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Abstract

As a zoonosis, Plague is also an ecological entity, a complex system of ecological interac-
tions between the pathogen, the hosts, and the spatiotemporal variations of its ecosystems.
Five reservoir system models have been proposed: (i) assemblages of small mammals
with different levels of susceptibility and roles in the maintenance and ampilification of the
cycle; (ii) species-specific chronic infection models; (ii) flea vectors as the true reservoirs;
(iii) Telluric Plague, and (iv) a metapopulation arrangement for species with a discrete spa-
tial organization, following a source-sink dynamic of extinction and recolonization with
naive potential hosts. The diversity of the community that harbors the reservoir system
affects the transmission cycle by predation, competition, and dilution effect. Plague has
notable environmental constraints, depending on altitude (500+ meters), warm and dry cli-
mates, and conditions for high productivity events for expansion of the transmission cycle.
Human impacts are altering Plague dynamics by altering landscape and the faunal compo-
sition of the foci and adjacent areas, usually increasing the presence and number of human
cases and outbreaks. Climatic change is also affecting the range of its occurrence. In the
current transitional state of zoonosis as a whole, Plague is at risk of becoming a public
health problem in poor countries where ecosystem erosion, anthropic invasion of new
areas, and climate change increase the contact of the population with reservoir systems,
giving new urgency for ecologic research that further details its maintenance in the wild, the
spillover events, and how it links to human cases.

Introduction

The world experiences a new epidemiologic transition where the scenario has been profoundly
changed by globalization and anthropic impacts in the biosphere, creating a window for the
emergence and rapid dissemination of new infections and rekindling diseases that were consid-
ered under control [1]. In the specific case of zoonosis, much attention is given to outbreak
dynamics, vector control, and vaccine development, which is most understandably an anthro-
pocentric viewpoint. However, if we want to be able to develop predictive models or build alert
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systems, we must increase focus on zoonoses as ecological entities. This task alone is daunting
because of the huge diversity of aetiological agents, hosts, interactions, and abiotic dynamics.
As most generalizations might be only truisms, we focused our discussion of this topic on
Plague because of its remarkable historical impact on human history that contrasts with its cur-
rent status and understanding. We hope that our analytic framework for Plague could be
applied to other zoonoses that have multiple hosts (e.g., Lyme disease, Leishmaniasis). In the
present paper, we highlight biases in research and surveillance activity, emphasize the main
role of the reservoir system, and stress the need to include anthropic landscape changes into
predictive models. Here, Plague poses both as a problem to be understood and solved and as a
model to comprehend the zoonosis ecology approach.

Plague is a disease caused by Yersinia pestis. It primarily affects rodents, but other mammals
including cats, dogs, rabbits, camels, and humans can be infected [2]. Old World rats conveyed
the bacteria throughout the world with transmission operating through their fleas; with the
spreading of the disease across the globe, diverse sylvatic reservoir systems evolved by an
assembly of hosts with different susceptibilities, assuring permanent bacterial circulation [3].
Little is known about the ecology of sylvatic Plague, because the surveillance efforts focus solely
on collecting data that indicates outbreak risk for public health measures [4]. Furthermore,
studies concentrate on few foci (mostly North American foci, that account for 1.2% of the
recent human cases [5]), with focal approaches, leaving several questions, such as global pat-
terns and restricted spatial occurrence, mostly unanswered. In fact, the ecology (at autoecologi-
cal and/or community level) has not been thoroughly analysed to examine which conditions
favour the maintenance of Y. pestis in sylvatic systems. Whole continents—like South America
—lack proper ecological studies of their foci [6], hindering any analysis on the common mech-
anisms and characteristics that underlie the Plague dynamics worldwide. Issues like its mainte-
nance in time and space (including the quiescence periods), the role of the mammal and flea
faunas in the enzootic/epizootic cycles, and the mechanisms underlying the passage from
maintenance cycles to outbreaks remain poorly understood. The lack of clear environmental
determinants of Plague occurrence suggest that interactions between factors might promote
conditions for the emergence of Plague outbreaks rather than factor themselves. Although sev-
eral reviews on Plague were published in the last decade (e.g., Bevins et al. [7]), little attention
has been paid to the role of the community structure on its ecology, an understudied aspect on
pathogen ecology [8].

A Community Approach: The Reservoir System

Primarily, Plague is a parasitic relationship between bacteria (Y. pestis) and hosts, as well as a
parasitic relation between the vector (fleas) and the hosts. Parasitism is an ecological relation
that involves at least two species (parasite and host), but normally involves an array of host spe-
cies, vectors and species that have direct and indirect links to the host species [8], constituting
one of the most common ecological interactions known and the most common feeding strategy
in nature [9]. Plague is a zoonotic disease, where the host community is known as a reservoir
system (sensu Roche et al. [10]). Plague’s reservoir systems across the foci are mainly composed
of rodents, but with relatives of other mammal taxa participating in the cycle, such as Didelphi-
morphia marsupials [11] and carnivores (canids, felids, mustelids) [7]. Humans configure inci-
dental hosts, as they develop high bacteraemia (septicaemia) very quickly and tend to die
within a very narrow time frame [2].

The role of rodents as Plague reservoirs is fairly well understood, as empirical data show
that they are the organisms most commonly infected and that their fleas are the competent vec-
tors. Yet, this might represent a strong research bias developed since the role of rodents and
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fleas was determined [2], directing efforts towards this taxa pair. Plague has been detected in
groups as diverse as camels (Cetartiodactyla) and humans (Primates), and over 200 mammal
species have had confirmed infection by Y. pestis [7], possibly indicating that the role of reser-
voirs is likely not restricted to rodents and/or that field research neglects a substantial part of
potential reservoir systems, leading to inaccurate conclusions about the sylvatic cycle of
infection.

There are four sylvatic reservoir models proposed for Plague [12,13] (Fig 1). The first
hypothesis comes from the traditional idea of rodent assemblage being the wild reservoir of
Plague, stressing the necessity of an assemblage that is active throughout the year to keep a
steady transmission cycle (hibernation would force the cycle into a halt). The second hypothe-
sis claims species or populations capable of developing a chronic infection—even presenting
granuloma-like lesions infested by Y. pestis—and infect vectors continuously as reservoirs. The
third hypothesis places fleas as a true reservoir system, not just vectors, with empirical data
proving that several species of fleas survive up to 558 days with a complete blockage and no
feeding. Following a period of suspended activity or latency inside burrows, the fleas could
restart their feeding activities and contaminate rodents to rekindle the transmission cycle. The
fourth hypothesis points toward the survival of Y. pestis contaminating soil, parasitizing soil
Protozoa and plant tissues, and/or in nonculturable state.

Yet, a viable (and active) model for the sylvatic maintenance of Plague is overlooked by the
authors: the metapopulation arrangement (Fig 2). It has been detected and characterized in
foci of the western United States [14], Kazakhstan [15,16], and (putatively) Madagascar [5].
Commonly, the species that form “metapopulation reservoirs” are very susceptible and tend to
have high die-off rates [7,14]. The metapopulation arrangement functions as a spatial relation,
where the subpopulations have some degree of isolation from one another, allowing focal out-
breaks, affecting one or a subset of subpopulations. After the population depression or decima-
tion, the adjacent subpopulations would be able to recolonize the “cleared” area [17] (similar to
the source-sink dynamics). The arrangement is evident in areas where the affected species have
a well-delimited area of occupation, forming “burrow cities,” as in the US (where the primary
reservoir species are the prairie dogs, Cynomys spp.) and Kazakhstan (gerbils, Rhombomys
spp.), and allows the maintenance and circulation of Yersinia without the presence of resistant
hosts, probably by the continuous movements between subpopulations [18] with secondary
hosts involved during the quiescence periods, whose population threshold marks the risk of
epizootic events by percolation, as observed by Salkeld et al. [19]. Community composition
and structure can enhance the predictability of enzoosis/epizoosis cycles. Reijniers and col-
leagues [15,16] discuss the paradigm of abundance thresholds. The pathogen installation in a
new environment depends on a minimal host abundance (critical population size), manifested
as timespans of optimal population sizes for invasion and/or outbreak; coupled with a density
threshold for the vector, referring to a minimal abundance of fleas infecting the naive hosts,
and a minimal infestation of positive hosts to efficiently spread the pathogen throughout the
population. The population levels for vector and host species combined define the thresholds,
below which the cycle is interrupted. The models projected by Reijniers et al. [15,16] for the
fociin Central Asia predicted a two-year delay in the response (outbreaks) for population fluc-
tuations, albeit the authors warn that the observed effects are for detectable infection, and
might not fully represent the infection profile per se.

Enzootic hosts are defined as “primary hosts” (i.e., capable of long-term supporting the
pathogen in the wild), the “secondary” and “tertiary” hosts would be the more susceptible ones,
responsible for amplifying and causing the spillover, initiating an outbreak [20]. Empirically,
there is evidence of the participation of wild tertiary and incidental hosts (including carnivores
and ungulates) on the epizootic cycle at local scales, through carrying of infected fleas over a
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Fig 1. The four reservoir models proposed by Poland and Barnes [12], revisited by Gage and Kosoy [13].
From the top down: 1. classical model, 2. chronic infection model, 3. fleas as reservoir, 4. Telluric Plague.
Horizontal axis informs the spatial occurence of the phenomena, starting from a sylvatic landscape to a more
urban/periurban situation, indicating public health risk. The gradient bar indicates the possibility of transition from
an enzootic to an epizootic cycle. Rodent species differentiated by color and pattern, flea species by color alone.
Arrows indicate the interaction between the components of the cycle in given time T (double arrows), or the
progression of each stage of the model. Arrows pointing towards humans indicate human infection in epizootics.

doi:10.1371/journal.pntd.0004949.9001
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Fig 2. The metapopulation model for Plague reservoir systems. Discrete subpopulations are disjoint in space
but maintain contact through movement of individuals. Population size fluctuations are indicated by the white circle
(T1, first assessment) and the gray circle (T2, second assessment), where populations can retract, expand, or
extinguish. Arrows indicate movements of individuals (rodents or fleas) that maintain the subpopulations
interconnected and working as a functional unit. For detailed information on the effects of population fluctuations on
Plague cycles, see Reijniers et al. [15, 16].

doi:10.1371/journal.pntd.0004949.g002

broader area than the rodents alone would be able to cover by their landscape movement [12].
According to Gage and Kosoy [3], the enzootic hosts would be resistant to the infection, having
low obvious mortality rate, surviving and carrying the infection for long periods of time, in
contrast to the epizootic (amplifying) hosts that would have a fast-paced die-off, which consti-
tutes the epizootic event itself. Yet, the authors warn that the separation between enzootic and
epizootic events is often dubious, as both are density-dependent phenomena, and events
regarded as epizootic could be simply cases of higher mortality among enzootic hosts or a
more efficient detection of the natural die-off during the enzootic phase. Such exercise is
important to comprehend the nature of reservoir systems, as in some foci a single species is
held accountable for maintaining the infection, such as Rattus rattus in a Malagasy focus [21]
and Necromys lasiurus (Zygodontomys lasiurus pixuma) in Brazil [22].

If the importance of community structure and composition to the epidemiology of zoonosis
is increasingly acknowledged [23], the taxonomy of species of reservoir systems can often be
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neglected. Although in a substantial part of the world, the small mammal assemblies are com-
posed almost solely by rodents, in Africa and South America there are other small mammal
taxa (Soricomorpha and marsupials, respectively) that have received little to no attention on
Plague community studies although being known as actual and potential reservoirs for other
zoonoses that affect humans [24,25]. This taxonomical bias might result in underestimated res-
ervoir systems and incomplete understanding of the sylvatic cycle. Malek et al. [26] detected
Crocidura russula positive for Y. pestis in Algeria, hinting that Soricomorpha might be involved
in transmission [27]. As several characteristics of the species, such as life history, variance in
susceptibility, and mortality, might play a significant role in plague dynamics, accurate taxo-
nomic identification is of utmost importance. In a recent review of South America, 22 of 50
rodent hosts of Y. pestis underwent taxonomic changes in the last 20 years [28]. Furthermore,
the taxonomic knowledge of the reservoir system affects sampling practices conducted during
studies in foci. Most studies happen within human occupation areas, specific time frames (dur-
ing or after epizootic events) employing methods that enhance the capture of certain taxa or
exclude others [27].

Although works cited conducted surveys in forest fragments, the gross majority of sam-
plings were held on anthropized environments (villages, crop fields, residences), filtering the
assemblage capable of occupying the area [29] and possibly portraying a subset of the real res-
ervoir system. Knowledge on the actual assemblage demands systematic surveys to avoid
biases; and few studies were conducted to achieve this refinement in ecological information.
One remarkable example of such is the Plano Piloto da Peste (PPP, Plague Pilot Plan), a
research project idealized by Marcel Baltazard from Institut Pasteur of Paris, focused on under-
standing the assemblage (emphasizing sylvatic rodents) of a focus in northeastern Brazil, the
roles of each species, and ecological aspects regarding landscape ecology [30]. The Plague Pilot
Plan lasted about a decade and represented the most refined study in Plague ecology and epide-
miology in South America, with valuable contributions to understand the roles of hosts and
vectors (e.g., Karimi et al. [31]).

It is necessary to understand the reservoir systems’ structure, diversity of networks, and eco-
system context of zoonoses to comprehend their dynamics and the human impact on their cur-
rent mechanics [10]. The notion that Plague can affect ecological links between members of the
reservoir system and higher trophic levels mandates a broader picture of the ecosystem rela-
tions between reservoir system and sympatric species [20].

Environment and Plague

A purely zoological approach falls short from understanding any pathogen transmission cycle
throughout time and space. The cycles are ecological interactions between at least two species,
but also include their relationship with other species and their environment, a whole ecosystem
interaction [10]. The transmission cycle has an ecological “niche” of its own, as a sum-of-the-
parts of its agents’ ecological characteristics, and can be analysed through ecological niche
modelling (ENM) [32]; which has already been used to some extent on Plague systems [33],
assessing the relationship of the transmission cycle with landscape and climate features to
which the transmission cycles are strongly linked [34]. Ecosystem approaches evidenced traits
such as the foci being present in altitude varying as much as about 500 m in Brazilian foci, and
1,000+ m in Andean and African foci [6,27], the influence of global climatic phenomena (such
as El Nifio) [35], and the local responses to precipitation variations [33,36,37].

Climatic conditions (precipitation patterns, temperature) play a prominent role in the sea-
sonal fluctuations of Plague and in the outbreak of epizootics. Mild winters and wet climate in
the winter-spring interface correlates with increased human and sylvatic cases with a small lag
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[18,27,37]. Such relation is commonly addressed as an effect of Trophic Cascade [38]. Climate
change plays an important role on the current behaviour of zoonoses, as climate itself is a
prime factor on transmission cycles [34]. Climate change is expanding the range of vector-
borne diseases (Plague included) towards the poles and higher elevations [34], as it makes suit-
able for the vectors (and in some cases, the hosts) areas that were too cold and/or dry for their
survival and establishment, as it is already noticed in California (US) [39].

Plague is associated with human occupation and following landscape management, as occu-
pying former natural habitats is the main way humans get in contact with wildlife diseases [8].
Anthropic landscape alterations usually come as fragmentation, increasing ecotone area and
enhancing chances of contact with hosts and vectors of zoonotic pathogens [40]. Plague is
more present in rural and/or suburban occupations lacking sanitary infrastructure and low
socioeconomic status [38]. Small mammals are attracted to the anthropized areas by available
resources (i.e., crops, rubbish) and possible burrow sites, carrying fleas and bacteria, and creat-
ing almost direct contact with the sylvatic transmission cycle [41]. The anthropized landscape
filters diversity, enhancing risk of transmission if the species that manage to thrive in the
altered landscape comprise good enzootic reservoirs and good amplifier hosts [8]. Impover-
ished diversity enhances contact rates between vectors and competent hosts, increasing
chances of transmission, a reverse dilution effect [10]. Conditioning animal movement and dis-
persal, topography and landscape structure help with understanding the spatial dispersal of
Plague, especially for metapopulation. Landscape heterogeneity offers areas with different qual-
ities, acting as pathways or barriers, dictating probable directions and contact rates between
subpopulations, especially in cases where hosts form spatially structured distribution (colo-
nies), like prairie dogs and gerbils [17]. Plague has negative association with structures like riv-
ers, canals, and roads that interrupt possible movement of hosts, vectors, and/or predators
(which can carry fleas or contaminated carcasses) [5]. Human movements across space also
play an important role on Plague dynamics, inadvertently carrying rodents and fleas with their
cargo and/or transport patients in contagious phase and disseminate infection [38].

Future Insights and Perspectives

Although we summarize what is known for Plague in population and spatial and community
ecology, fieldwork specifically designed to assess that aspect is essential to provide answers.
Three issues need to be studied with real world data and models. It is important to find out to
what extent other taxonomical groups have a participation in the cycles; Moore et al. [27] is the
first assessment of its kind and concurs with our view that other groups of small mammals inti-
mately linked with rodents—occupiers of the same areas, potentially share parasites and preda-
tors, and captured with the same techniques used for rodents—have direct participation in
maintaining and/or amplifying Plague in nature. There is great necessity to study Plague out of
human occupation spectre, as we consider that different assemblages found in preserved habi-
tat patches might have different roles in its maintenance, possibly answering questions such as
maintenance during quiescence periods. There is the need of looking deeper into the ecological
relations that surround and affect Plague systems, such as predation and competition, and how
they can affect the role of the species involved.

For abiotic variables, the ideal analysis should encompass all landscape and climate features,
as they are responsible for driving the ecological relations in an area, creating a comprehensive
picture that could not be assessed by purely biological approaches. Yet, such analysis is far
from possible because of the amount of variables that need to be added to the equation,
restricted data available to support the analysis, and especially the refinement and resolution of
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data. Plague foci have a strong geographical delimitation, while some of the environmental
data available, such as climate models, work in a larger resolution, rendering imprecision to the
analysis (e.g., Moore et al. [18]). Despite Plague being far from under control in Africa, it could
be one of the “rekindled” infectious diseases, depending on the outcome of increased global
connectivity, ecosystem erosion, and biodiversity loss in its cycle.

Conclusion

Plague is a complex ecological entity, so far not understandable with a single model; its diver-
sity of reservoir models and transmission cycles makes difficult the task of creating a satisfac-
tory general model to fit the plurality observed. Despite the possible resultant bias of detectable
infection versus actual infection rates, we believe that community size modelling is a valuable
tool to understand the role of the host assemblage as a whole, the individual contribution of
each species on the spatial and temporal dynamics of the infection, and demands testing in a
broader diversity of Plague systems. The study bias that neglected the understanding of native
rodents in the maintenance of sylvatic Plague is already identified as a concerning issue [13].
The need for studies encompassing the relationships between populations and landscape, as
well as community interactions, are the best way possible to achieve fuller comprehension of
the nature of cycles.

Key Learning Points

o Plague could be considered an ecological entity characterized primarily by the interac-
tion between host, vectors, and spatiotemporal and environmental variables.

« Environmental impacts and landscape management practices foster contact between
humans and Y. pestis and can increase public health risks.

« Plague presents changes in its behavior and distribution with climate change.
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