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The innate immune response in the central nervous system (CNS) is implicated as

both beneficial and detrimental to health. Integral to this process are microglia, the

resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition

receptors, such as Toll-like receptors, that detect changes in the neural environment.

The activation of microglia and the subsequent proinflammatory response has become

increasingly relevant to synucleinopathies, including Parkinson’s disease the second

most prevalent neurodegenerative disease. Within these diseases there is evidence of the

accumulation of endogenous α-synuclein that stimulates an inflammatory response from

microglia via the Toll-like receptors. There have been recent developments in both new

and old pharmacological agents designed to target microglia and curtail the inflammatory

environment. This review will aim to delineate the process of microglia-mediated

inflammation and new therapeutic avenues to manage the response.

Keywords: TLR, toll-like receptor 2, synucleinopathies, Parkinson’s disease, nfkb pathway, inflammation,

neuroinflammation

INTRODUCTION

Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA)
are a group of neurodegenerative diseases called synucleinopathies and are characterized by the
presence of Lewy bodies, neuroinflammation, and neuronal loss (Ouchi et al., 2009; Chung et al.,
2010). The exact etiology of disease pathogenesis is still debated, yet PD and DLB comprise the
second most prevalent neurological disease and second leading cause of dementia, respectively
(McKeith et al., 1996; de Lau and Breteler, 2006; Braak and Del Tredici, 2017). The primary
constituent of Lewy bodies is α-synuclein (αSyn), from which the name synucleinopathy is given
(Spillantini et al., 1997, 1998; Baba et al., 1998; Braak et al., 2003). αSyn garnered significant
interest after a number of mutations, namely A53T and A30P, were found in familial cases of
PD (Polymeropoulos et al., 1996, 1997; Krüger et al., 1998; Athanassiadou et al., 1999; Singleton
et al., 2003; Emmanouilidou et al., 2011). Despite the existence of these familial forms, 90% of PD
cases are sporadic and manifest in a predictable clinical pattern as defined by Braak stages 1–6
(Bernheimer et al., 1973; Braak et al., 2003; Fahn, 2003; Braak and Del Tredici, 2008).

A growing body of research has focused on elucidating and modulating the processes of
neuroinflammation that occur in synucleinopathies. Within the central nervous system (CNS),
microglia are immune cells responsible for surveying and protecting their local environments.
The relationship between neuronal loss and microglial activation is not definitively established, but
irrespective of the disease initiating event microglial activation seems to be an integral potentiator
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of the disease process (as reviewed by; Block et al., 2007). Neurons
express and release αSyn into the surrounding environment
(Lee et al., 2005; Kim C. et al., 2016) and microglia recognize
this with Toll-like receptors (TLRs) and subsequently produce
a proinflammatory response (Zhang et al., 2005; West et al.,
2006; Su et al., 2008; Vezzani et al., 2011). The importance of
microglia-mediated inflammatory responses is strengthened by
the observation that dopaminergic neuron loss is correlated with
microglial upregulation of inducible nitric oxide synthase (iNOS)
and the release of nitric oxide (NO) (Knott et al., 2000; Gao
et al., 2008), tumor necrosis factor α (TNFα) (McCoy et al.,
2006; Takeuchi et al., 2006), and interleukin (IL)−1β (Ferrari
et al., 2006). This inflammatory state can be measured with
[11C](R)-PK11195 positron emission tomography (PET) imaging
and such studies demonstrate progressive microglial activation
during early pathogenesis, followed by sustained microglial
activation during mid to late disease stages (Gerhard et al., 2006a;
Ouchi et al., 2009). Relevant to synucleinopathies, amoeboid
microglia, a morphology typical of activation, are associated with
disease pathology (αSyn) in the brains of patients with diagnosed
Parkinson’s disease or incidental Lewy Body disease (Doorn et al.,
2014). Furthermore, increased microglial TLR2 expression was
found in a subset of these affected brains (Doorn et al., 2014).
Additional support for a role of TLR2-mediated inflammation
in Parkinson’s disease comes from Droiun-Ouellet et al., where
TLR2 expression was increased in circulating monocytes of
Parkinson’s patients (Drouin-Ouellet et al., 2015). Therefore, this
review aims to focus on the relationship between the particulars
of αSyn and the TLR2 signaling pathway with respect to their
roles in synucleinopathy progression and recent advances in
inhibiting the microglial inflammatory response.

α-SYNUCLEIN AND THE INNATE IMMUNE
RESPONSE OF THE CNS

The innate immune system is charged with differentiating
between the self and other in order to maintain the health of
the periphery and CNS. Pattern recognition receptors (PRRs)
are crucial in mediating host defenses to invading pathogens.
Pathogen-associated molecular patterns (PAMPs), which include
various bacterial and viral components, are the exogenous
molecules that PRRs, such as RIG-I-like receptors, NOD-like
receptors, and TLRs respond to (as reviewed by; Chen and
Nunez, 2010).

Toll-Like Receptors
TLRs are named after the original gene that was identified
in Drosophila and they are integral to the innate immune
response. Thus far 13 mammalian TLRs have been identified,
with humans expressing TLRs 1–10 and mice expressing TLR1-
9 and 11–13. All 13 members are single pass transmembrane
proteins with the C terminal located intracellularly and the N-
terminal, which contains the distinctive leucine-rich repeats,
situated extracellularly and acting as the ligand recognition
domain (Matsushima et al., 2007). TLRs 1, 2, 4, 5, 6, and 10 are
located on the plasma membrane and recognize PAMPs from the

extracellular space. In contrast, TLRs 3, 7, 8, 9, 11, 12, and 13
are located on intracellular endosomes and are responsible for
recognition of internalized PAMPs including both bacterial and
parasitic DNA as well as viral single- and double-stranded RNA
(as reviewed by; Akira et al., 2006; Kawai and Akira, 2007).

The inflammatory response is contingent upon the
intracellular interactions of these signaling pathways.
Intracellular C-terminal domains contain Toll-interleukin 1
receptor (TIR) domains, which are responsible for transforming
extracellular recognition to an intracellular response (Xu et al.,
2000; Horng et al., 2002; Brown et al., 2006). To date, 5 adaptor
molecules have been identified that facilitate TLR signaling and
lead to the differential cellular responses to varying stimuli:
MyD88, TRIF, TRAM, TIRAP/Mal, and Sarm1. TRAM and
TIRAP function to recruit MyD88 and TRIF to their respective
TLRs and all TLRs, except for TLR3, activate the MyD88-
dependent pathway (as reviewed by Kawai) (Horng et al.,
2002; Kawai and Akira, 2010). The TRIF-dependent pathway
signals through downstream kinases, TANK binding kinase 1
(TBK1) and IKKε, to activate IRF3 and subsequently produce
type 1 interferons (Yamamoto et al., 2002b; Oshiumi et al.,
2003). In the MyD88-dependent pathway (Figure 1), death
domain interactions mediate intracellular signal transduction
in a sequential manner from MyD88 to the phosphorylation
of interleukin-1 receptor-associated kinase (IRAK) 4, then
to IRAK1 and IRAK2 (Lin et al., 2010). The IRAK complex
interacts with TNF receptor associated factor 6 (TRAF6) which
will undergo K63-linked autoubiquitination and will ubiquitinate
NF-κB essential modulator (NEMO). This is followed by the
activation of the complex of transforming growth factor-β-
activated kinase-1 (TAK1), TAK1 binding protein (TAB)2, and
TAB3. TAK1 subsequently phosphorylates IKKα and IKKβ, and
the IKKs will phosphorylate IκBα marking it for degradation.
This ultimately results in production of proinflammatory
cytokines through NF-κB, the heterodimeric p50/p65 protein,
nuclear translocation and MAPK activation (as reviewed by)
(Johnson and Lapadat, 2002; Symons et al., 2006; Kawai and
Akira, 2007). As an example, the prototypical stimulator of this
pathway, the TLR4 agonist bacterial-derived lipopolysaccharide
(LPS) (Poltorak et al., 1998), causes an increase in the production
of iNOS (Kacimi et al., 2011), and proinflammatory cytokines
such as IL−1β, IL-6, and TNFα (Yamamoto et al., 2002a).
However, several studies suggest that endogenous ligands, such
as heparan sulfate, heat shock proteins, and high-mobility group
box 1 (HMGB1) can stimulate TLR signaling suggesting a role
for sterile inflammation in diseases like synucleinopathies, which
have the hallmark feature of increased amounts of misfolded
endogenous proteins (Yu et al., 2010).

α-Synuclein: Structure and Function
αSyn is a pathogenic protein, which accumulates in all
synucleinopathies and is hypothesized to propagate sterile
inflammation in these disorders. TLRs, while recognizing foreign
PAMPs, are also reactive to damage/danger-associated molecular
patterns (DAMPs). DAMPs, such as αSyn, are endogenous
molecules that are intracellularly innocuous, but upon secretion
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FIGURE 1 | The TLR2/1 signaling cascade and respective regulatory nodes. αSyn binding to the TLR2/1 heterodimer leads to a MyD88-dependent response that

stimulates the kinase activity of the IRAK complex. The IRAK complex in turn activates TRAF6 K63-linked auto-ubiquitination, which subsequently leads to the release

of the IKKs and activation of TAK1. The IKKs will designate IκBα for degradation and TAK1 will stimulate the MAPK pathway leading to the NF-κB, JNK, and p38

nuclear translocation to upregulate proinflammatory cytokines. There are several potential regulatory nodes and letters A-F represent those targets for intervention

along the signaling pathway in order to impede pathogenesis.
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or release following cellular injury will stimulate an innate
immune response.

The primary function of αSyn under normal conditions has
not been definitively described. However, αSyn is localized to
axon terminals where it interacts with more than 50 other
proteins and plays a role in vesicular transport. The protein is
encoded by the gene SNCA that is located on chromosome 4
and evidence from SNCA knockout mice shows the loss of αSyn
leads to hindered docked vesicle replenishment, which indicates a
possible role for αSyn in vesicular trafficking between the reserve
and readily releasable pools of neurotransmitter vesicles. Other
potential in vivo functions for αSyn include enzymatic regulation,
transporter regulation, mitochondrial function, and cell survival.
Much support for the pathogenic role of αSyn comes from genetic
mutations within SNCA that lead to familial cases of PD and
evidence showing that triplication of wildtype SNCA leads to
increased risk for development of PD. These data support a
framework where both mutated αSyn and an overexpression of
αSyn can be pathogenic (Singleton et al., 2003). Furthermore,
evidence of αSyn-mediated inhibition of tyrosine hydroxylase
(TH) and upregulation of dopamine transporters strengthens the
case for the importance of αSyn in PD (as reviewed by; Dev et al.,
2003; Uversky, 2007; Breydo et al., 2012; Lashuel et al., 2012;
Deleersnijder et al., 2013).

αSyn is a 140 amino acid protein with a primary structure
that can be divided into three domains. α-Helices compose the
first 60 amino acids, the following 35 amino acids are largely
hydrophobic, and the final 45 amino acids are acidic (Uversky,
2011b). The efforts to characterize the native conformation of
αSyn have led to two proposals; one provides support for a stable
tetramer formation that is ostensibly lost after cell lysis (Dettmer
et al., 2013) and the other body of evidence shows αSyn to
be an intrinsically disordered protein (IDP) with an ill-defined
secondary structure and a very compact tertiary structure (as
reviewed by) (Uversky, 2011a; Breydo et al., 2012; Deleersnijder
et al., 2013). Both of the above hypotheses are focused on the
monomeric or low-molecular weight structure of αSyn, but it is
not these species that seems to be driving the activation of TLRs.

Progression of Misfolding and Production
of Neurotoxic Species
As mentioned above, αSyn is a presynaptic protein and thus
Lewy body pathology is most often found in intraneuronal
inclusions, except in multiple system atrophy where αSyn
pathology is localized to oligodendrocytes. The ability for
αSyn to have deleterious inflammatory effects on microglia
originates from neuronal exocytosis, which was demonstrated
in an in vitro αSyn overexpression model using SH-SY5Y
neuroblastoma cells. Normal SH-SY5Y cell media has no
effect on microglial proinflammatory production, but SH-SY5Y
cells overproducing wildtype or A53T mutant αSyn induce
the microglial proinflammatory response (Lee et al., 2010;
Alvarez-Erviti et al., 2011). In particular relevance to PD,
greater protofibril αSyn stabilization occurred in the presence
of dopamine (Conway et al., 2001). Furthermore, results
from Xu et al. illustrate that αSyn-mediated neurotoxicity of

substantia nigra dopamine neurons is due, in part, to αSyn
interactions with dopamine synthesis that creates reactive oxygen
species (ROS) leading to neuronal death (Xu et al., 2002).
While this corroborates a membrane-permeabilization/apoptotic
hypothesis of disease pathogenesis, there is also evidence to
suggest that neurons spontaneously exocytose vesicles rich in
αSyn (Lee et al., 2005). This ER/Golgi-independent exocytotic
mechanism is exacerbated under cellular stress conditions, such
as proteasome inhibition (Jang et al., 2010). The extracellular
αSyn can then be endocytosed by neighboring neurons and this
neuron-to-neuron transmission has been shown to be neurotoxic
(Desplats et al., 2009).

The process of αSyn aggregation and propagation is not
conclusively understood. For example, the creation of high
order oligomers can be initiated through a number of changes
including the presence of metal ions, oxidative stress (Hashimoto
et al., 1999), molecular crowding (Shtilerman et al., 2002), and
environmental factors such as pesticides (Lai et al., 2002). During
fibrillization the IDP nature of monomeric αSyn is converted
to a β-sheet structure, which forms amyloid fibrils that are
comparable to Aβ in Alzheimer’s disease. These αSyn fibrils
are composed of multiple proteins that stack in anti-parallel β-
sheets, eventually becoming a primary constituent of Lewy bodies
(Conway et al., 1998, 2000).

The intermediate steps that bridge the folding of a
monomer to an amyloid fibril are potentially the most critical
when considering the driving force behind synucleinopathies.
Fibrillization occurs through the formation of partially folded
intermediate structures that exist as membrane localized
homodimers and annular structures (Ding et al., 2002; Tsigelny
et al., 2008). The presence of polyunsaturated fatty acids, which
are the major component of lipid membranes, enhance oligomer
formation and have been found to be elevated in PD and DLB
brains, compared to age-matched healthy controls (Perrin et al.,
2001; Sharon et al., 2003). There is also evidence to suggest
that pathological phosphorylation at Ser-129 of αSyn potentiates
the fibrilization process (Fujiwara et al., 2002). Interestingly,
evidence suggests that it is these oligomeric structures, and not
the fibrils, that are neurotoxic due to an increase in membrane
permeabilization (Volles et al., 2001; Volles and Lansbury, 2002).
Karpinar et al. generated a number of αSyn variants with
proline residue substitutions in three different locations of the
primary amino acid sequence. The mutants were much less
likely to form highly organized fibrils and were more toxic
than wildtype αSyn samples due to the increase in protofibril
structures. Furthermore, in Drosophila, these mutations led
to a reduction of TH+ cells in the lateral and medial brain
fractions (Karpinar et al., 2009). Multiple reports show that it
is high molecular weight αSyn and not monomeric conformer,
that leads to microglia activation and TNFα release (Su et al.,
2008; Lee et al., 2010; Béraud et al., 2013; Fellner et al., 2013;
Daniele et al., 2015). However, contradictory evidence from
a THP-1 cell model demonstrates fibrils, and not monomers
or oligomers of αSyn, are able to generate an inflammatory
response (Gustot et al., 2015). It should be noted that αSyn
treatment conditions vary between laboratories and may be the
reason for disparate experimental outcomes. Furthermore, the
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folding mechanisms are difficult to assess in vivo (Danzer et al.,
2007).

MICROGLIAL AND NEURONAL
EXPRESSION OF TLR2/1

TLR2 is a member of the MyD88-dependent receptor family
that is associated with a diverse set of ligands. TLR2 interacts
with peptidoglycan, Gram-positive bacteria, lipoproteins, and the
yeast cell wall component zymosan (Underhill et al., 1999a,b;
Ozinsky et al., 2000; Takeuchi et al., 2000, 2002; Morr et al.,
2002). In order to associate with and recognize these various
agonists TLR2 requires a coreceptor, typically TLR1 or TLR6. The
TLR2/1 heterodimer is activated by Pam3CSK4, a synthetic tri-
acylated lipopeptide, highlighting the specificity for tri-acylated
lipoproteins (Ozinsky et al., 2000; Takeuchi et al., 2001, 2002;
Buwitt-Beckmann et al., 2006). TLR2 activity is also implicated
in non-immune functions, such as the potential to regulate
metabolism and protect against age-related obesity (Shechter
et al., 2013).

Within the cell, TLR2 and TLR1 colocalize with one another
both intracellularly and on the plasmamembrane, demonstrating
that the two receptors are potentially in their heterodimeric
state prior to any ligand interaction. Sandor et al. used chimeric
TLR2 and TLR1 proteins to investigate each receptor’s role in
NF-κB translocation and found both intracellular TIR domains
were needed to recruit MyD88 and propagate a signal (Sandor
et al., 2003). Upon binding of Pam3CSK4, TLR2/1 adopts an
“m” shaped conformation with the two C-terminal domains
interacting in the interior intracellular region and each N-
terminal arching out extracellularly. The Pam3CSK4 binding
domain is found at the pocket formed between the central and
C-terminal domains, a convex region which is atypical for the
leucine rich receptor family (Jin et al., 2007). It is postulated that
there are hydrophobic portions of TLR2/1 that could be involved
in large DAMP recognition (Nishiguchi et al., 2001; Okusawa
et al., 2004; Jin et al., 2007). Liang et al. demonstrated that the
pentameric B subunit of type IIb (LT-IIb-B), a doughnut shaped
oligomeric protein from E. coli, had 10 potential binding sites on
TLR2/1. The convex region of TLR2 is postulated as the most
likely region where LT-IIb-B binds (Liang et al., 2009).

A growing body of evidence establishes a role for TLRs
expressed on microglia to mediate cell death in the neural
environment. For example, stimulation of TLR4 leads to a
loss of oligodendrocytes and axons that is not seen when
microglia are absent (Lehnardt et al., 2003). TLRs also play
an important role in pain (as reviewed by; Nicotra et al.,
2012). Tanga et al. demonstrated that TLR4 contributes to early
neuropathic pain associated with nerve transection suggesting
that while these receptors are conserved mediators of pathogen
recognition and removal, TLRs also have the potential to
accelerate neurodegeneration upon activation (Tanga et al.,
2005). Similarly, TLR2 (Jana et al., 2008), TLR4, and CD14
are implicated in Alzheimer’s disease as integral receptors for
fibrillar Aβ recognition (Reed-Geaghan et al., 2009). Within the
field of synucleinopathy research, oligomeric forms of αSyn have

been shown to directly interact with the TLR2/1 heterodimer
and lead to a prototypical inflammatory response (Kim et al.,
2013, 2015; Daniele et al., 2015). Other reports support a
role for TLR4 in αSyn recognition, where this ligand-receptor
interaction facilitates a phagocytic response (Stefanova et al.,
2011). Taken together, the above investigations support that
αSyn binds to TLR MyD88 family members and in the case
of TLR2/1 this interaction may occur in a similar fashion as
LT-IIb-B, resulting in activation of this heterodimeric receptor
on microglia and contributing to pathogenesis. These studies
provide rationale supporting the hypothesis that the oligomeric,
and not monomeric, species of αSyn are responsible for disease
pathology.

In Microglia
Microglia reside in the CNS and function as the resident
immune cells of their local environments. Morphologically,
inactive microglia are filamentous, continually extending and
retracting processes surveying their surroundings (Davalos
et al., 2005; Nimmerjahn et al., 2005). Microglia possess the
capacity for recognition of various pathogens and endogenous
cues, which produce further morphological changes that are
typically described as the M1 or M2 phenotypes (de Sousa
et al., 2011; Wei et al., 2011). This binary categorization is
meant to represent the prototypical proinflammatory and anti-
inflammatory/phagocytic responses of microglia (Bachstetter
et al., 2014; Majerova et al., 2014). But more recent investigation
has begun to reorganize this nomenclature in favor of a
continuum of morphological characteristics, each of which being
representative of a particular microglial function (as reviewed
by; Hanisch, 2013; Kim C. C. et al., 2016; Morganti et al., 2016;
Ransohoff, 2016). The heterogeneity of phenotypes is further
evidenced by age and region specific analyses that show the great
diversity of microglia (Grabert et al., 2016).

TLRs are integral to microglia, and the microglial expression
of the TLR2/1 heterodimer is specifically implicated in
synucleinopathy pathogenesis. αSyn or Pam3CSK4 activation
of TLR2 in BV-2 microglia (Béraud et al., 2013), primary
mouse microglia (Babcock et al., 2006; Downer et al., 2013;
Kim et al., 2013; Daniele et al., 2015), and human microglia
leads to the MyD88-dependent release of TNF-α and IL-1β
(Dzamko et al., 2016). Following stimulation of TLR2/1, TLR2
mRNA and protein are increased in microglia (Syed et al., 2007).
Studies such as this provide rationale for a cyclical process of
inflammation, where once an initial insult is recognized the
microglia are primed for sustained proinflammatory responses.
Further investigation shows that αSyn overexpressing SH-SY5Y
cells release oligomeric αSyn, the SH-SY5Y conditioned media is
capable of activating microglia, and microglia TLR2 expression
is required for this activation (Kim et al., 2013; Kim C. et al.,
2016). The activation profile of microglia exists somewhere
within the spectrum of the prototypical M1 and M2 states
when pretreated with non-aggregated αSyn and subsequently
activated with Pam3CSK4 (Roodveldt et al., 2013), supporting
the dynamic phenotype model of microglia and suggesting
that in vivo microglial activation via oligomeric αSyn could
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result in paracrine/autocrine TNF-α signaling that potentiates
microgliosis and neuronal death.

The microglial response via TLR2/1 is not a homogenous
proinflammatory response. Rather, 24 h after αSyn stimulation
microglia also produce IL-10, an anti-inflammatory cytokine
(Daniele et al., 2015). The endogenous Ras-ERK inhibitors,
downstream of kinase (Dok) 1 and 2, are also upregulated
in microglia following TLR2/1 stimulation. While ERK
phosphorylation is also increased after TLR2 activation, the
upregulation of Dok1 and Dok2 represent another inhibitory
signal that is upregulated to limit the immediate inflammatory
response of microglia (Downer et al., 2013). There is also an
antagonistic pathway mediated by the nuclear factor erythroid
2-related factor 2 (Nrf2)/antioxidant response element (ARE)
pathway, which transcriptionally upregulates heme oxygenase-1
(HO-1) in the CNS as well as the periphery (Lee and Suk,
2007; Koh et al., 2011). The proinflammatory response from
microglia generates reactive oxygen species (ROS), which in turn
stimulates the Nrf2/ARE pathway as a late phase response to
control microglial activation (Li et al., 2008; Innamorato et al.,
2009). The Nrf2/ARE and the NF-κB pathways cross regulate one
another, which provides a unique target for managing microglial
responses to αSyn and proinflammatory cytokines (Innamorato
et al., 2008; Liu et al., 2008).

In Neurons
Neurons themselves are also capable of expressing TLRs.
Evidence suggests that TLRs play a role in neuronal
morphogenesis, neurodegeneration, and cytokine production
(as reviewed by) (Liu H. Y. et al., 2014). TLR2 is expressed in
NT2-N teratocarcinoma cells (Lafon et al., 2006), SH-SY5Y
neuroblastoma cell (Kim et al., 2015), primary mouse neurons
(Downer et al., 2013), and human neurons in the CNS (Dzamko
et al., 2016) and ENS (Brun et al., 2013). Very interestingly,
Dzamko et al. surveyed 17 human PD brains and found a
statistically significantly age-related increased in neuronal TLR2
expression (Dzamko et al., 2016). One group showed that
neuronal transmission of αSyn can be mediated by lymphocyte-
activation gene 3 (LAG3), which binds to αSyn fibrils during
neuronal endocytosis (Mao et al., 2016). Both SH-SY5Y and
induced pluripotent stem cell-derived neurons amass αSyn after
Pam3CSK4 but not LPS treatment, suggesting neuronal TLR2/1
stimulation upregulates αSyn expression and/or accumulation in
neurons (Dzamko et al., 2016). Together these studies suggest
that αSyn can act in a paracrine/autocrine fashion to activate
both microglial and neuronal TLR2/1 in order to potentiate
microglial activation and neuronal degeneration.

While neurons can express and release proinflammatory
cytokines, some evidence suggests that the primary effect of
αSyn-mediated TLR2/1 signaling is through an inhibition of
the autophagy pathway. Kim et al. demonstrate TLR2 signaling
increases mTOR and Akt phosphorylation, which impairs
the autophagy (Kim et al., 2015). The Akt phosphorylation
may be mediated by TRAF6 K63-linked ubiquitination (Yang
et al., 2009). When assessing potential causes for neuronal
loss, this evidence provides insight into potential mechanisms
of αSyn-related neuronal autophagocytotic dysregulation that

could contribute to synucleinopathy pathology. In this setting,
impaired autophagy would lead to an accumulation and release
of neuronal αSyn making this protein available as an endogenous
TLR ligand.

INHIBITING THE INFLAMMATORY
PATHWAY

As the evidence supporting a pathological role for TLR2/1
signaling pathway has increased, there has been a heightened
interest in discovering potential avenues to modulate this
pathway for therapeutic benefits. The interdisciplinary findings
from both neuroscience and immunology have helped provide
supporting data and novel ways to treat synucleinopathies. The
spectrum of potential interventions to inhibit the various nodes
of the pathway is depicted in Figure 1 and includes modulation
of endogenous microRNA’s and proteins, as well as treatment
with both naturally derived, and synthetic compounds, described
in Table 1, for the purpose of treating diseases characterized by
inflammatory environments.

microRNA Regulation
microRNAs are a class of non-coding RNAs that are
approximately 23 nucleotides in length. They act as translational
repressors (Baek et al., 2008) and are involved in development
(Wightman et al., 1991, 1993; Vo et al., 2005), neurogenesis
(Krichevsky et al., 2003), and plasticity (Wayman et al., 2008).
These small regulatory microRNA’s are also instrumental in the
endogenous regulation of the immune system and specifically
TLR signaling (as reviewed by; Xiao and Rajewsky, 2009; O’Neill
et al., 2011).

The membrane localized site of node A (Figure 1) is a
target for multiple microRNAs. The exogenous miR-UL112-
3p, a product of the human cytomegalovirus, directly binds
the 3’ untranslated region of TLR2 (Landais et al., 2015). The
endogenousmiR-143 downregulates TLR2 in hepatoma cells (Liu
et al., 2015) and colorectal carcinoma cells (Guo et al., 2013).
The receptor-adaptor complex is also known to be regulated at
MyD88 by miR-21 (Chen et al., 2013a) and miR-K9, which is a
product of Kaposi’s sarcoma-associated herpesvirus (Abend et al.,
2012).

A larger collection of microRNAs has been identified that
have inhibitory effects on TLR2 signaling (Figure 1; Node B).
IRAK1 is targeted by miR-K5 (Abend et al., 2012), again from
Kaposi’s sarcoma-associated herpesvirus, miR-21 (Chen et al.,
2013a) and miR-146a (Taganov et al., 2006; Nahid et al., 2009,
2011; Quinn et al., 2013). Additionally, IRAK4 is inhibited by
the TLR2-upregulated and CREB-dependent miR-132 in THP-1
cells, human PBMCs, and murine microglia (Nahid et al., 2013).
Further along the signaling pathway (Figure 1; Node C) the
auto-ubiquitinating TRAF6 has been intensely investigated with
relation to THP-1 cells (Taganov et al., 2006; Nahid et al., 2011;
Quinn et al., 2013), keratinocytes (Meisgen et al., 2014), PBMCs
(Nahid et al., 2013), oligodendrocytes (Santra et al., 2014), and
microglia using TLR2, TLR4, and prion-induced mechanisms
(Saba et al., 2012). miR-146a inhibits the translation of TRAF6,
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TABLE 1 | Modulators of the TLR2/1 signaling pathway.

Inhibitor Target References

MicroRNAs

miR-UL112-3p TLR2 Vo et al., 2005

miR-K5 IRAK1 Xiao and Rajewsky, 2009

miR-K9 MyD88 Xiao and Rajewsky, 2009

miR-143 TLR2 and NF-κB Krichevsky et al., 2003;

Wayman et al., 2008

miR-132 IRAK4 Abend et al., 2012

miR-21 MyD88 and IRAK1 O’Neill et al., 2011

miR-146a TRAF6 and IRAK1 Chen et al., 2013a; Guo

et al., 2013; Landais et al.,

2015; Liu et al., 2015

miR-124 TRAF6 Taganov et al., 2006; Nahid

et al., 2013

miR-92a MKK4 Meisgen et al., 2014

miR-147

miR-7116-5p

Unknown

TNFα

Saba et al., 2012; Ma et al.,

2014;

Santra et al., 2014

miR-155 SOCS1 and SHIP1 Liu et al., 2009; Zhang

et al., 2016

NATURAL COMPOUNDS

Methylpenicinoline Unknown Strassheim et al., 2005

Calcitriol miR-155 Nakagawa et al., 2002

Schizandrin A/B Unknown Aravalli et al., 2008;

Aslanidis et al., 2015;

Koymans et al., 2015

Gomosins A/G/J/N

Pristimerin

Nrf2

IRAK1 and TRAF6

Chen et al., 2013b;

Kim et al., 2014

Deoxysappone B Unknown Song et al., 2016

Sparstolonin B MyD88 Park et al., 2014

Daphnetin A20 Kumar et al., 2016

Curcurbitacin B/E/I Nrf2 Liu et al., 2016

Kolaviron Nrf2 Yao et al., 2011

Pseudoginsenoside-F11 MyD88 Park et al., 2015

SYNTHETIC COMPOUNDS

CU-CPT22 TLR2/1 Arel-Dubeau et al., 2015;

Olajide et al., 2017

RSCL-0409 MyD88 Oyagbemi et al., 2017

C16H15NO4 (C29) MyD88 Wang et al., 2014

Ortho-vanillin MyD88 Wang et al., 2014

M2000 Unknown Kalluri et al., 2010; Mistry

et al., 2015

G2013 Unknown/Tollip Afraei et al., 2015;

Mirshafiey et al., 2016;

Aletaha et al., 2017

NG25 TAK1 Pourgholi et al., 2017

MRT67307 TBK1 and IKKε Jahromi et al., 2017

BMS345541 IKKβ Nazeri et al., 2017

MCAP Unknown Hajivalili et al., 2016

Bay-11-708 NF-κB Sharifi et al., 2017

Candesartan Angiotensin II receptor Pauls et al., 2012

Fasudil Rho kinase Yang et al., 2006; Clark

et al., 2011

cRGD MFG-E8 receptor Matteucci et al., 2015

while miR-146a knockdown leads to an increased production of
proinflammatory cytokines. TRAF6 is also a target of miR-124,
which inhibits the inflammatory response (Ma et al., 2014; Qiu
et al., 2015). Activation of TLR2, or stimulation via the actin
regulator thymosin β4, leads to the subsequent upregulation of
miR-146a that lasts up to 4 days post-stimulation, which signifies
the robust endogenous response following TLR2 activation that
is created to modulate the inflammatory response (Meisgen et al.,
2014; Santra et al., 2014). There is also microRNA inhibition at
node E (Figure 1) that indicates additional layers of endogenous
regulation of the TLR2 activation pathway. Overexpression of
miR-92a inhibits TNFα and IL-6 release through inhibition
of MKK4, a MAPK family protein, and is downregulated
following TLR2 stimulation (Lai et al., 2013). A recent study
has also identified miR-7116-5p as a negative regulator of TNFα
protein production and the MPTP model of PD leads to a
downregulation of miR-7116-5p (He et al., 2017).

It is also important to note that not all TLR-associated
microRNAs have known functions or downregulate the
pathway. The target of miR-147 is unknown, but miR-147 is
upregulated following TLR2 and TLR4 stimulation and reduces
proinflammatory cytokine production (Liu et al., 2009). Further
investigation has shown miR-147 suppresses Akt expression in
breast cancer cell lines (Zhang et al., 2016). These data suggest a
possible complimentary mechanism for miR-147 where it may
be able to limit the proinflammatory response, but it could also
be promoting the autophagy pathway. A prototypical example
of TLR2 signaling potentiation is miR-155, which is upregulated
with TLR4 activation via both the AP-1 (O’Connell et al., 2007;
Yin et al., 2008) and NF-κB pathways (Bala et al., 2011). miR-155
increases the production of TNFα and other cytokines through
its inhibition of suppressor of cytokine signaling 1 (SOCS1)
(Cardoso et al., 2012) and Src homology 2 domain-containing
inositol-5-phosphatase 1 (SHIP1) (Thounaojam et al., 2014).

The manipulation of microRNAs as a therapeutic strategy is a
unique and interesting approach to modifying synucleinopathy
pathogenesis. Exogenous viral microRNAs are likely used in
order for the viruses to invade the host immune system and
the properties of miR-UL112-3p, miR-K5, and miR-K9 could
be exploited for therapeutic effects. But it is also important
to note that Jurkin et al. demonstrated alternative expression
profiles of miR-146a in different cell types (Jurkin et al., 2010).
This indicates the need for a more complete understanding of
how each microRNA functions within the CNS prior to the
development of synucleinopathy therapies.

Endogenous Proteins
Continuing efforts to manipulate the TLR2/1 inflammatory
pathway also utilize endogenous-protein regulators in
conjunction with microRNAs. As mentioned above, thymosin
β4 is an example of an endogenous protein that promotes
miR-146a upregulation and subsequent TRAF6 and IRAK1
translational repression (Santra et al., 2014; Zhou et al., 2015).
IRAK1 is also regulated by Tollip, which is a substrate for IRAK1
phosphorylation that interacts in a negative feedback loop
(Figure 2), to inhibit IRAK1 and limit the production of TNFα,
IL-1β, and IL-6 (Zhang and Ghosh, 2002; Didierlaurent et al.,
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2006; Shah et al., 2012). Interestingly, Tollip is highly expressed
within the midbrain region of mice, making it a high priority
target in relation to PD (Humbert-Claude et al., 2016).

TRAF6 is also an emerging target for TLR modulation and
looks to be tightly and multiply regulated (Figure 2). A large
structural analysis study identified two de-ubiquitinases, A20 and
CYLD, as endogenous regulators of TRAF6 K63-linked ubiquitin
chains (Guven-Maiorov et al., 2015). Using a THP-1 model,
Jiao et al. showed that MST4 directly phosphorylates TRAF6
and MST4 upregulation reduces proinflammatory cytokine
release (Jiao et al., 2015). Cereblon and Nod-like receptor
C5 (NLRC5) interact with TRAF6 in contradictory fashions.
Cereblon functions as a ubiquitin inhibitor by disturbing the
TRAF6 zinc-finger ubiquitination domain (Min et al., 2016).
NLRC5 is an endogenous regulator of the IKK complex and
limits NF-κB translocation, but upon LPS stimulation NLRC5
is ubiquitinated by TRAF6. This suggests a secondary role for
TRAF6 where it communicates outside of the paradigmatic
inflammatory pathway to turn off regulators of downstream
TLR signaling kinases (Cui et al., 2010; Meng et al., 2015).
Furthermore, a recent study implicates the E3 ubiquitin ligase
tripartite motif family 13 (Trim13) as a potentiator of TRAF6
ubiquitination and function. Trim13 knockdown inhibits TRAF6
K29-linked ubiquitination and NF-κB signaling more generally
(Huang and Baek, 2017).

There are also several other proteins that may be important
targets for TLR2 signaling modulation. Evidence suggests SHIP1
inhibits TBK1, a member of the TRIF-dependent signaling
pathway (Gabhann et al., 2010; Thounaojam et al., 2014).
Neutrophils derived from SHIP1−/− mice are more susceptible
to TLR2-mediated cytokine production as well as increased
Akt activation (Strassheim et al., 2005). This result suggests
that enhancing SHIP1 activity may reduce the proinflammatory
response and reduce the ability for autophagy. SOCS1 also
plays an inhibitory role restricting cytokine production through
interactions with IRAK1 or TRAF6 (Nakagawa et al., 2002; West
et al., 2006; Cardoso et al., 2012). Another possible therapeutic
target is activated microglia/macrophage whey acidic protein
(AMWAP), which is produced and released by microglia in
neurotoxic conditions. Pretreatment of microglia with AMWAP
prior to TLR2 stimulation reduces the mRNA expression of IL-
6, iNOS, and TNFα, but the exact inhibitory interaction that
prevents IκBα degradation is unclear (Aslanidis et al., 2015).

Naturally Occurring Compounds
The identification and use of naturally occurring proteins and
compounds has also proven fruitful in limiting inflammatory
responses. Staphylococcal superantigen-like protein 3 (SSL3)
is a product of Staphylococcus aureus that is used to evade
the immune system through TLR2/1 dimer inhibition
(Koymans et al., 2015). Further investigation with vaccinia
virus proteins shows that A46R inhibits multiple TLR-adaptor
interactions and A52R inhibits both TRAF6 and IRAK2.
K1L and N1L are two additional vaccinia virus proteins
that inhibit IκBα degradation and the downstream kinases
TBK1 and IKKs respectively (Aravalli et al., 2008). These
exogenous proteins, along with above endogenous protein

regulators are shown in Figure 2. Other fungal products
such as methylpenicinoline from Penicillium sp. (SF-5995)
reduces both NF-κB translocation and the JNK-dependent
signaling in BV2 microglia (Kim et al., 2014). Calcitriol,
the active form of vitamin D, represses miR-155 after LPS
stimulation and reduces NF-κB nuclear translocation (Chen
et al., 2013b).

Plant-derived therapeutic compounds are among the most
abundant in anti-inflammatory research. Multiple lignans and
lignins suppress inflammation induced by TLR2- and TLR4-
mediated pathways. These bioactive compounds are found in the
Chinese medicinal plant Schisandra chinensis and are part of the
dibenzocyclooctadiene family; schizandrin A (Song et al., 2016),
schizandrin B (Giridharan et al., 2012; Zeng et al., 2012), and
gomosins A/G/J/N inhibit microglial production of NO, TNFα,
and IL-6. The gomosins act by increasing Nrf2 translocation
and downregulating the MAPK pathways (Park et al., 2014).
Pristimerin, an extract from Tripterygium wildi, reduces the
release of NO and suppresses the protein and mRNA production
of TNFα and IL-6 in BV2 microglia stimulated with LPS by
inhibiting the IRAK1-TRAF6 interaction (Hui et al., 2018).

Various other herbal Chinese compounds also have
potential for treating the neuroinflammatory response in
synucleinopathies and their targets are listed in Table 1. The
Chinese plant Caesalpinia sappan produces deoxysappone
B, which inhibits the NF-κB and MAPK pathways and
also reduces in vitro neuronal death in neuron-microglia
cocultures (Zeng et al., 2015). Sparstolonin B is a product
from Sparganium stoloniferum and it reduces IL-6 expression
in a myocardial hypoxia model (Liu Q. et al., 2014) as well
as TNFα following TLR2 stimulation in both RAW264.7
(Liang et al., 2015) and THP-1 cells by preventing the TLR2/1-
MyD88 interaction (Liang et al., 2011). Lastly, a member of
the coumarin family isolated from Daphne odora, named
Daphnetin, decreases IL-6, TNFα, IL-1β, and NF-κB in models
of anti-angiogenesis (Kumar et al., 2016), cerebral infarction
(Liu et al., 2016), severe acute pancreatitis (Liu Z. Y. et al., 2014),
and arthritis (Yao et al., 2011; Tu et al., 2012). One potential
mode of action for Daphnetin may be through upregulation
of A20, which modulates TRAF6 activity (Figure 2; Yu et al.,
2014).

The Cucurbitaceae genus produces a number of compounds
including cucurbitacins B, E, and I that reduce IL-6, TNFα,
and IL-1β in microglia as well as induce Nrf2 nuclear
translocation (Park et al., 2015). Cucurbitacin E also protects
differentiated PC12 neurons from a PD model of MPTP-induced
neurotoxicity (Arel-Dubeau et al., 2015). Similarly, kolaviron
from the Garcinia kola plant, activates the Nrf2/ARE pathway
and inhibits the release of IL-6 and TNFα in BV2 microglia
following TLR4 stimulation (Onasanwo et al., 2016). Kolaviron
is also neuroprotective and cardioprotective in rat models of
oxidative stress (Olajide et al., 2017; Oyagbemi et al., 2017).
In both in vitro and in vivo studies, Wang et al. demonstrate
that pseudo-ginsenoside F11, derived from American ginseng,
reduces microglial release of proinflammatory cytokines, inhibits
Akt phosphorylation, and protects against neuronal death (Wang
et al., 2014).
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FIGURE 2 | Exogenous and endogenous protein regulation of the TLR2/1 signaling pathway. Initial regulation could begin with SSL3 inhibition of αSyn recognition or

A46R disturbance of the MyD88-TIR interface (Node A; Figure 1). Tollip, A52 and SOCS1 could be manipulated to inhibit signaling at the IRAK complex (Node B;

Figure 1). TRAF6 inhibition could be achieved by interference with Trim13 or positive modulation of SOCS1, MST4, thymosin β4, cereblon, A52R, A20, and CYLD

(Node C; Figure 1). Lastly NLRC5 and N1L could be positively upregulated to inhibit the IKKs (Node D; Figure 1). The modes of action for K1L and AMWAP are not

established, but these two proteins along with upregulation of the transcription factor Nrf2 are also potential targets for TLR2/1 modulation.
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Synthetic Agents
The most diverse and robust class of TLR signaling inhibitors
is the group of synthetic compounds found in Table 1. Starting
at the origin of the signaling pathway, CU-CPT22 is known to
be a TLR2/1 heterodimer antagonist with the ability to inhibit
TLR2-mediated proinflammatory induction (Cheng et al., 2012;
Daniele et al., 2015; Bock et al., 2016; Su et al., 2017). RSCL-
0409, a gluco-disacharide, reduces TLR2 and TLR4 mediated
TNFα release potentially through disruption of the TIR-adapter
interaction, but the exact mechanism is not known (Kalluri et al.,
2010). Similarly, C16H15NO4 (C29) and ortho-vanillin both block
TLR2/1 signaling in murine macrophages via disruption of the
MyD88 interaction with the TIR domain (Mistry et al., 2015).
β-D-mannuronic acid (M2000) and its analog α-l-guluronic
acid (G2013) are novel non-steroidal anti-inflammatory drugs
(NSAIDs) currently being studied. In relation to oxidative
stress, M2000 and G2013 non-significantly increase regulatory
enzymes related to oxidative stress, but investigation of these
two NSAIDs should not be immediately abandoned (Afraei
et al., 2015; Mirshafiey et al., 2016; Hosseini et al., 2017).
The mode of action for M2000 has been postulated as both
a TLR2/TLR4 antagonist (Aletaha et al., 2017) and a miR-
155 inhibitor (Pourgholi et al., 2017). Further investigations
demonstrate M2000’s ability to significantly decrease miR-146a,
TRAF6, IRAK1, and NF-κB mRNA (Jahromi et al., 2017).
These data indicate that oxidative stress markers may be the
wrong outcome variables to assess the efficacy of these two
NSAIDs andmediators of inflammation such as TLR2/1 signaling
intermediates and the proinflammatory cytokines should be used
instead. G2013 also appears to inhibit IRAK1/TRAF6 without
modulation of miR-146a (Hajivalili et al., 2016; Nazeri et al.,
2017), which could occur through regulation of Tollip mRNA
transcript levels. The data indicates a high dose of G2013 lowers
Tollip mRNA while also reducing NF-κB and IL-1β mRNA,
which is counterintuitive with respect to the understanding
of how Tollip functions as a negative regulator of IRAK1,
and necessitates further investigation (Figure 2; Sharifi et al.,
2017).

Many inhibitors target the cytosolic signaling proteins much
like microRNA’s. Dzamko et al. used a panel of inhibitors such
as NG25, MRT67307, and BMS345541 which target TAK1 (Pauls
et al., 2012), IKKε (Clark et al., 2011), and IKKβ respectively
(Yang et al., 2006). All four successfully limit TLR2-mediated
αSyn accumulation after TLR2 stimulation in SH-SY5Y cells,
which demonstrates the efficacy of modulating the TLR2 pathway
in both neurons and microglia (Dzamko et al., 2016). Another
compound, MCAP, can inhibit IκBα phosphorylation and in turn
reduce proinflammatory mRNA upregulation (Kim B.-W. et al.,
2016). Lastly, Bay-11-708 a known inhibitor of NF-κB has been
used to attenuate inflammation (Chen et al., 2013b; Matteucci
et al., 2015).

Aside from direct inhibition of the TLR2 signaling pathway,
there is also evidence supporting secondary roles for existing
drugs and phagocytic inhibitors. The sartans are one such
drug family that were first identified as angiotensin II
receptor inhibitors. In a human monocyte model, candesartan
downregulates TLR2 protein and mRNA, while also inhibiting

NF-κB activation (Dasu et al., 2009). These results have been
confirmed in primary microglia where candesartan reduced
αSyn-mediated TNFα release (Daniele et al., 2015). Another
drug, fasudil, which is a Rho kinase inhibitor, decreases TNFα
and IL-1β, upregulates anti-oxidant/inflammatory molecules,
Nrf2 and IL-10 (Liu et al., 2013; Zhao Y. F. et al., 2015), and
protects TH+ neurons in vivo in a MPTP-model of PD (Li et al.,
2017). And in an alternative approach to microglial inhibition,
cyclic Arginine-Guanine-Aspartic Acid (cRGD), has been used
to repress autophagy, which in turn reduces neuronal loss when
co-cultured with TLR2-activated microglia (Neher et al., 2011).
In vivo injection of cRGD reduced microglial-mediated neuronal
phagocytosis in a mouse model of retinal degeneration (Zhao
L. et al., 2015). These cRGD studies are intriguing insofar as
they complicate the use of Akt as a therapeutic target. As
discussed earlier, TLR2 activation and subsequent inhibition of
Akt in neuronal cultures protected against cell death, but Neher
et al. demonstrate TLR2 activation in conjunction with cRGD-
mediated phagocytic inhibition protects neurons. This could
be due to independent phagocytic pathways in microglia and
neurons and we believe this necessitates further investigation.

All the above studies, and their respective drugs and targets
(Table 1), provide a glimpse into the potential for discovering the
next best course of treatment for synucleinopathies. Not all of the
studies discussed have been verified in microglial models or more
importantly in vivomodels of disease. Further investigations and
critical analyses of the mechanism of action for each potential
inhibitor within the CNS are required before moving forward.
We believe it is important to examine the potential choices
available for TLR2 modulation—both the intended and potential
unintended effects. For example, while antagonists of MyD88
signaling are available, the effects of inhibiting this widely used
adaptor protein may prove to be a dangerous method for
curtailing the microgliosis and neuroinflammation in vivo. Thus,
we suggest a focus on the downstream effector proteins from
the IRAKs to the IKKs as well as the Nrf2 and autophagocytic
pathways in order to manage the proinflammatory response in
synucleinopathies.

CLINICAL TRIALS AND FUTURE
THERAPEUTICS

The current landscape of clinical trial data is relatively small with
regards to synucleinopathies and potential treatments involving
modulation of microglia and the inflammatory response. While
major therapeutics have not been discovered for treatments of
synucleinopathies in humans, there have been advancements
in characterization of neural inflammation. The peripheral
benzodiazepine receptors (PBRs) are expressed on activated
microglia and the PET PBR ligand [11C](R)-PK11195 provides
a method for tracing microglial activation in patients. This
diagnostic procedure has been validated multiple times (Gerhard
et al., 2004, 2006a,b), and Ouchi et al. demonstrated that
[11C](R)-PK11195 binding potential (BP) is inversely correlated
with the dopamine transporter marker [11C]-CFT BP in the
putamen (Ouchi et al., 2005). It is also interesting to note that
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that another group using [11C](R)-PK11195 PET described an
inability to use the cerebellum as a BP control region, as has
been done in Alzheimer’s disease studies, and propose the need
for more specific PBR tracers for synucleinopathies (Bartels et al.,
2010). There is also an active clinical trial (NCT02702102) that
is investigating the efficacy of [11C](R)-PBR28 as an alternative
measure of microglial activation in DLB and PD with dementia
(Kreisl et al., 2017).

Investigations into the use of NSAIDs and aspirin in
neurodegenerative diseases initially seemed fruitful (Klegeris
and McGeer, 2005). An epidemiological study demonstrated a
decreased relative risk of developing PD if an individual took
aspirin twice daily or regularly used NSAIDs on a weekly basis
(Chen et al., 2003). The Bartels et al. study demonstrated the
inefficacy of celecoxib in reducing microglial activation in PD
patients (Bartels et al., 2010) and implementation of NSAIDs
or rofecoxib, a COX-2 inhibitor, did not have any significant
influence on AD progression (Aisen et al., 2003). Since both
AD and PD are progressive and patients present with varying
epigenetic and genetic backgrounds, the failure of these clinical
trials could be due to the patient population selected. There has
been a phase I/II trial for M2000 to assess the efficacy of this
novel NSAID compared naproxen for ankylosing spondylitis.
The therapeutic benefits was no different than naproxen, but
M2000 did have fewer adverse effects that could make this
drug more attractive for future PD related trials (Fattahi et al.,
2017).

A number of clinical trials have attempted to modify disease
pathogenesis or target the extracellular receptors, but few have
been successful. For example, CEP-1347 is a JNK inhibitor used
in early-stage PD patients in an attempt to enhance neuronal
survival, but CEP-1347 had no effect in delaying the onset of
more severe symptoms that required dopamine therapy (Wang
et al., 2008). Further clinical studies using TLR4 antagonists,
TAK-242 (Rice et al., 2010) and eritoran (E5564) (Bennett-
Guerrero et al., 2007), both failed to significantly change cytokine
levels or post-operative outcomes respectively, despite pre-
clinical successes (Rossignol and Lynn, 2002; Ii et al., 2006).
The failure of these two drugs may present a harbinger for the
potential ineffectiveness of directly targeting the ligand binding
domain of TLR2/1. Despite these failures ibudilast, an inhibitor
of microglial activation via phosphodiesterase inhibition, shows
significant effects in reducing the Subjective Opioid Withdrawal

Scale scores of heroin users after ending daily heroin use (Cooper
et al., 2016). A drug of this nature although separate from
direct TLR2 pathway intervention could be a potential target
for PD therapy, particularly in early stages of the diseases when
microglial activation is accelerating but symptoms are not severe.

CONCLUSIONS

The current body of literature surrounding the function
and modulation of inflammation is continually growing and
emphasizes how inflammation potentiates multiple disease
states. The results described herein provide insight into the
many ways inflammatory processes may result in continued
neurodegeneration.While the disease initiating events in relation
to synucleinopathies and other neurodegenerative diseases are
still debated, it seems likely that the cyclicity of microglial
activation and continued propagation of a proinflammatory
neural environment is integral to the neuron loss that leads to
the most severe synucleinopathy symptoms.

As previously discussed, there is reason to expect that not all
findings from peripheral model systems will directly translate
to studies of the CNS. But for some of the aforementioned
compounds there is strong evidence to support their efficacy
in vitro and in animal models, which may be translatable to
human synucleinopathy patients. And for those strategies that
are not immediately ready for clinical trials, such as microRNA or
protein activity manipulation, there are now numerous avenues
to investigate novel strategies to regulate these compounds in
an effort to combat inflammation and microgliosis. The sheer
wealth of possibilities brings hope toward finding successful
pharmacological interventions to limit or even stop the disease
progression of synucleinopathies.
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