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ABSTRACT 
International Journal of Exercise Science 10(5): 666-680, 2017. Fibronectin type III 
domain-containing 5 (FNDC5) is a skeletal muscle membrane-bound precursor to the myokine 
irisin. Irisin is involved in stimulating adipose tissue to become more metabolically active in 
order to produce heat.  The purpose of this study was to determine the effects of exercise in a hot 
(33 °C), cold (7 °C), and room temperature (RT, 20 °C) environment on the skeletal muscle gene 
expression of FNDC5 and the plasma concentrations of irisin. Twelve recreationally trained 
males completed three separate, 1 h cycling bouts at 60% of Wmax in a hot, cold, and RT 
environment followed by three hours of recovery at room temperature. Blood samples were 
taken from the antecubital vein and muscle biopsies were taken from the vastus lateralis pre-, 
post-, and 3 h post-exercise. Plasma concentrations of irisin did not change from pre- (9.23 ± 2.68 
pg·mL-1) to post-exercise (9.6 ± 0.2 pg·mL-1, p = 0.068), but did decrease from post-exercise to 3 h 
post-exercise (8.9 ± 0.5 pg·mL-1, p = 0.047) regardless of temperature. However, when plasma 
volume shifts were considered, no differences were found in irisin (p = 0.086). There were no 
significant differences between trials for irisin plasma concentrations (p > 0.05). No significant 
differences in FNDC5 were observed between the hot, cold, or RT or pre-, post-, or 3 h post-
exercise time points (p > 0.05). These data indicate that the temperature in which exercise takes 
place does not influence FNDC5 transcription or circulating irisin in a human model. 
 
KEY WORDS: Brown fat, gene expression, hot, cold, FNDC5, epinephrine, nor-
epinephrine 
 

INTRODUCTION 
 
In the United States a growing number of individuals suffer from metabolic and mitochondrial 
diseases, such as diabetes and obesity, which decrease life expectancy and quality of life (5, 23, 
27, 40). Exercise mitigates the negative effects of metabolic diseases and releases a cascade of 
hormones, such as epinephrine and norepinephrine, that influence physiological alterations 
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including: increased metabolism, increased glucose sensitivity, increased mitochondrial 
biogenesis and function (2, 14, 19), by reversing the effects of a sedentary lifestyle (12). The 
release of certain catecholamines, cytokines, and myokines are responsible for signaling 
physiological adaptations during acute exercise bouts or training programs (16, 28).  The 
myriad of signaling mechanisms that can occur during a typical exercise response may be 
altered when undertaken in different environmental temperatures (35).  During exercise, 
physiological mechanisms such as metabolism and mitochondrial function can be blunted, 
enhanced, or unaffected by environmental temperature exposure. Cold stimulated, 
metabolically active, brown adipose tissue (BAT) has been discovered in humans (32, 39), and 
research has focused on the underlying mechanisms and metabolic implications.  Specifically, 
the mechanism and dynamics by which irisin, a myokine, contributes to the “browning” of 
white adipose tissue is of particular interest due to the potential positive impact on health 
related outcomes, such as increased metabolic expenditure.   
 
Irisin is a cytokine released from the muscle, thus termed a myokine, which is involved in the 
“browning” of white adipose tissue (WAT) (2). “Browning” WAT is characterized by an 
increase in mitochondria density and metabolic function in both brown and white adipose 
tissue, therefore increasing the overall energy expenditure (2). Irisin was discovered in 2012 (2) 
and has become a popular research topic due to the discovery of BAT in humans. BAT has 
non-shivering thermogenic capabilities due to an increase in mitochondrial density and thus 
has increased metabolic activity compared to WAT (2). During non-shivering thermogenesis, 
epinephrine and norepinephrine are secreted into the bloodstream to maintain metabolic 
homeostasis (9, 24). It is hypothesized that epinephrine and norepinephrine are upstream 
stimulators of irisin production during maximal and submaximal cycle ergometer endurance 
exercise (20). The increased metabolic energy produced during non-shivering thermogenesis is 
dissipated as heat to maintain core body temperature and increases overall energy expenditure 
(5). If this “browning” of WAT in humans is similar to that of animal models, the proposed 
mechanism of increased irisin would increase BAT in humans. This adaptation is positively 
related to health and may lead to protection against chronic diseases such as obesity and 
diabetes (23).  
 
Fibronectin type III domain-containing 5 (FNDC5) is the protein precursor that is 
proteolytically cleaved to produce irisin (2). FNDC5 is a single peptide transmembrane protein 
inserted into the cellular membrane of skeletal muscle and WAT (10, 31) and was discovered 
in 2002 prior to irisin (8). Due to BAT’s increased mitochondria density, peroxisome 
proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), which is highly expressed 
in tissues with high mitochondrial density, has been thought to regulate the expression of 
FNDC5, thus regulating irisin. PGC-1 α would therefore be required for proper function of 
BAT (2, 41). PGC-1α is often referred to as the master regulator of mitochondrial biogenesis 
and contributes to the regulation of metabolism (22). Thus, the browning of white adipose 
tissue is suggested to be dependent on PGC-1α and therefore plays a significant role in the 
regulation of irisin and BAT.  
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Exercising in cold environmental temperatures increases PGC-1α mRNA above that of exercise 
in room temperature control conditions and thus cold temperature interventions would be 
expected to stimulate mitochondrial biogenesis (35) and possibly up-regulate FNDC5. This 
increased irisin, derived from increased expression of FNDC5, is thought to drive BAT-like 
development, or “browning” of WAT and thermogenesis during cold exposure (2, 27). 
Similarly, irisin levels increase in subjects exposed to cold environmental temperatures due to 
the increased non-shivering thermodynamics (20). It has been hypothesized that exercise 
mimics the body’s shivering thermogenesis by increasing plasma concentrations of irisin and 
expression of FNDC5 and PGC-1α during cold environmental exposure (2). Inversely of cold 
exposure, exercising in a heated environment inhibits the expression of PGC-1α mRNA (35), 
and may be expected to subsequently reduce FDNC5 expression and plasma irisin 
concentrations.  However, previous research has not described this response of FNDC5 to 
exercise in the hot or cold compared to a room temperature control environment. 
 
The purpose of this experimental study is to determine the effects of endurance exercise in a 
hot (33 °C), cold (7 °C), and room temperature (20 °C) environment on the plasma 
concentrations of irisin, epinephrine, and norepinephrine as well as the skeletal muscle 
expression of the gene FNDC5 in recreationally active males. Based on previous findings of 
PGC-1α mRNA expression (35), we hypothesize that exercise in a cold environment will elicit 
greater circulating irisin and skeletal muscle expression of FNDC5 when compared to exercise 
in a room temperature environment and that irisin concentrations and expression of FNDC5 
will be blunted following exercise in the hot environment compared to room temperature. 
 
METHODS 
 
Participants 
Twelve healthy, recreationally active males (age: 25 ± 4, height: 178 ± 5 cm, weight: 79.2 ± 12.8 
kg, body fat: 14.5 ± 3.5%, VO2peak: 4.29 ± 0.82 L · min-1, Power at VO2peak: 276 ± 29) were 
recruited from the University of Nebraska at Omaha and the surrounding area. The subjects 
were absent of any medical contraindications and apparently healthy individuals. All 
participants were informed of the risks associated with the study. The participants freely and 
willingly signed an Institutional Review Board (IRB) approved informed consent document 
before participation and abided by the Declaration of Helsinki (42). 
 
Protocol 
Body composition was measured using hydrodensitometry by using a custom electronic load 
cell based system (Exertech, Dresbach, MN). Residual lung and gastrointestinal volume were 
estimated using previously developed prediction equations (37) and used to correct body 
density values. Body density was then converted to a body fat percentage using the Siri 
equation (34). 
 
Participants performed a maximal cycling aerobic capacity test (VO2peak) using a flow and gas 
calibrated metabolic cart (Parvomedics Inc., Salt Lake City, Utah) until voluntary exhaustion. 
Expired gases were measured continuously and averaged in 15 second intervals. The exercise 
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protocol consisted of a graded test completed on an electronically braked Velotron Cycle 
ergometer (RacerMate Inc., Seattle, WA). The beginning stage workload was 95 watts (W) and 
increased every three minutes by 35 W until voluntary exhaustion. The resistance for the 
subsequent experimental trials was set to 60% of the power output at VO2peak. 
 
Trials consisted of cycling at 60% of the subject’s workload associated with VO2peak for one 
hour in a cold (7 °C, 60% humidity), room temperature (20 °C, 60% humidity), and hot (33 °C, 
60% humidity) environment and three hours recovery at room temperature.  These 
temperatures have been used previously and allow the participants to complete the cycling 
bout without an unsafe rise in core body temperature (35).  Subjects had no exposure to the 
environmental conditions prior to the exercise bout and started exercise immediately upon 
entering the chamber and mounting the cycle ergometer. Each participant completed all three 
trials in a randomized and counter-balanced order. Experimental trials were separated by at 
least four days and conducted in a temperature and humidity controlled environmental 
chamber (Darwin, St. Louis, MO). Subjects kept a 48 hour exercise record and a 24 hour dietary 
record to replicate prior to all trials. Subjects were asked to abstain from exercise 24 hours 
prior to each trial and arrive in the laboratory after an 8 hour fast. During exercise the subjects 
consumed 500 mL of water over the course of each trial with approximately 125 mL being 
consumed every 15 min. After exercise, subjects toweled off and recovered in the supine 
position for three hours in a separate room, at room temperature and water was consumed ad 
libitum and this amount was repeated during subsequent trials. 
 
Gases were collected via metabolic cart (Parvomedics Inc., Sandy, Utah) for five minutes at 
four separate occasions over the course of each exercise bout: minutes 10-15, 25-30, 40-45, and 
55-60. Gases were collected on three separate occasions during recovery: minutes 25-30, 85-90, 
and 145-150.  The last three minutes of the 5 minute gas collection period were averaged to 
represent that time point.  Additionally, the four exercise collection periods were averaged to 
represent the exercise condition and the three collection periods were averaged to represent 
the recovery condition. 
 
Six subjects were utilized for monitoring core temperature due to technical problems with data 
recording. The participants ingested a Jonah Core Body Temperature Capsule (JCBC; Hidalgo 
Limited, Cambridge, UK) with 150 mL of water and a Fiber One granola bar (General Mills, 
Minneapolis, MN: 140 calories, 2 g of saturated fat, 90 mg of sodium, 10 g of sugar, and 9 g of 
fiber, and 2 g of protein) to ensure proper digestion of the core temperature pill into the 
gastrointestinal tract. The core body temperature telemetry capsule data and skin temperature 
infrared thermistor data from the chest were logged via EQO2 LifeMonitor Sensor Electronics 
Module (SEM; Hidalgo Limited) that also recorded heart rate at 5 second intervals. 
 
Three muscle biopsies were performed during each experimental visit via percutaneous needle 
biopsy technique with the aid of suction (1). Approximately five minutes prior to each muscle 
biopsy, approximately 3 mL of lidocaine was utilized as a local anesthetic to numb the biopsy 
area. The muscle samples were taken from the vastus lateralis pre-, post-, and three hours post-
exercise on the same leg for a given trial.  Post-exercise muscle biopsies occurred 16.0 ± 2.54 
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min after completion of the exercise trial and the three hours post-exercise biopsy was time so 
that the muscle would be extracted approximately 3 h after exercise (2 h 57 min ± 4 min).    The 
initial biopsy was taken approximately 12 cm proximal to the patella from the belly of the 
vastus lateralis. Subsequent biopsies were taken two centimeters proximal to the previous 
incision to avoid substantial damage to the muscle. The leg biopsied was randomized and 
alternated for the subsequent trial visits to account of leg dominance and leg bias during 
cycling. The samples were immediately cleared of excess blood and connective tissue and 
placed in RNA later solution (Ambion, Grand Island, NY). The samples were then stored at -80 
°C for later analysis. The mean time from muscle biopsy to submersion of samples in RNA 
later was 2 minutes 36 seconds ± 1 minute 24 seconds. 
 
Muscle biopsy samples were analyzed for the gene expression of FNDC5, the precursor to 
irisin. Approximately 36.1 ± 10.8 mg of skeletal muscle was homogenized using an electric 
homogenizer (PowerGen 125, Fischer Scientific, Pittsburg, PA) in 800 ul of Trizol Reagent 
(Invitrogen, Carlsbad, CA). The RNA was further cleaned using an RNeasy mini kit (Qiagen, 
Valencia, CA). The RNA was reverse transcribed via SuperSript III First-Strand Synthesis kit 
(Invitogen, Carlsbad, CA) per manufacturer instruction to produce cDNA. The cDNA served 
as a template to run the quantitative real-time polymerase chain reaction (qRT-PCR) using 
Stratagene Mx30005P (Agilent Technologies, Santa Clara, CA). Parameters were set according 
to manufacturer’s instructions at one cycle at 95 °C for three minutes, then 40 cycles at 95 °C 
for five seconds and 60 °C for 20 seconds (Agilent Technologies). Probes and primers were 
designed through Integrated DNA Technologies (Coralville, IA). An average of 951.7 ± 547 ng 
of mRNA was obtained and 0.625 ng · µl-1 of cDNA was added for each 20 µl PCR reaction. 
RNA integrity was measured using an Agilent 2100 bioanalyzer (Agilent Technologies) which 
yielded a RNA integrity number of 8.1 ± 0.7, indicating high quality mRNA. FNDC5 mRNA is 
expressed relative to stable reference genes using the 2-ΔΔCt method (21). Qbase+ geNorm 
software (Biogazelle, Gent, Belgium) was utilized to determine the stability and optimal 
number of reference genes.  The candidate reference genes used were: RPS18, β-actin, 
cyclophillin, GAPDH, and B2M.  These reference genes have demonstrated stability in 
response to temperature and exercise.  Candidate genes were selected based on stability of 
each individual participant.  If multiple genes were selected for a given participant, the 
geometric mean of these stable references genes was calculated.  Gene expression was 
measured post-exercise and 3 h post-exercise for FNDC5 and normalized to the geometric 
mean of the stable reference genes and the pre-exercise condition for each participant. One 
participant was omitted from the gene expression analysis due to low sample quality. 
 
Approximately 6 mL of blood was drawn from the antecubital vein into an 8 mL EDTA 
vacutainer tube (Greiner Bio-One, Monroe, NC), pre-, post-, and three hours post-exercise. 
Whole blood was immediately analyzed for hemoglobin concentration (HemoCue Hb201+ 
Analyzer, Ängelholm, Sweden) and hematocrit (Zipocrit, LW Scientific Inc, Lawrenceville, 
Georgia) and utilized to correct the concentration of target hormones due to the known plasma 
shifts that occur with heat exposure and exercise, despite water ingestion (6). The remaining 
blood sample was centrifuged (Thermo Scientific, Waltham, MA) at 1000 RPM at 7 °C for 10 
minutes and the plasma was aliquoted and frozen for later analysis. One participant was 
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omitted from the blood sample analysis due to technical issues with hematocrit and 
hemoglobin measurements. 
 
The plasma samples were analyzed for irisin using an Irisin Competitive Enzyme-linked 
immunosorbent assay (ELISA) kit (BioVendor, Brno, Czech Republic) according to the 
manufacturer instructions. Collected plasma was diluted with diluent 1X to a 1:4 ratio. The 
plate was then measured for protein content at 450 nm in a spectrophotometric plate reader 
(Fischer Scientific, Pittsburg, PA). 
 
Epinephrine and norepinephrine concentrations were determined using an 
Epinephrine/Norepinephrine ELISA kit (Abnova, Taipei City, Taiwan) in microplate format. 
The procedure was completed according to manufacturer protocol. The sample absorbance is 
quantified using a spectrophotometric plate reader (Fischer Scientific, Pittsburg, PA) at 450 nm 
against a reference wavelength between 620 nm and 650 nm. All ELISAs were completed in 
duplicate. The coefficient of variance for duplicate samples was 4.3 ± 4.0 %. 
 
Statistical Analysis 
VO2, core temperature, environmental conditions, heart rate, FNDC5 gene expression, and 
plasma levels of irisin, epinephrine, and norepinephrine were analyzed using a (time x 
condition) repeated measures two-way ANOVA. If significance was detected, a Fishers 
protected LSD post hoc analysis was performed to detect where differences occurred. The 
significance level was set at p < 0.05. All data were analyzed using Statistical Package for 
Social Sciences software (SPSS 23.0, Chicago, IL) and reported as mean ± SE. 
 
RESULTS 
 
During exercise, core temperature was greater in the hot compared to the cold and RT from 
the 50 minute time point of exercise to the end of exercise (p < 0.05, Figure 1). During recovery, 
core temperature was higher in the hot compared to the RT (p = 0.001) and cold (p = 0.027) 
during the first hour but was not different thereafter (p > 0.05, Figure 1). During exercise, skin 
temperature was significantly higher in the hot (36.4 ± 0.5 °C) compared to the RT (32.4 ± 2.1 
°C) and cold (27.8 ± 1.1 °C), and RT was higher than the cold (p < 0.001). During recovery, skin 
temperature was higher in the RT (34.5 ± 0.8 °C) compared to the cold (33.5 ± 0.8 °C, p = 0.025) 
and no difference was observed from the hot (34.3 ± 1.1 °C). 
 
During exercise absolute oxygen consumption (VO2) was greater in the hot (3.02 ± 0.46 L · min-

1) compared to RT (2.80 ± 0.38 L · min-1) and RT was greater than the cold (2.67 ± 0.36 L · min-1, 
p = 0.002). During recovery, there were no differences in oxygen consumption between the 
three conditions (0.35 ± 0.06 L · min-1, 0.34 ± 0.06 L · min-1, 0.34 ± 0.05 L · min-1, p = 0.372). 
Heart rate (HR) was higher in the hot (38.7 ± 6.4 bpm) compared to RT (155 ± 12 bpm) and the 
cold (152 ± 9) during exercise (p < 0.001).  There was no difference in HR during exercise 
between cold and RT (p = 0.238). There were no differences in HR during recovery between 
conditions (p > 0.05). 
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Figure 1. Core temperature during exercise and recovery where * p < 0.05 is from RT and cold. Data are mean ± 
SE. 
 
No differences were observed for irisin plasma concentrations occurred from pre- to post-
exercise (p = 0.068, Figure 2A). However, there was a significant decrease from post-exercise to 
resting levels at 3 h post-exercise (p = 0.047, Figure 2A) when not considering plasma volume 
shifts regardless of temperature. However, when plasma volume shifts were considered, there 
was no difference between pre- and post-exercise (p = 0.984, Figure 2B) and only a trend 
toward decreased irisin plasma concentration was observed from post-exercise to 3 h post-
exercise (p = 0.086, Figure 2B). There were no differences between environmental conditions (p 
= 0.39). 

             
Figure 2. Irisin plasma concentrations without plasma volume shift corrections (A) and after correcting for 
plasma volume shifts (B), * p < 0.05 from post-exercise. Data are mean ± SE. 
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Epinephrine plasma concentrations were significantly increased post-exercise from pre-
exercise in all conditions (p < 0.05, Figure 3A). Epinephrine decreased in hot and cold from 
post-exercise to 3 h post-exercise (p < 0.05, Figure 3A). Epinephrine was higher post-exercise in 
the hot compared to RT (p < 0.05, Figure 3A) and a trend in increased epinephrine plasma 
concentration in hot occurred compared to the cold (p < 0.10, Figure 3A). At 3 h post-exercise, 
epinephrine in the cold trial was higher than hot (p < 0.05, Figure 3A). At 3 h post-exercise, 
epinephrine was higher in the cold and RT compared to pre-exercise (p < 0.05, Figure 3A). 
Similar results were observed for epinephrine when plasma concentrations were corrected for 
plasma volume shifts except that epinephrine in the RT condition only trended to be higher at 
3 h post- compared to pre-exercise (p = 0.052, Figure 3B). 
 

            
Figure 3. Epinephrine plasma concentrations without plasma volume shift corrections (A) and after correcting for 
plasma volume shifts (B), * p < 0.05 from pre-exercise, † p < 0.05 from hot, ‡ p < 0.05 from post-exercise. Data are 
mean ± SE. 
 

          
Figure 4. Norepinephrine plasma concentrations without plasma volume shift corrections (A) and after correcting 
for plasma volume shifts (B), * p < 0.05 from pre-exercise, † p < 0.05 from hot, ‡ p < 0.05 from post-exercise. Data 
are mean ± SE. 
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4A). Post-exercise norepinephrine was significantly lower in the cold compared to hot (p = 
0.047, Figure 4A). When norepinephrine concentrations were corrected for plasma volume 
shifts the same pattern of increasing from pre to post exercise and decreasing from post-
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exercise to 3 h post exercise in each condition was observed (p < 0.05).  However, the 
difference between hot and cold at the post-exercise time-point was not evident (p = 0.099, 
Figure 4B). 
 
No significant differences in FNDC5 mRNA were observed between the hot, cold, and RT 
trials for any time points (p > 0.05). Additionally, no differences were detected in FNDC5 
mRNA between pre-, post-, and 3 h post-exercise (Figure 5). 
 

 
Figure 5. Gene expression of FNDC5 immediately post-exercise and 3 h post-exercise normalized to pre-exercise.  
Data are mean ± SE. 
 
DISCUSSION 
 
Exercise has the capability to improve muscular and metabolic health through the regulation 
of key genes, hormones, and myokines. The ability to maximize the effectiveness of a given 
exercise bout with novel endurance exercise protocols, coupled with environmental 
temperature exposure interventions may help to mitigate metabolic dysfunction and obesity. 
The viability of the browned WAT to aid in protection against metabolic dysfunction and 
obesity has not yet been completely clarified in a human model.  However, animal studies 
suggest a major role of BAT in overall health (36).  Thus, we aimed to determine the impact of 
endurance exercise in different environmental temperatures on muscle derived signals, 
specifically FDNC5 and irisin, as well as plasma epinephrine and norepinephrine.  
 
Based on previous research that indicates potential increases in irisin due to exercise absent of 
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a room temperature and hot environment. Contrary to the hypothesis, the main finding of this 
investigation was irisin plasma concentrations and FNDC5 mRNA were not different between 
hot, cold, and room temperature conditions. However, irisin plasma concentrations did tend to 
increase (non-significant) from pre- to post-exercise and decrease significantly from post-
exercise to 3 h post-exercise regardless of temperature when a shift in plasma volume was not 
considered. However, after correcting for plasma volume shifts, no differences in irisin were 
observed. Furthermore, we did not observe a change in FNDC5 skeletal muscle mRNA with 
exercise or temperature.  
 
This study was the first to determine the effects of a hot, cold, and RT environmental condition 
during exercise on circulating irisin and skeletal muscle FNDC5 mRNA in humans. Previous 
research suggests a disassociation between energy expenditure and irisin, which requires 
supplementary cold-specific signals in order to produce irisin (20). During rest, subjects 
exposed to cold temperatures, that did not cause a change in core temperature, did show an 
increase in irisin (20). This previous research suggests that cold induced signals independent 
of a change in core body temperature may be responsible for the irisin response. In the current 
study, core body temperature increased during exercise in all conditions with only moderate, 
short-lived further elevation in the hot trial compared to cold and RT. This relative increase in 
core body temperature regardless of trial may have prevented us from observing changes in 
circulating irisin or FNDC5 mRNA.  The cold stimulation during the present study was not 
enough to prevent a rise core body temperature with the imposed exercise. The extent to 
which an increase in core body temperature may prevent a rise in irisin or FNDC5 is 
unknown. However, exercise alone has been shown to increase irisin (2).  
 
Norepinephrine and epinephrine up regulate PGC-1α mRNA (11), and subsequently the 
downstream factors, specifically FNDC5 (2). Elevated levels of epinephrine and 
norepinephrine are observed after exercise in all exercise conditions with greater increases in 
hot environments (17). This study corroborates that epinephrine and norepinephrine increase 
during exercise, more so in the heat than at RT and cold environment. However, increases in 
these catecholamines due to temperature differences did not stimulate a differential increases 
in circulating irisin or FNDC5 mRNA. 
 
Exercise may mimic shivering thermogenesis and produce irisin and FNDC5 mRNA in an 
analogous manner (2, 20). Specifically, cycling at room temperature for 45 min at 70% of 
VO2max produces an acute increase in irisin in healthy, physically inactive men (age 45-60) (26).  
However, this study did not correct for plasma volume shifts known to occur with exercise, 
and the impact that this correction may have made is unknown. The current study, using 
young college-aged, active participants and at a lower exercise intensity, did not detected any 
increases in irisin (uncorrected for plasma volume shifts). Only one other study has corrected 
irisin plasma concentrations taking into account plasma volume shifts. This study observed an 
increase in irisin plasma concentrations at 54 min of a 90 min treadmill exercise bout at 60% of 
VO2max in healthy, active males and females (18). However, at 90 min of treadmill running, 
irisin plasma levels returned to baseline levels (18). No differences were observed at the 3 h 
post-exercise after correcting for plasma volume shifts.  Thus, the timing of irisin 
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measurements relative to exercise duration, the correction of irisin concentrations relative to 
plasma volume, and exercise intensity may all contribute to differences between studies. 
Increased relative intensity of exercise has been shown to increase the production of irisin (40). 
However, during the present study the relative intensity (VO2) was greater in the hot 
compared to the RT (8.3%) and cold (12.4%) conditions. It would be reasonable to speculate 
that irisin would be elevated in the hot condition.  Thus, the relative intensity of the exercise 
bout may not be a major factor for increasing irisin when absolute intensity (watts) is held 
constant. Several of the studies discussed did not account for plasma volume shifts that occur 
during endurance exercise (2, 15, 20, 33). It is not necessary to correct for plasma volume shifts 
in rodents due to the inability of the rodent to sweat. In humans irisin concentrations could be 
inflated due to plasma lost via sweating and other mechanisms of fluid loss. Therefore plasma 
volume shifts should be taken into consideration. However, increasing the concentration of 
irisin in plasma without increasing the total amount of irisin may potentially increase the 
potential interaction with its receptors.  We report here both corrected and uncorrected irisin 
concentrations so that future research can consider this impact.    
 
We did not observe a difference in FNDC5 mRNA between trials or with exercise.  Similarly, 
obese rat models (3, 30) and other human studies (38) have not observed a change in FNDC5 
mRNA during aerobic exercise. With 10 weeks of chronic endurance training, an increase in 
basal levels of FNDC5 mRNA was observed but this increase did not lead to an increase in 
plasma irisin. Furthermore, aerobic endurance training and strength endurance training 
lasting for 26 weeks showed no changes in plasma irisin or FNDC5 mRNA (13). With chronic 
sprint training, a reduction in plasma levels of irisin were observed after eight weeks (16).  The 
discrepancies in FNDC5 and irisin responses to exercise suggest a complex interaction of 
factors and that mechanisms other than FNDC5 transcription may regulate irisin release 
during the early and late responses to acute and chronic exercise in humans.  
 
Age and muscle mass are primary predicators of irisin and FNDC5 levels, a positive 
correlation with muscle mass and a negative correlation with age (27). Therefore, increased 
muscle mass should produce an increase in irisin response during exercise and cold-exposure. 
However, the participants in this study were college-aged males, relatively lean, and fit and no 
increases in irisin or FNDC5 mRNA were observed during exercise and cold exposure 
contrary to previous research. In similarly fit individuals, based on BMI and VO2max, and age 
(18-30 years) increases in circulating irisin were observed immediately after a treadmill VO2max 
test (7). Physically inactive, individuals, age 45-60, have also shown increases in irisin levels 
during cycling exercise (25). On the other end on the spectrum, obese and insulin resistant 
individuals have a decreased amount of irisin (23). Therefore differing fitness levels, age, and 
muscle mass may be potential explanations for the total amount of irisin cleaved from FNDC5 
proteins (2).   
 
The variations observed in irisin concentrations and FNDC5 mRNA expression between 
studies and subject populations appear to illustrate that exercise may not regulate FNDC5 
mRNA expression and irisin production in humans (29). Further research is needed in order to 
understand human irisin production and FNDC5 mRNA expression. In conclusion, the current 
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data indicate that in humans, circulating irisin and skeletal muscle FNDC5 mRNA expression 
post-exercise and 3 h post-exercise are unaffected by exposure to different environmental 
temperatures despite some previous evidence of independent effects of exercise and cold 
exposure. 
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