 2015 3rd IAPR Asian conference on pattern recognition (ACPR). IEEE; 2015. p. 730–

734.

47. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recog-

nition; 2014. p. 580–587.

48. Szegedy C, Toshev A, Erhan D. Deep neural networks for object detection. In: Advances in neural infor-

mation processing systems; 2013. p. 2553–2561.

PLOS ONE A deep learning approach for staging embryonic tissue isolates with small data

PLOS ONE | https://doi.org/10.1371/journal.pone.0244151 January 8, 2021 16 / 17

https://doi.org/10.1016/j.isprsjprs.2018.03.006
https://doi.org/10.1080/22797254.2017.1299557
https://doi.org/10.1093/bioinformatics/btx069
https://doi.org/10.1093/bioinformatics/btx069
http://www.ncbi.nlm.nih.gov/pubmed/28203779
https://doi.org/10.1091/mbc.E17-05-0333
http://www.ncbi.nlm.nih.gov/pubmed/28954863
https://doi.org/10.1016/j.chembiol.2018.01.015
http://www.ncbi.nlm.nih.gov/pubmed/29503208
https://doi.org/10.1038/nmeth.4182
https://doi.org/10.1038/nmeth.4182
http://www.ncbi.nlm.nih.gov/pubmed/28218899
https://doi.org/10.1038/nbt.4225
http://www.ncbi.nlm.nih.gov/pubmed/30125267
https://doi.org/10.1093/bioinformatics/btw252
http://www.ncbi.nlm.nih.gov/pubmed/27307644
https://doi.org/10.15252/msb.20177551
https://doi.org/10.15252/msb.20177551
http://www.ncbi.nlm.nih.gov/pubmed/28420678
https://doi.org/10.1534/g3.116.033654
http://www.ncbi.nlm.nih.gov/pubmed/28391243
https://doi.org/10.1186/1472-6947-12-8
https://doi.org/10.1186/1472-6947-12-8
http://www.ncbi.nlm.nih.gov/pubmed/22336388
https://doi.org/10.1093/bioinformatics/btg182
http://www.ncbi.nlm.nih.gov/pubmed/12912828
https://doi.org/10.1371/journal.pone.0244151


49. Shah S, Lubeck E, Schwarzkopf M, He TF, Greenbaum A, Sohn CH, et al. Single-molecule RNA detec-

tion at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development.

2016; 143(15):2862–2867. https://doi.org/10.1242/dev.138560 PMID: 27342713

50. Huss D, Choi HM, Readhead C, Fraser SE, Pierce NA, Lansford R. Combinatorial analysis of mRNA

expression patterns in mouse embryos using hybridization chain reaction. Cold Spring Harbor Proto-

cols. 2015; 2015(3):pdb–prot083832. https://doi.org/10.1101/pdb.prot083832 PMID: 25734068

51. Trivedi V, Choi HM, Fraser SE, Pierce NA. Multidimensional quantitative analysis of mRNA expression

within intact vertebrate embryos. Development. 2018; 145(1). https://doi.org/10.1242/dev.156869

PMID: 29311262

52. Andrews TG, Gattoni G, Busby L, Schwimmer MA, Benito-Gutiérrez È. Hybridization Chain Reaction
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