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Introduction
The prevalence of overweight and obesity in children and ado-
lescents has tripled since 1970, with 49% of US children and 
adolescents currently suffering from these conditions.1,2 The 
prevalence of those conditions has also increased worldwide 
in recent decades.3 More cases of overweight and obesity are 
beginning earlier, during childhood, and their severity and their 

prevalence are exacerbated during adolescence.4 Overweight 
and obesity in childhood have immediate and long-term conse-
quences on health. Among the short-term concerns, childhood 
obesity increases the risk of neurological, pulmonary, endocrine, 
and cardiometabolic disorders, including hyperlipidemia, hyper-
tension, and abnormal glucose tolerance.5–7 Overweight and 
obese children have an 80% chance of becoming obese adults, 
thus placing them at higher risk for chronic diseases and prema-
ture mortality in later life.8 The prevalence of overweight and 
obese children show geographic variations owing to lifestyle, 
socioeconomic, and ethnic differences, but environmental influ-
ences have also been shown to contribute to this variation.9–15

Certain persistent organic pollutants, such as organochlo-
rine compounds (OCs), are toxic lipophilic chemicals—used 
in agriculture, manufacturing, or industrial processes16—that 

What this study adds

This is the first study using three distinct statistical methods, 
including two exposure mixture approaches, to show the rela-
tionship between in-utero exposure to organochlorine com-
pounds (OCs) and body mass index (BMI) measures (BMI and 
BMI z-score) at 4 years and their yearly change from 4 to 12 
years in 279 child-mother dyads from the Rhea cohort. All sta-
tistical models were consistent in showing a detrimental associ-
ation between prenatal OC concentrations and yearly change 
in BMI measures, although only the model accommodating 
nonlinear and nonadditive associations consistently captured 
the potentially harmful role of OCs on BMI outcomes at age 
4 years.
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Background: Prenatal exposure to organochlorine compounds (OCs) has been associated with increased childhood body 
mass index (BMI); however, only a few studies have focused on longitudinal BMI trajectories, and none of them used multiple expo-
sure mixture approaches.
Aim: To determine the association between in-utero exposure to eight OCs and childhood BMI measures (BMI and BMI z-score) at 
4 years and their yearly change across 4–12 years of age in 279 Rhea child-mother dyads.
Methods: We applied three approaches: (1) linear mixed-effect regressions (LMR) to associate individual compounds with BMI mea-
sures; (2) Bayesian weighted quantile sum regressions (BWQSR) to provide an overall OC mixture association with BMI measures; 
and (3)Bayesian varying coefficient kernel machine regressions (BVCKMR) to model nonlinear and nonadditive associations.
Results: In the LMR, yearly change of BMI measures was consistently associated with a quartile increase in hexachlorobenzene 
(HCB) (estimate [95% Confidence or Credible interval] BMI: 0.10 [0.06, 0.14]; BMI z-score: 0.02 [0.01, 0.04]). BWQSR results showed 
that a quartile increase in mixture concentrations was associated with yearly increase of BMI measures (BMI: 0.10 [0.01, 0.18];  
BMI z-score: 0.03 [0.003, 0.06]). In the BVCKMR, a quartile increase in dichlorodiphenyldichloroethylene concentrations was asso-
ciated with higher BMI measures at 4 years (BMI: 0.33 [0.24, 0.43]; BMI z-score: 0.19 [0.15, 0.24]); whereas a quartile increase in 
HCB and polychlorinated biphenyls (PCB)-118 levels was positively associated with BMI measures yearly change (BMI: HCB:0.10 
[0.07, 0.13], PCB-118:0.08 [0.04, 012]; BMI z-score: HCB:0.03 [0.02, 0.05], PCB-118:0.02 [0.002,04]). BVCKMR suggested that 
PCBs had nonlinear relationships with BMI measures, and HCB interacted with other compounds.
Conclusions: All analyses consistently demonstrated detrimental associations between prenatal OC exposures and childhood 
BMI measures.

Keywords: Chemical mixture; Outcome trajectories; Body mass index; Organochlorine compounds; Bayesian weighted quantile 
sum regressions; Bayesian varying coefficient kernel machine regressions
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persist and accumulate in the environment for long periods, 
and they pass from one species to another up the food chain.17 
Although OC production and distribution were banned in 
Europe19 and in the US,20 OCs are still an environmental expo-
sure concern. OCs are endocrine disruptors and can interfere 
with hormonally responsive tissue functions by dysregulating 
hormone signaling and cell function.21–24 OCs affect the endo-
crine system and its dynamics at many stages of life, including 
during pregnancy.25 Furthermore, the OCs’ affinity for lipids 
has been proposed to trigger the onset and development of 
obesity. Higher prenatal exposure levels to OCs, including 
hexachlorobenzene (HCB), dichlorodiphenyldichloroeth-
ylene (DDE), and polychlorinated biphenyls (PCBs), have 
been linked to childhood body composition and obesity.9–14,26 
Our prior work has also shown that higher prenatal DDE 
and HCB exposures were individually associated with greater 
body mass index (BMI) z-score at 4 years.27 However, only a 
few studies focused on longitudinal weight measures,26 and 
none of them used approaches that capture joint exposure to 
more than one OC.

OCs rarely occur as a single compound, and prior studies 
that analyzed a single chemical at a time may have had limited 
ability to detect joint associations. To address the challenge of 
analyzing several compounds jointly, a few methods to handle 
chemical mixtures have been developed and adapted in the epi-
demiologic context.28 However, no statistical approach to ana-
lyzing mixtures outperforms the others in real-data settings.29–32 
Each statistical mixture approach emphasizes a specific feature 
of the mixture-outcome association, suggesting that only a com-
bination of statistical approaches can provide the full picture 
of the relationships among environmental exposures, singly and 
together, and the health outcome.33,34

Despite a multitude of statistical methods to analyze mix-
tures, only a few approaches can accommodate the associations 
of environmental mixtures with outcomes at baseline and lon-
gitudinally. In this study, we performed (1) linear mixed-effect 
regression models (LMR) and two mixture approaches that 
are able to handle repeated-outcome measures: (2) Bayesian 
weighted quantile sum regression (BWQSR),35 and (3) Bayesian 
varying coefficient kernel machine regression (BVCKMR).36 
Here, we assessed the associations of prenatal exposure to OC 
mixture with childhood BMI measures at 4 years of age and at 
two subsequent ages (6 and 11–12 years), by leveraging data 
from the prospective Rhea cohort.37 We hypothesized that pre-
natal OC exposure is associated with higher BMI measures in 
childhood.

Materials and methods

Study population

The Rhea cohort included 1363 mother–child pairs living in 
the prefecture of Heraklion, Crete, Greece.37 Briefly, pregnant 
women were enrolled during the first comprehensive ultrasound 
examination (mean ± SD, 11.96 ± 1.49 weeks) in 2007–2008. 
Eligibility criteria included a good understanding of the Greek 
language, maternal age ≥16 years, and a singleton pregnancy. 
Pregnant women were further contacted at 6 months of preg-
nancy, at birth and their children were followed up after birth 
(9 months, 1, 4, 6, and 11–12 years). At each visit, we collected 
child anthropometric measures, dietary information, and envi-
ronmental exposures via structured questionnaires and medical 
records. During the latest follow-up visit at 11–12 years of age, 
children underwent a clinical examination and provided blood 
samples, whereas mothers completed socio-demographic ques-
tionnaires. A total of 1110 pregnant mothers provided blood 
samples for analysis of prenatal OC exposures, and a total 
of 282 children underwent anthropometric measurements at 
all clinical examinations at ~4, ~6, and ~11–12 years of age 
(Figure 1). In the Rhea study the attrition rate was unrelated 
to participant characteristics, therefore, missing observations 
throughout the considered time frame were considered missing 
at random. The study was approved by the ethics committee 
of the University Hospital in Heraklion, Crete, Greece, and all 
women provided written informed consent for themselves and 
for their children at each visit.

Organochlorine compounds exposure

Maternal serum samples were collected at the first prenatal visit 
and stored in aliquots at –80°C until assayed. The OC laboratory 
analyses were performed by the National Institute for Health 
and Welfare, Environmental Health Unit, Kuopio, Finland, 
with an Agilent 7000B gas chromatography triple-quadrupole 
mass spectrometer.38 We determined serum concentrations of 
HCB, DDE, and six individual PCB congeners (118, 138, 153, 
156, 170, and 180). All results were reported on their molecu-
lar weight and expressed in pg/mL of serum, whereas samples 
below the limit of quantification (LOQ) were assigned the value 
0.5×LOQ. LOQ was 6pg/mL for PCB-118 and PCB-156 and 10 
pg/mL for the remaining compounds. We performed log10-trans-
formations on OC concentrations and ranked them in quartiles 
to allow for comparison among the three statistical approaches. 
We identified as exposure outliers all values more distant than 
four standard deviations (SD) from the mean. This excluded one 
participant with extreme exposure values (Figure 1).

Child anthropometry
For each child, we obtained anthropometric measures once at 
each visit with children standing in light clothing without shoes, 
arms hanging freely, and with their head aligned in the Frankfort 
horizontal plane. For children’s weight, we used a digital scale 
(SecaBellisima 841) to the nearest 0.1kg, and for height, we used 
a commercial stadiometer (Seca 213). We then computed BMI 
as the ratio between weight (kg) and squared height (m2). BMI 
age-and-sex specific z-scores were calculated using the World 
Health Organization child growth reference.40 Owing to the 
distinctive age-specific BMI pattern—characterized by a rapid 
increase to a peak in the first year of life, followed by a decline 
to a nadir between 4 and 6 years of age, before finally rising 
again in adolescence and adulthood—we plotted the age-BMI 
relationship with both linear and locally weighted scatterplot 
smoothing trends in the overall population and we evaluated 
associations using both BMI and BMI z-score. Our data sug-
gested an approximate linear BMI-age relationship (Figure S1; 
http://links.lww.com/EE/A186) therefore we included age as a 
linear term in all models.

Data are available upon reasonable request to the authors and after approval of 
the data use agreement form. Analytic code is available to the public in GitHub:

https://github.com/ElenaColicino/POPsBMIinRhea-
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Covariates
We collected information about maternal and child covariates 
via personal interviews, together with self-administered question-
naires and a review of medical records. Maternal cholesterol and 
triglyceride levels were measured in plasma during the first prena-
tal visit by using standard enzymatic procedures on an automatic 
analyzer (AU5400 high-volume chemistry analyzer; Olympus 
America, Inc., Melville, NY). All covariates considered in this 
analysis were previously linked to BMI.9–12,14,27 We constructed a 
directed acyclic graph (Figure S2; http://links.lww.com/EE/A186) 
to select the minimal set of covariates and additionally considered 
those variables associated with both OC exposure and BMI mea-
sures (P value < 0.1) which were shown to modify the OC-BMI 
coefficient estimates by more than 10% when excluded from the 
fully adjusted model. All main analyses were adjusted for mater-
nal age at birth (years), maternal education (≤9 years, 9–≤12 
years, or >12 years of schooling), parity (nulliparous or multip-
arous), and maternal BMI before pregnancy (kg/m2), child sex 
(referent: male), and child’s age at clinical follow-up visit (years). 
Of 282 children with available OC concentrations and anthro-
pometric measures, 279 also had complete data for secondary 
covariates and were included in the main analysis (Figure 1).

Statistical methods
We calculated the distribution of individual OC concentrations 
and their correlations by using Pearson’s coefficients. We then 
performed three statistical analyses to evaluate the relationship 
between OC exposures and both BMI measures (BMI and BMI 
z-score) at age 4 years and their yearly change across 4–12 years 
of age: (1) LMR evaluated individual exposure-outcome associ-
ations, (2). BWQSR identified an overall mixture effect and (3).  

BVCKMR modeled nonlinear and nonadditive associations. 
Children’s age was centered at 4 years so that we could capture 
the association between exposure and BMI measures at 4 years 
and over time (between 4 and 12 years). To ease the compari-
sons between analyses, we reported all association estimates for 
a one-quartile increase in OC exposures, and we centered and 
scaled all continuous covariates. A summary of the advantages 
and limitations of each statistical approach is given in Table 1 
and a detailed methods description is provided in the supple-
mental material; http://links.lww.com/EE/A186. We performed 
analyses using Stata 16, JAGs, and R version 3.6.2.

Sensitivity analyses

(1) We evaluated the robustness of our analyses by excluding 
children with outcome outliers. This exclusion left us with 
276 mother–child pairs for the analyses on BMI and with 278 
mother–child pairs for BMI z-score analyses. (2) To account for 
the OCs’ lipid affinity, we adjusted our analyses for maternal 
cholesterol and triglycerides, both measured during pregnancy. 
Prenatal lipid levels were available for 252 mothers. (3) To 
examine whether associations remain robust between the two 
sexes and due to the well-documented sex differences in body 
fat composition and metabolic hormone response, we stratified 
the main analysis by child sex in the LMR and BWQSR models.

Results

Description of the study population

Population characteristics and OC concentrations are in 
Tables 2 and 3 and Table S1; http://links.lww.com/EE/A186 and 

Figure 1.  Overview of exclusion criteria in the Rhea study.
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Table S2; http://links.lww.com/EE/A186. Pearson’s correlation 
coefficients of maternal serum OC levels showed moderate 
(0.37 between DDE and PCB-156) to high correlation among 
chemicals (0.96 between PCB-180 and PCB-170) (Figure S3; 
http://links.lww.com/EE/A186).

Association between prenatal OCs and BMI

Linear mixed-effect model regressions for individual 
chemicals

After correcting for multiple comparison testing by using 5% 
false discovery rate (FDR), we found a borderline association 
between prenatal concentrations of DDE and BMI (kg/m2) at 
4 years of age (Figure  2A, Table S3; http://links.lww.com/EE/
A186) and a significant and positive association between a quar-
tile increase in DDE levels and BMI z-score at 4 years (Estimate 
[Est.]:0.14, 95% confidence interval [CI] = 0.05;0.23, q-value = 
0.03) (Figure 2C, Table S3; http://links.lww.com/EE/A186).

In the period between 4 and 12 years of age, the yearly 
change in BMI was positively associated with a quartile increase 
in individual prenatal level of HCB (Est.:0.10, 95% CI = 0.06, 

0.14, q-value < 0.001), PCB-118 (Est.:0.05, 95% CI = 0.02, 0.09, 
q-value = 0.02), and PCB-138 (Est.:0.06, 95% CI = 0.01, 0.10,  
q-value = 0.03) (Figure 2B; Table S3; http://links.lww.com/EE/
A186). HCB findings were also consistent in the association 
with BMI z-score yearly change (Est.:0.02, 95% CI = 0.01, 0.04, 
q-value = 0.004) (Figure 2D, Table S3; http://links.lww.com/EE/
A186).

A few compounds showed significant pairwise interactions 
in their associations with BMI measures at 4 years of age and 
yearly change in BMI after correcting for multiple comparisons. 
All significant interactions included HCB. The HCB-PCB-153 
and HCB-PCB-156 interactions were consistently associated 
with both BMI and BMI z-score at 4 years (Tables S4; http://
links.lww.com/EE/A186 and Tables S5; http://links.lww.com/
EE/A186). Pairwise interactions between HCB and other PCBs 
were only significant in their association with BMI yearly 
change.

BWQS for exposure mixtures

Results from the BWQSR showed that a one-quartile increase in 
the overall OC mixture level was not associated with BMI mea-
sures at age 4 years (Figure 3A–C; Table S6; http://links.lww.
com/EE/A186), but it was associated with a 0.10 kg/m2 BMI 
increase (95% credible interval [CrI]: 0.01, 0.18) and a 0.03 
BMI z-score increase (95% CrI: 0.003, 0.06) every year from 
age 4 to 12 years (Figures 3B–D; Table S6; http://links.lww.com/
EE/A186). The contribution of each OC to the mixture was bal-
anced across all compounds, with weights ranging from 0.18 or 
0.16 (for DDE, respectively for BMI and BMI z-score) to 0.10 
(for PCB-118), in comparison to the prior expected weight of 
0.125 for each compound.

BVCKMR to account for co-exposure and nonadditive, 
nonlinear relationships

BVCKMR findings showed that a one-quartile increase in DDE, 
PCB-118, and PCB-156 levels was associated with higher BMI 
at 4 years of age (Est. [95% CrI]: DDE: 0.33 [0.24, 0.43], PCB-
118: 0.18 [0.00, 0.37], PCB-156: 0.32 [0.02, 0.62]) (Figure 4A, 
Table S7; http://links.lww.com/EE/A186). Results on DDE 
were also consistent in the association with BMI z-score at 4 
years (Est. [95% CrI]: 0.19 [0.15, 0.24] (Figure 4C, Table S7; 
http://links.lww.com/EE/A186). In addition, a quartile increase 
in HCB and PCB-118 levels was positively associated with 
yearly change of BMI measures across 4–12 years of age (HCB: 
BMI: 0.10 [0.07, 0.13]; BMI z-score: 0.03 [0.02, 0.05]; PCB-
118: BMI: 0.08 [0.04, 0.12]; BMI z-score: 0.02 [0.002, 0.04] 
Figures 4B–D, Table S7; http://links.lww.com/EE/A186). A quar-
tile increase in DDE exposure was associated with a decrease 
in yearly change of BMI measures (BMI: −0.03 [−0.05, 0.00]; 

Table 2.

Characteristics of 279 mother-child pairs in the Rhea study

Characteristic n (%) or Mean ± SD

Maternal characteristics
  Maternal age at delivery (y) 30.5 ± 4.4
  Prepregnancy BMI (kg/m2) 24.9 ± 4.9
Maternal level of education
  Low (<6 years) 31 (11.1)
  Middle (6–12 years) 134 (47.9)
  High (>12 years) 114 (41)
Parity
  Nulliparous 122 (43.7)
  Multiparous 157 (56.3)
Smoking during pregnancy
  Nonsmoker 219 (81.7)
  Smoker 49 (18.3)
Cholesterol (mg/dl) 212.5 ± 44.5
Triglycerides (mg/dl) 131.1 ± 52.8
Child characteristics
  Sex
    Boy 154 (55.2)
    Girl 125 (44.8)
  Gestational age (weeks) 38.3 ± 1.5
  Birthweight (g) 3207.3 ± 430.5
  Delivery mode
    Vaginal 134 (48.2)
    C-section 144 (51.8)

BMI indicates body mass index; SD, standard deviation.

Table 1.

Summary of the characteristics of the statistical models used

Model Advantages Limitations Research Question

Linear mixed-effect 
regression (LMR)

Estimates linear associations between 
individual chemicals and the outcome;
easy interpretation and implementation

Does not consider correlationa among 
chemicals, thereby increasing spurious 
findings

What is the association of single chemical 
concentrations with BMI and BMI trajectories?

Bayesian weighted quantile 
sum regression (BWQSR)

Estimates the mixture-outcome 
association and the contribution of each 
chemical to the mixture

Does not consider nonadditive and nonlinear 
relationships

What is the overall association of the chemical mixture 
with BMI and BMI trajectories? Which chemical(s) is 
(are) the driver(s) for those associations?

Bayesian varying coefficient 
kernel machine regressions 
(BVCKMR)

Estimates the association between 
chemicals and the outcome allowing for 
nonadditive and nonlinear relationships

Does not estimate the overall mixture-
outcome association
(while the BKMR for cross-sectional data 
estimates the overall mixture-outcome 
association)

What and how (non-linear and nonadditive) is the 
association of single-chemical concentrations with BMI 
and BMI trajectories, while accounting for the correlation 
with all other compounds?

aMore information in the methods section.

http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
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BMI z-score: −0.02 [−0.03, −0.01]). BVCKMR findings also 
showed a negative association between PCB-138 exposure and 
BMI z-score yearly change (PCB-138:−0.10 [−0.19, −0.01]) 
(Figure 4D, Table S7; http://links.lww.com/EE/A186).

Driven by the significant pairwise interaction terms obtained 
from LMRs, we further evaluated the interactions between HCB 
and all other compounds based on the exposure-response sur-
face estimated by BVCKMR (Figure S4; http://links.lww.com/
EE/A186 and Figures S5; http://links.lww.com/EE/A186). We 

used heatmaps and cross-sectional plots to reduce dimension-
ality and to graphically depict the exposure-response relation-
ship. Results were consistent by BMI and BMI z-score. The 
heatmaps suggested that PCBs (118, 153, 138, 156, 180, and 
170) had nonlinear relationships with BMI measures at 4 years 
and with yearly changes in BMI measures, and HCB interacted 
with other compounds (DDE, PCB-156, PCB-153, and PCB-
180) (Figures S4; http://links.lww.com/EE/A186 and Figures S5; 
http://links.lww.com/EE/A186). HCB concentrations magnified 

Table 3.

Levels of persistent organic pollutants in 2nd trimester maternal serum (n = 279)

Chemical GM (95% CI) (pg/mL) Min Max

Percentile

LOQ (pg/mL) n < LOQ25th 50th 75th

HCB 93.1 (89.8, 96.5) 28.6 703 64.5 87.5 131 10 0
DDE 2210 (2210, 2220) 210 21600 1290 2150 3670 10 0
PCB-118 18.9 (15.5, 22.2) 3.0 78.9 13.7 19.3 27.3 6 4
PCB-153 136 (133, 140) 31.5 620 94.9 138 198 10 0
PCB-138 73.4 (70.0, 76.8) 13.1 282 50.4 73.1 111 6 113
PCB-156 6.5 (2.5, 10.5) 3.0 40.7 3.0 7.0 11.6 10 0
PCB-180 75.5 (72.0, 78.9) 14.3 531 51.6 75.9 113 10 0
PCB-170 37.9 (34.2, 41.5) 5.0 272 26.4 39.1 57.8 10 5

CI indicates confidence interval; DDE, dichlorodiphenyldichloroethylene; GM, geometric mean; HCB, hexachlorobenzene; LOQ, limit of quantification; Max, maximum; Min, minimum; PCB, polychlorinated 
biphenyl congeners (118, 153, 138, 156, 170, and 180).

Figure 2.  Results of the linear mixed-effect regressiona in n = 279 mother-child pairs from the Rhea study. Coefficient estimates and 95% confidence intervals 
(CI) for the relationshipa between a one-quartile increase in the individual exposure to organochlorine compounds (OC) and childhood body mass index (BMI) 
at 4 years (A), yearly change in BMI from 4 to 12 years of age (B), BMI z-score (z-BMI) at 4 years (C) and yearly change in BMI z-score from 4 to 12 years of 
age (D). DDE indicates dichlorodiphenyldichloroethylene; HCB, hexachlorobenzene; PCB, polychlorinated biphenyl congeners (118, 153, 138, 156, 170, and 
180). aAdjusted for maternal age at birth (years), maternal education at recruitment (≤6 years, >6–≤12 years, or >12 years), parity (nulliparous or multiparous), 
and maternal BMI before pregnancy (kg/m2), child sex (M/F), and child age at clinical follow-up visit (years). *Statistically significant after correcting for multiple 
testing (Table S1).

http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
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the associations of DDE, PCB-156, and PCB-153 with BMI 
measures at 4 years and led to the increased yearly change in 
BMI measures, with high levels of DDE, PCB-153, and PCB-
180, holding all other exposures at their median value.

Sensitivity analysis

(1) There was no major departure from the overall conclu-
sions of the primary analysis after excluding suspected outliers 
of BMI (n = 3) or BMI z-score (n = 1). However, in the LMR 
the OC-BMI measures associations at 4 years of age were not 
statistically significant (Figures S6–S8; http://links.lww.com/EE/
A186). (2) After adjusting for lipids, our results were similar 
to those of the main analyses in the LMR and in the BWQSR 
(Figures S9; http://links.lww.com/EE/A186 and Figures S10; 
http://links.lww.com/EE/A186), although we found novel pos-
itive associations between PCB-153 with yearly change in BMI 
measures, using the BVCKMR (Figure S11; http://links.lww.

com/EE/A186). PCB-170 exposure was also associated with 
yearly change in BMI in the BVCKMR model (3) Results on 
sex-stratified analysis showed heterogeneity in the OC-BMI 
and OC-BMI z-score associations between boys and girls. Boys 
showed significant and more exacerbated associations between 
prenatal exposure to OCs and yearly change in BMI and BMI 
z-score than girls. BWQSR results supported a stronger overall 
mixture association with yearly change in BMI measures in boys 
(Est.[95% CrI]: BMI: 0.15 [0.05, 0.26]; BMI z-score: 0.04 [0.00, 
0.07]) than in girls (Est. [95% CrI]: BMI: 0.02 [−0.08, 0.13]; 
BMI z-score: -0.01[−0.04, 0.03]) (Figures S12–S15; http://links.
lww.com/EE/A186).

Discussion
This is the first study to show the relationship between in-utero 
exposure to OCs and childhood BMI measures at 4 years and 
yearly thereafter by using three distinct analytical models which 

Figure 3.  Results of the Bayesian weighted quantile sum regression* in n = 279 mother-child pairs from the Rhea study. Coefficient estimates and 95% credible 
intervals (CrI) for the relationship* between a one-quartile increase in the overall mixture exposure to organochlorine compounds and both childhood body mass 
index (BMI) at 4 years (A), yearly change in BMI from 4 to 12 years of age (B), BMI z-score (z-BMI) at 4 years (C) and yearly change in BMI z-score from 4 to 12 
years of age (D). The weights and 95% CrI identifying the individual contribution of each OC to the mixture are shown in gray. DDE indicates dichlorodiphenyldi-
chloroethylene; HCB, hexachlorobenzene; PCB, polychlorinated biphenyl congeners (118, 153, 138, 156, 170, and 180).DDE indicates dichlorodiphenyldichlo-
roethylene; HCB, hexachlorobenzene; PCB, polychlorinated biphenyl congeners (118, 153, 138, 156, 170, and 180)*Adjusted for maternal age at birth (years), 
maternal education at recruitment (≤6 years, >6–≤12 years, or >12 years), parity (nulliparous or multiparous) and maternal BMI before pregnancy (kg/m2), child 
sex (M/F), and child age at clinical follow-up visit (years).

http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
http://links.lww.com/EE/A186
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can provide strong evidence for robust associations. We found 
that prenatal exposure to OCs was associated with higher BMI 
and BMI z-score at 4 years and with increased yearly change in 
BMI measures between 4 and 12 years of age. All models were 
consistent in showing harmful associations between prenatal OC 
concentration and yearly change in BMI measurements, although 
only the model accommodating nonlinear and nonadditive asso-
ciations consistently captured the potentially harmful role of 
DDE, PCB-118, and PCB-156 on BMI measures at age 4 years.

The linear mixed-effect model regression showed positive asso-
ciations between the individual OCs and yearly change in BMI 
measures, and the BWQSR showed an overall positive associa-
tion between the OC mixture and yearly change in BMI mea-
sures, although there was no difference in relative contribution 
to the mixture among OC compounds with BWQSR. BVCKMR 
confirmed a positive association between both HCB and PCB-118 
levels with yearly change in BMI measures from 4-12 years of age 
and showed a negative association between DDE exposure and 
yearly change in BMI measures and between PCB-138 and BMI 
z-score yearly change. BVCKMR also suggested nonlinear associ-
ations of PCBs with childhood BMI measures, both at 4 years and 
over time, and interactions between HCB and other PCB com-
pounds. Results were consistent across sensitivity analyses.

Although the three approaches are based on models that 
have different assumptions and characteristics, they showed 
remarkably similar results with only a few minor discrepancies. 

The LMR provided the canonical association between indi-
vidual OC exposures and both BMI measures at 4 years and 
their yearly changes across 4–12 years of age. However, that 
approach precludes evaluating potential nonlinear and syner-
gistic associations.36 In addition, the LMR approach could not 
accommodate the presence of multiple correlated OCs, and so a 
multiple testing correction, such as FDR, had to be considered 
to reduce false-positive findings.41 The BWQSR and BVCKMR 
are mixture approaches, and both of them incorporate the cor-
relation structure of OC exposures by modeling them jointly, 
thus minimizing the issue of false positives and standard error 
inflation of the classical linear framework.42,43

The BWQSR suggested associations between OC mixture and 
BMI outcomes, assuming additivity among OCs and a linear 
relationship between OC exposures and outcomes.35 Because of 
these assumptions, BWQSR results were similar to those from 
the linear models. The BWQSR assumed a Dirichlet density dis-
tribution with equal parameters for all OC compounds as prior 
for the weights,35 and for this reason, a strong correlation struc-
ture among OCs might have led to balanced weights. Future 
studies may want to consider a more informative prior for the 
weights and also provide the Bayes factors to formally com-
pare estimated weights with those under the null for all OCs to 
the mixture. A major advantage of BWQSR is that it provides 
an overall mixture-outcome association, thus complementing 
results from the BVCKMR.

Figure 4.  Results of the Bayesian varying coefficient kernel machine regression* in n = 279 mother-child pairs from the Rhea study. Coefficient estimates and 
95% credible intervals (CrI) for the relationship* between a one-quartile increase (from 50th percentile to 75th percentile) in the exposure to a single organochlo-
rine compound and childhood body mass index (BMI) at 4 years (A) and yearly change in BMI from 4 to 12 years of age (B) BMI z-score (z-BMI) at 4 years (C) and 
yearly change in BMI z-score from 4 to 12 years of age (D). DDE indicates dichlorodiphenyldichloroethylene; HCB, hexachlorobenzene; PCB, polychlorinated 
biphenyl congeners (118, 153, 138, 156, 170, and 180)*Adjusted for maternal age at birth (years), maternal education at recruitment (≤6 years, >6–≤12 years, 
or >12 years), parity (nulliparous or multiparous) and maternal BMI before pregnancy (kg/m2), child sex (M/F), and child age at clinical follow-up visit (years)
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BVCKMR, in contrast to the previous models, estimates 
interactions among OCs and nonlinear OC exposure–BMI 
measures associations via quadratic kernel functions. Because 
of these flexible characteristics, this approach estimates more 
parameters, thus requiring more computational time and 
data than previous alternatives, and relies on model form and 
assumptions that can be sensitive to outliers.36 Although this 
approach had very different assumptions from previous models, 
the results were consistent regarding the positive associations 
between both HCB and PCB-118 levels and yearly change in 
BMI measures from 4–12 years of age. It also provided a differ-
ent perspective than the other approaches, suggesting nonlinear 
exposure-response associations with PCBs and synergistic PCB-
HCB relationships. Pairwise interactions in linear models also 
supported the synergistic relationships. BVCMKR and LMR 
also showed some significant results with DDE, PCB-118, and 
PCB-156 with BMI measures at 4 years.

All our findings were consistent with previous literature 
reporting positive associations between in-utero exposure of 
individual OCs and increases in childhood BMI measures. Prior 
studies, also from our group, consistently identified an increase 
in childhood BMI measures associated with an increase in indi-
vidual levels of exposure to HCB, DDE,10,12,14,27,44–46 or PCBs,10,46 
including a previous multiple-pollutant approach.9 Prior results 
showed strong associations between childhood BMI and HCB 
or DDE, and previous analyses have shown nonmonotonic 
associations for those chemicals.10,47,48 Here we confirmed the 
detrimental role of elevated HCB and DDE levels, and we lev-
eraged a kernel machine regression to confirm similar nonlin-
ear chemical-response associations. Prior associations of BMI 
and prenatal exposure to PCBs were inconclusive, and some 
of the studies reported null results,11,46 although others showed 
nonmonotonic associations.10 Based on those findings, many 
authors suggested that the BMI associations with PCBs were 
positively confounded by other OC compounds and potentially 
masked by the strong correlation structure and dose-response 
associations.10,11,27 In contrast, we found nonlinear associations 
between PCBs and childhood BMI measures while accounting 
for their correlation, and interactions among PCBs and HCB.

The putative biological mechanisms that relate intrauterine 
OC exposures to elevated childhood BMI involve the capacity 
of OCs to alter the endocrine system by modulating preadipo-
cyte proliferation,49 which increases in response to exposure 
to OC environmental levels (PCB-153 and DDE). Those asso-
ciations were similar across different types of cells.50 In-vitro 
studies have also shown that exposure of mature adipocytes to 
DDE led to higher levels of leptin, a hormone that regulates the 
cell’s energy balance.51 Results were also consistent with another 
study showing prenatal exposure to both HCB and DDE levels 
and child leptin levels.52

OCs, similar to other endocrine-disrupting chemicals, alter 
thyroid function and metabolism,53 thereby impacting weight 
and its homeostasis.54 HCB, DDE, and PCBs have been shown 
to have estrogenic, antiestrogenic, and antiandrogenic effects.55 
Specifically, HCB has a role as both androgen receptor and 
estrogen-related receptor antagonist,56,57 whereas DDE pro-
motes estrogenic activity at higher levels than in control groups, 
and lower DDE concentrations show antiandrogenic and anti-
progesterogenic activity,56 which mimics the roles of estrogen 
receptor agonists and androgen receptor antagonists. PCB con-
geners show estrogenic, antiestrogenic, and/or antiandrogenic 
effects at very low and high concentrations, thus suggesting that 
PCBs have a nonmonotonic effect.12,55,58,59 Our findings concur 
with a breadth of existing data from in-vivo and in-vitro studies 
that show obesogenic effects of OC exposures. Based on our 
results, future experimental and epidemiologic studies should 
also consider potential OC interactions, especially synergistic 
effects between HCB and other OCs.

Several strengths should be noted in our article. The results 
of the three analytical approaches have different assumptions 

and characteristics, and they suggested similar conclusions. All 
methods captured the positive associations between maternal 
OC exposure and childhood BMI measures. The methods com-
plement each other, providing results from the classical linear 
framework, and results from two mixture-based approaches. 
Previous literature also supported a few discrepancies in the 
findings, suggesting that a combination of methods provides a 
more complete picture of the relationships between prenatal OC 
exposures and childhood BMI measures. To make comparisons 
across methods and to limit the effect of exposure outliers, we 
centered and scaled all continuous covariates, and we reported all 
results as an increment in the quartile of the exposures. We lever-
aged the Rhea study, a well-established prospective cohort with 
prenatal exposure information and longitudinal child anthropo-
metric measures.37 OC levels in the Rhea study were similar to 
or lower than concentrations in other populations. For exam-
ple, exposure to HCB (median, 0.09 μg/L) and DDE (median, 
2.15 μg/L) was lower than the median exposure in previous 
American and European studies (HCB: 0.24 μg/L,10 0.68 μg/L,45  
DDE: 24.59 μg/L,60 1.06 μg/L10). PCB concentrations were also 
lower than reported levels in other studies.10,60 In our sensitiv-
ity analyses, results with lipid adjustment were largely consis-
tent with the main analyses. Results on sex-stratified analysis 
also were consistent with previous findings showing differences 
in the magnitude and sensitivity of the effects of OCs by sex 
because of their differences in the natural androgen–estrogen 
balance during critical windows of fetal development.61 In 
addition, our sex-stratified results were in line with well-docu-
mented sex differences in body fat composition, fat distribution, 
energy homeostasis, and metabolic hormone response, showing 
a stronger association between prenatal exposure to OCs and 
BMI in boys than in girls.61 Larger studies with sufficient power 
to detect interactions and to avoid small data bias should also 
focus on determining sex-stratified associations with BKMR.

In our analyses, we did not consider birthweight. Indeed, 
birthweight can be considered an intermediary because of its 
adverse relationship with prenatal intrauterine exposure to 
OCs.46,62 Owing to missing information about stillbirths and 
miscarriages, we also did not consider any live-birth bias, which 
assumes that children with higher exposure are more likely to 
be born still and with altered birth weight,63 and larger studies 
should investigate the OC role on stillbirths.

Although we hypothesized missing at random in our study, 
the loss to follow-up may bias our results and further studies 
should consider weighting techniques; however, it has been sug-
gested that attrition similar or even larger than that of the Rhea 
study would not impact the qualitative conclusions in terms of 
direction and magnitude.64 Further studies should also assess the 
OC role on other measures of adiposity, such as percent body 
fat and fat mass index, or the contribution of obesity-related 
factors, such as physical activity/sedentary life, and pubertal 
timing, to those associations since we had no longitudinal data 
regarding such factors. In addition, we had no information 
about cumulative OC levels during the prenatal period or OC 
levels in the postnatal period, thus we were not able to rule out 
the influential windows of exposure during early life or whether 
the observed associations for prenatal OC exposure are partially 
owing to correlations with postnatal exposure levels. However, 
prior studies have shown that effect estimates for the associa-
tion between prenatal OC exposures and child weight or BMI 
do not substantially change after adjustment for postnatal OC 
exposure.10,12 Finally, exposure to HCB, DDE, and PCBs was 
lower than levels in other studies,4,5,10,60 therefore, our results 
should be cautiously generalized to other populations with dif-
ferent exposure ranges.

Conclusions
We showed that in-utero exposure to OC concentrations was 
associated with higher BMI measures at 4 years and with steeper 
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yearly changes in BMI measures from 4 to 12 years of age. 
Results were similar across three distinct statistical approaches, 
despite differences in the models’ assumptions and character-
istics. All findings taken together provide a more comprehen-
sive characterization of the associations between prenatal OC 
exposures and childhood BMI measures, suggesting long-term 
consequences for those exposures.
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