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Abstract

The cerebral cortex is composed of hundreds of different types of neurons, which underlie its ability
to perform highly complex neural processes. How this astonishing cell diversity is generated during
development constitutes a major challenge in developmental neurosciences, with important
implications for neurological diseases. Here we review some recent and exciting advances in this
field, from the description of the cellular processes at the origin of cortical neuron diversity, to the
dissection of the molecular logic underlying fate selection in cortical neurons.

Introduction
The cerebral cortex is arguably the most complex
structure in the mammalian brain, consisting of hun-
dreds of distinct neuronal subtypes, each connected to
a specific part of the brain. Neuronal diversity is at the
core of cortical function and underlies its most sophis-
ticated tasks that set us apart as higher mammals, such as
language, reasoning, and memory. Understanding the
mechanisms underlying this diversity may one day allow
us to repair the damage wrought to the cerebral cortex by
aging and trauma.

Neurons of the cerebral cortex belong to two broad classes:
excitatory pyramidal neurons and inhibitory interneu-
rons. Pyramidal neurons, named after their triangular-
shaped cell body, can be categorized further into dozens
of subtypes, each characterized by specific morphology,
electrophysiology, and connectivity [1]. Cortical neurons
are not arranged randomly in space; the location of a
pyramidal neuron in a specific cortical area and layer
broadly predicts its participation in a modality-specific
neuronal network. The surface of the cortex consists of
areas of neurons that are specialized in particular func-
tions, such as vision or language. In addition, each area is
divided through its thickness into six different layers
(laminae), which contain specific subtypes of neurons.
The laminar position of a neuron is correlated with its

pattern of connectivity (Figure 1). Corticofugal neurons
are located in the deep layers of the cortex (layers 5 and 6)
and mainly send their axons to subcortical structures
(such as the basal ganglia, thalamus, brainstem, and spinal
cord) whereas corticocortical-projecting neurons, which
connect one region of the cortex to another, and especially
callosal-projecting neurons, whose axons project into
the corpus callosum, reside mostly in the upper layers 2
and 3. Layer 4 neurons on the other hand mainly receive
input from the rest of brain.

The six-layer organization is central to cortical function
and is highly conserved in all mammals despite the fact
that the cortex has grown in complexity throughout
recent mammalian evolution. This leads us to question
the developmental mechanisms involved that link early
embryonic events with later phases of patterning of
connectivity. In addition, the identification of the factors
that can (re)specify the identity of cortical neurons, and
thereby their patterns of connectivity, could have major
implications for future therapeutic strategies aimed at
repairing the cortex following injury or degeneration.

Here, we will review recent and exciting advances
in the understanding of the mechanisms that control
the generation of pyramidal neuron diversity and their
relation to laminar patterns of neuronal fate.
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Diversity starts in cortical progenitors
The entire pyramidal neuronal population arises from
cortical progenitor cells in the proliferative zones of the
dorsal forebrain. These progenitors constitute a diverse
population of cells with distinct molecular and cellular
properties that scientific research has only just begun to
unveil (Figure 2).

Among the cortical progenitors are the radial glial cells,
which constitute a major subtype (reviewed in [2,3]).
They are characterized by their unique morphology,
consisting of a contact with the ventricular surface and a
radial projection stretching from the ventricular zone
(the most apical cell layer that lines the ventricle) to the
outer, or basal, surface of the cortex. Radial glial cells
undergo stereotypical patterns of symmetric and asym-
metric cell divisions, thereby enabling the generation of
diverse types of neurons while maintaining a pool of
progenitors, thus following stem cell-like behavior [4,5].

In addition to radial glial cells, several other types
of progenitors have been identified that are likely to
contribute to neuronal diversity [4,6,7]. Of special interest
among these are basal progenitors, which are also called
intermediate progenitor cells [4,8]. Newly generated
intermediate progenitor cells migrate to the upper part
of the ventricular zone to create an additional prolifera-
tive zone above it, called the subventricular zone. Unlike
radial glial cells, intermediate progenitor cells divide

symmetrically only once or twice before generating
neurons and thus act as transit amplifying cells. As there
seems to be a correspondence in the expression ofmarkers
between subventricular-zone intermediate progenitor cells
and upper-layer neurons [9,10], it was proposed that
upper-layer neurons arise mainly from intermediate
progenitor cells. This was recently confirmed in mice
through the analysis of the function of various genes, such
as Tbr2, Ap2g, and Insm1, that were shown to be required
for IP-cell specification and amplification, as well as
upper-layer neuron specification [11-15]. Interestingly,
some of these studies also revealed that intermediate
progenitor cells are involved in the generation of some
deep-layer neurons as well, so there is no unequivocal link
between one type of progenitor and one type of cortical
neuron.

The diversity of progenitors has also been proposed
to contribute to the evolution and complexification
of the cerebral cortex. As intermediate progenitor cells
are progressively more abundant in higher mammals
and primates, it was proposed that the observed incre-
ase in the relative number of upper-layer neurons in
higher mammals may also be due to an expansion of the
subventricular zone or altered properties of intermediate
progenitor cells [16,17]. However, another major type of
progenitor has now been described within a specialized
compartment of the human developing cortex called
the outer subventricular zone [18,19]. These so-called
“outer” radial glial cells share many features with regular
radial glial cells, including the potential for self-renewal,
but they lack any apical projection (Figure 2). As these
cells have only been found so far in human and ferret
cortex, and not in any smaller-sized and/or simpler

Figure 1. Laminar organization and pattern of cortical projections

Simplified scheme depicting the laminar organization of the cortex in terms
of gene expression and axonal projections. Neurons sending corticofugal
projections (in blue) reside exclusively in the deep layers 5 and 6 of the cortex,
while those sending projections within the cortex (in red), including callosal
projections to the contralateral side, reside primarily in the upper layers, with a
small contingent of callosal-projecting neurons in layer 5. Each subtype
expresses specific combinations of transcription factors (in blue and red).

Figure 2. Diversity of cortical progenitors

Several types of cortical progenitors and their modes of division towards
neurons (in blue) are depicted, including radial glial cells (RG), intermediate
progenitors (IP), and outer radial glial cells (ORG), with their specific
location in ventricular (VZ), subventricular (SVZ) or outer subventricular
(OSVZ) zones.
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cortex, they might constitute a species-specific feature
that could underlie the expansion or complexification of
the cortex in higher mammals.

Acquisition of laminar fate through
temporal patterning
In vivo lineage-tracing analyses have revealed that cortical
progenitors generate radial clones that consist of neurons
arranged in multiple layers. Interestingly, a prominent
feature of this process is its time dependence; that is,
cortical progenitors generate different layers of neurons
at distinct developmental stages. As corticogenesis pro-
ceeds, newly generated neurons migrate radially past the
ones generated earlier to progressively create the six cortical
layers inwhich neurons are located, according to their birth
date, in an inside-out fashion. Early-generated neurons
thus reside in deep layers and late-generated neurons in
the upper layers [20]. It remains unknown how cortical
progenitors use time-dependent intrinsic and extrinsic
cues to generate distinct types of neurons [21]. Somewhat
surprisingly, in vitro studies using dissociated cortical
progenitors [22] or even cortical progenitors derived from
embryonic stem cells [23] have revealed that the temporal
sequence of cell division and neuron specification is also
conserved within clones of cortical cells arising from a
single progenitor. This suggests that, at least in vitro, some
progenitors are multipotent and are capable of generating
multiple types of neurons in a lineage-intrinsic pattern by
changing their competence (i.e., their capacity to respond
to intrinsic and extrinsic differentiation cues) over time.
The molecular mechanisms underlying this intriguing
process remain largely unknown, although it is reminiscent
of similar time-dependent clonal neurogenesis described
in the fly embryo [24,25].

Towards a molecular logic of specification
of cortical neurons
While the data reviewed above have provided an
important framework to understand the generation of
neuronal diversity in the cortex, they do not explain
how neuronal fate choices are instructed in the cortex,
particularly in relation to layer identity and patterns
of connectivity. This important issue has begun to be
addressed recently through the discovery of genes that
are expressed in neuron subtype-specific patterns at the
time of their differentiation. Several of these genes were
identified through a connectivity-based screening strategy,
where different subtypes of cortical neurons were first
isolated on the basis of their patterns of axonal projec-
tions, followed by the analysis of their transcriptome [26].

Among the genes identified in this screen, Fezf2 was
found to be expressed in corticospinal projection neurons
[26,27]. In Fezf2-mutant mice, deep-layer neurons are

generated normally but fail to mature and to extend
axons to their subcortical targets such as spinal cord
[27-30]. Most strikingly, the development of corticofugal
neurons is not only blocked in these mutants but is also
partially switched to other fates (Figure 3), as they display
many properties of callosal-projecting neurons, such as
sending their axons to the contralateral cortex [27,31].
Conversely, overexpression of Fezf2 in late progenitors
leads to the generation of neurons displaying corticofugal
instead of callosal projections [27,29,31]. Although this
fate switch is incomplete [28,29,31], the data suggest that
Fezf2 is one of the master genes for the specification of
corticofugal neurons. This was strikingly illustrated by a
recent study showing that Fezf2 overexpression in
progenitors of the ventral forebrain, normally fated to
generate striatal neurons, resulted in their respecification
into corticofugal neurons [32].

Fezf2 was thus isolated as a gene that is selectively
expressed among distinct neuronal subtypes, but it seems
to act mainly within progenitors. While this confirms that
patterns of cortical neuron diversity emerge in cortical
progenitors, recent data indicate that this diversity also
builds up within differentiating neurons themselves,
through genes acting downstream of Fezf2within different
types of cortical neurons to instruct them to acquire
specific patterns of identity and connectivity (Figure 3).
One such gene is Ctip2, which is downregulated in Fezf2-
mutants [27,28,31]. It is one of the first genes found to
be expressed specifically among corticofugal neurons [26].
Ctip2 is expressed by these neurons during develop-
ment and in the postnatal period until adulthood, and
is especially enriched in layer 5 corticospinal-projecting
neurons [26]. In Ctip2-mutant mice, corticospinal axons
do not reach their normal targets, a similar picture to that
seen in Fezf2-mutants. Overexpression of Ctip2 is able to
rescue the axonal projection phenotype in Fezf2-mutant
mice and to instruct some upper-layer neurons to extend
aberrant subcortical projections in normal mice, sug-
gesting that it acts as a major effector of Fezf2 in the
development of subcortical projections [31].

Another interesting gene identified in corticofugal
neurons is Sox5 [33,34]. In Sox5-mutant mice, it is not
only the final fate of corticofugal neurons that is altered
but also the timing of their generation and laminar fate
[33,34]. Corticothalamic and corticospinal neurons fail
to segregate in their specific layers and the corticospinal
tract, although present, is abnormal [34]. Interestingly,
the additional loss of Ctip2 reverses some of the defects
observed, suggesting that the normal role of Sox5 is
to repress the early expression of Ctip2 to correctly specify
early-generated cortical neurons. Gain-of-function experi-
ments in upper-layer neurons suggest that, at least at
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certain time points, Sox5 is able to inhibit the growth of
callosal-projecting neurons and promote corticofugal
projections [33,34].

Besides the neuronal genes that “switch on” subcortical-
projecting neuron fate, others seem to promote the
acquisition of upper-layer or callosal-projecting neuron
fate. Among these, Satb2 is normally expressed in upper-
layer neurons and in callosal-projecting neurons of layer
5 [35,36]. In Satb2-mutant mice, upper-layer neurons
ectopically express Ctip2, but not Fezf2, and contribute to
the corticospinal tract in place of the corpus callosum,
which is absent [35,36]. Importantly, Satb2 was found
to be able to repress Ctip2 expression, probably through
direct chromatin modifications in the Ctip2 gene [35,36].
Conversely, while it is not clear whether Ctip2 can actively
repress Satb2, Fezf2 disruption results in ectopic expres-
sion of Satb2 among corticofugal-projection neurons [31].
Thus, Satb2, Ctip2, and Fezf2 take part in a genetic network
enabling selection of neuronal fate, at least at the level
of connectivity. In callosal-projecting neurons, Fezf2 is
absent, so expression of Satb2 is possible, which in turn
represses the expression of Ctip2 and leads to the
development of callosal projections. In corticofugal
neurons, Fezf2 is present and represses the expression of
Satb2, while it induces the expression of Ctip2 and the
development of corticofugal projections.

Overall, these data converge to suggest a model whereby
the combinatorial expression of transcription factors
leads to the precise specification of the different subtypes
of deep-layer and corticofugal neurons on the one hand
and callosal-projecting and upper-layer neurons on
the other hand. This model remains fragmentary but
constitutes a solid foundation to start unraveling the
mechanisms of generation of cortical neuron diversity.

Where to go next
Recent advances have helped us to understand how the
astonishing cellular diversity of the cerebral cortex arises,
but many questions remain. Firstly, the extent of the
diversity of the neural progenitors probably remains
underestimated, and it will be crucial to determine the full
range of this diversity, how it is established, and how it
contributes to neuronal diversity. Another mystery to be
solved is the molecular mechanism(s) that allows cortical
progenitors to change competence in a time-dependent
fashion, thereby generating even more diversity. Finally,
how are the various features of the identity of a cortical
neuron coordinated to achieve a proper match between
laminar position and connectivity, and how is this
related to the differentiation of cortical areas? Indeed,
while recent work has also allowed us to gain insights
into the mechanisms of areal specification, including the

Figure 3. From genes to neuronal fates

Scheme depicting the axonal projections of cortical neurons in normal
(wild-type) conditions (WT) or following knockout (KO) or gain-of-function
(GOF) of three major transcription factors involved in fate specification:
Fezf2, Ctip2, and Satb2. See text for further explanation.
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contribution of graded morphogens and transcription
factors (reviewed in [37,38]), it is striking to note that a
number of genes involved in this process may also control
laminar fate [39-41]. This molecular link between areal
and laminar patterning may provide the first hints as to
how different areas are composed of the same six layers,
but in distinct proportions.

Clearly, much more work will be needed to address all
these complex questions. But together with the recent
description of how diverse types of cortical neurons are
generated from embryonic stem cells [42,43], a better
knowledge of neuronal fate specification may provide
unprecedented opportunities for the rational design of
specific types of cortical neurons, which could be used to
model specific types of cortical neuron diseases or pave
the (still long) way towards cortical repair with replace-
ment therapies.
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