
RESEARCH PAPER

B cell intrinsic expression of IFNλ receptor suppresses the acute humoral
immune response to experimental blood-stage malaria
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ABSTRACT
Antibodies play a critical protective role in the host response to blood-stage malaria infection. The
role of cytokines in shaping the antibody response to blood-stage malaria is unclear. Interferon
lambda (IFNλ), a type III interferon, is a cytokine produced early during blood-stage malaria
infection that has an unknown physiological role during malaria infection. We demonstrate that
B cell-intrinsic IFNλ signals suppress the acute antibody response, acute plasmablast response,
and impede acute parasite clearance during a primary blood-stage malaria infection. Our findings
demonstrate a previously unappreciated role for B cell intrinsic IFNλ-signaling in the initiation of
the humoral immune response in the host response to experimental malaria.
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Introduction

Malaria has the highest incidence, prevalence, morbid-
ity, and mortality of any human parasitic infection [1].
Plasmodium-specific antibodies protect against clinical
disease but are short-lived after natural infection, sug-
gesting a defect in the memory phase of the humoral
response [2–7]. During primary infection, the first anti-
bodies to appear in plasma are generated by short-lived
effector B cells (“plasmablasts”) [8]. In contrast, the
memory phase of the humoral response is primarily
driven by B cells that can be generated in a germinal
center (GC) and survive to become either memory
B cells or long-lived plasma cells [9–12]. In experimen-
tal systems, individual B cell clones with identical B cell
receptors (BCR) can both enter into the memory com-
partment or form plasmablasts early after activation
[11,13,14], suggesting that environmental cues extrinsic
to the cell are a potential determinant for B cell fate
decisions. Insight into the early factors that shape early
B cell responses is important for understanding the
basis for the poor humoral memory observed after
blood-stage malaria infection, a critical obstacle for
the development of an effective vaccine.

The cytokine environment where a naive B cell
encounters its cognate antigen is important for the
initial B cell response [15,16]. Interferons (IFNs) are
among the first cytokines produced by the innate

immune system in response to infection [17], are abun-
dant during early blood-stage malaria [18], and are
therefore logical candidates to influence early
Plasmodium-specific B cell fate decisions. There are
three families of IFNs: Type I (IFN⍺/β), Type II
(IFNγ) and Type III IFN (IFNλ). Despite substantial
overlap in the gene programs induced by all IFNs, IFN
signaling occurs via three distinct family-specific recep-
tors, and each IFN family can have different effects on
the B cell response depending on the context of the
immune stimulus [19]. For example, Type I IFN signals
in B cells are critical for lymphocyte retention inside
lymph nodes [20], development of alloantibodies to
exogenous antigens on erythrocytes [21], and initiation
of the humoral response during influenza infection
[22]. In contrast, blocking Type I IFN signals has
been demonstrated to improve humoral function in
the context of chronic LCMV infection [23]. For blood-
stage malaria infection, our group and others have
determined that Type I IFN signals enhance parasite
clearance [24–27] whereas other groups have had dif-
ferent results [28,29]. Similar to Type I IFN, Type II
IFN can also have different effects on the humoral
response depending on the biological context. In both
human and murine Plasmodium infection, excess IFNγ
signaling has been linked to poorly functional “atypi-
cal” memory B cells and reduced antibody formation
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[30–32]. Additionally, decreased IFNγ signaling is asso-
ciated with fewer GCs and reduced antibody output in
response to either alloantigens or autoantigens [33–35].

In comparison to Type I and Type II IFN, much less
is known about how IFNλ (Type III IFN) influences
in vivo humoral responses. IFNλ plays a critical in host
protection against rotavirus infection in enterocytes
and is important for limiting influenza replication in
the respiratory epithelia, suggesting a critical role at
barrier interfaces [36–38] . The role of IFNλ likely
extends beyond the direct effects at mucosal surfaces,
however, and likely has important implications for the
humoral response. B cells express IFNλ receptor mRNA
[39], IFNλ activates B cells in vitro [17,39], and exo-
genous IFNλ reduces antibody secretion during stimu-
lation with influenza antigens [40]. The magnitude of
long-term antibody titers following acute LCMV infec-
tion was not affected by IFNλ signals, however, but the
role of IFNλ for the acute antibody response is
unknown [41]. While IFNλ is one of the top five
differentially regulated cytokines in the blood of
patients with febrile malaria (as compared to non-
febrile malaria) [18], the consequences of IFNλ signals
for the host response to blood-stage malaria have not
been previously investigated.

Understanding the interplay between IFNλ, blood-
stage malaria, and the B cell response is important
because polymorphisms in the human IFNλ locus are
associated with the immune response to both infections
and vaccinations. Strong evolutionary pressure is
thought to have caused the striking regional segregation
in the population genetics of IFNλ and genetic varia-
tion in the IFNλ locus largely explains the poor
response to immunotherapy treatment for hepatitis
C in patients of African descent [42–44]. While there
is consensus that alleles more common in African
populations are associated with lower expression of
IFNλ, the evolutionary pressures driving this variation
are unclear [40,45–47].

IFNλ signals via a specific receptor, the IFNλR which
is formed when the the IFNλR1 subunit combines with
the beta subunit of the IL-10 receptor to form
a functional heterodimer [48]. Mice with a targeted
ablation of the IFNλR1 (Ifnlr1−/-) are therefore incap-
able of responding to IFNλ in a manner similar to mice
with targeted disruption of all IFNλ cytokines (Ifnl2−/-/
Ifnl3−/-) [37,49]. To explore the potential role that IFNλ
plays in the humoral response to blood-stage malaria
infection, we infected Ifnlr1−/- mice with Plasmodium
yoelii as model non-lethal blood-stage malaria infec-
tion. We observed that the absence of IFNλ signaling
decreased parasite burden, increased early antibody
titers, and increased the number of malaria-specific

plasmablasts. Furthermore, these responses depended
upon B cell-intrinsic expression of IFNλR in vivo. Our
data clearly show that IFNλ signals have strong influ-
ence on the acute B cell response during blood-stage
malaria infection.

Results

Genetic deletion of IFNλ receptor reduces parasite
burden during initial blood-stage malaria infection

The biological role of IFNλ produced in response to
Plasmodium infection is unknown. Whereas transcrip-
tion of IFNλ mRNA increases substantially during
acute stage blood-stage malaria infection [18], chronic
malaria infection is associated with lower levels of
plasma IFNλ [50]. We therefore sought to assess the
biological role of IFNλ during blood-stage malaria
infection in vivo. To test the effects of IFNλ on the
outcome of blood-stage malaria, we infected mice with
a global deficit in IFNλ signaling (Ifnlr1−/- mice) [51]
with Plasmodium yoelli 17XNL, a non-lethal murine
model of malaria. Given that both genetic background
[52] and differences in microbiome [53] influence the
course of murine malaria infection, all experiments
were performed using sex-matched littermate controls
born from Ifnlr1± by Ifnlr1± heterozygote pairings in
order to minimize confounding variables. Using flow
cytometry to measure the percentage of erythrocytes
containing parasites (parasitemia) [24], we determined
that parasitemia was strongly decreased in Ifnlr1−/-

starting at day 10 post-infection when compared to
littermate controls (Figure 1). Because control animals
do not experience mortality or weight loss in this model
[24], no differences were observed with respect to these
clinical variables (data not shown). From these data, we
concluded that genetic deletion of IFNλ signaling is
associated with a substantial decrease in parasite bur-
den during primary blood-stage malaria infection.

Genetic deletion of the IFNλ receptor increases
plasmablast formation and acute malaria-specific
antibody production

The timing of reduction in parasite burden we observed
(starting 10 days after infection) suggested a difference
in the adaptive immune response. In the P. yoelii
17XNL model, T-and-B cell deficient mice (RAG−/-

mice) first develop higher parasitemia compared to
WT controls starting around days 8–10 post infection
[54–56]; in contrast, control of parasite replication dri-
ven by the innate system appears earlier
(approximately day 5) [54–56]. Antibodies are
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absolutely required for both parasite clearance and
protection against reinfection in the P. yoelli 17XNL
model [57]. We therefore hypothesized that differences
in the humoral response driven by the lack of IFNλ
signals could explain the observed difference in parasite
control. To test this hypothesis, we measured antibody
titers against a truncated carboxy terminus of the
blood-stage antigen merozoite surface protein (MSP1)
shown to be critical for infection by ELISA [24]. We
decided to measure specifically the IgG2 c because the
IgG2 c antibody appears early in plasma and can confer
protection in murine models of blood-stage malaria
[58–60]. Furthermore, we decided to measure acute
antibody titers immediately prior to divergence of para-
site burden between Ifnlr1−/- mice and littermate con-
trols, given that variations in inoculum and ongoing
inflammation can have dramatic effects on antibody
titers during infection with malaria [24] and other
pathogens [61–63]. Titers of anti-MSP1 IgG2 c and
IgM were increased at day 7 post-infection in Ifnlr1−/-

mice vs. littermate controls (Figure 2A). From these
data, we concluded that Ifnlr1−/- mice had higher levels
of antibody isotypes associated with protection when
compared to littermate controls just prior to the diver-
gence in parasite burden, demonstrating that antibody
level did not reflect differences in antigen exposure.

Next, we determined whether there were differ-
ences in the B cell response that could potentially
explain the difference in observed plasma antibody
titers. The acute antibody response to infection is
initiated with a subset of short-lived antibody secret-
ing B cells called plasmablasts [15,64]. These cells are
defined by surface expression of CD138+ (syndecan-
1), and provide minimal contributions to the memory
pool due to rapid cell death from apoptosis [8].
During a primary immune response, antibodies gen-
erated by plasmablasts are capable of directly neutra-
lizing some infections [65]. As we had observed
differences in plasma titers of antibodies in Ifnlr1−/-

mice vs. littermate controls, we hypothesized that
there would be differences in the early malaria-
specific plasmablast response. To test this hypothesis,
we utilized previously described B cell tetramers in
combination with conventional flow cytometry [24].
Magnetic bead enrichment of B cells capable of bind-
ing a tetramer that incorporates the carboxy terminus
of MSP1, enables the enumeration and characteriza-
tion of the MSP1-specific B cells responding to infec-
tion without ex vivo manipulation [24,58]. We
determined that the observed differences in antibody
titers on day 7 post-infection were reflected in the
number of MSP-specific plasmablasts, as Ifnlr1−/-

Figure 1. Absence of interferon lambda leads to improved parasite control during blood-stage malaria infection.
Age-and-sex matched Ifnlr1−/- mice and littermate controls (born from heterozygote pairings) were infected with 1 × 106 P. yoelii 17XNL
infected erythrocytes and the level of parasites were measured daily. Statistical analysis was performed using a Student’s t test for each day,
with an asterisk indicating p <.05. Curves from representative of three separate experiments are shown. Error bars represent the standard
deviation.
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Figure 2. Absence of interferon lambda leads to increased antibody titers and increased plasmablast numbers.
A. Quantification of MSP1 IgG2 c and IgM by ELISA on day seven post-infection in Ifnlr1−/- mice and littermate controls. Data represent
eleven biological replicates (individual mice) pooled from four separate experiments. Statistical analysis was performed using the unpaired
Student’s t test, * = <.05. Error bars represent the standard deviation.B. Representative flow plots demonstrating gating scheme to identify
MSP-specific B cells in the spleen and lymph nodes seven days post-infection with 1 × 106 P. yoelii 17XNL infected erythrocytes from Ifnlr1−/-

mice and littermate controls. Cells were gated on singlets, thy1.2 negative. Data shown are a combination of two separate experiments with
seven biological replicates (individual mice). Statistical analysis was performed using an unpaired Student’s t test, with an asterisk indicating
p <.05.
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mice had increased numbers and percentages of MSP-
specific plasmablasts (Figure 2B). We also observed
that the differences in plasma IgG2 c was also reflected
in increased numbers and percentages of IgG nega-
tive/IgG2 c negative MSP-specific plasmablasts. From
these data, we concluded IFNλ signaling suppresses
the acute humoral response to blood-stage
Plasmodium infection.

Genetic deletion of IFNλ receptor shifts CD4 + T cell
differentiation toward an effector phenotype

Because CD4 + T cells are known to play a critical role in
both the activation of B cell responses during a blood-
stage Plasmodium infection [66,67], we hypothesized that
IFNλ could also influence the CD4 + T cell response.
IFNλ has been demonstrated to modulate CD4+ T cell
differentiation in both Ifnlr1−/- mice [41] and humans
given exogenous IFNλ[68]. To assess the role of IFNλ
on the development and differentiation of CD4+ T cells,

we used a transgenic P. yoelii 17XNL strain that stably
expresses the LCMV epitope GP66+ [24]. This parasite
allows for quantitation and phenotypic assessment of
antigen-specific CD4+ T cell cells via flow cytometric
analysis of CD4+ T cells that bind the fluorescently-
conjugated GP66 I:Ab tetramer [69]. Although the total
number of GP66+ CD4+ T cells were similar in Ifnlr1−/-

mice and littermate controls on day 7 post-infection, there
were substantial differences in the cellular phenotype of
the antigen-specific CD4+ T cell response. Specifically,
Ifnlr1−/- mice had a greater number and percentage of
antigen-specific T effector (Teff) (defined as GP66+,
CD44+, CXCR5low) [70] and fewer CD4+ T follicular
helper (Tfh) cells (defined as GP66+, CD44+,
CXCR5high) when compared to littermate controls
(Figure 3). From these data, we concluded that the
absence of IFNλ signals skews the CD4 + T cell response
toward an effector response during the initial phase of the
immune response to blood-stage Plasmodium infection
prior to divergence in parasite burden.

Figure 3. Absence of interferon lambda leads to increased CD4+ T effector cells.
Representative flow plots demonstrating identification of GP66 I:A

b CD4+ T cells in spleen and lymph nodes on indicated days after infection
in Ifnlr1−/- mice and littermate controls. Cells were gated on singlets, CD11b/CD11 c/B220-, CD4+, GP66+ lymphocytes. CD4+ T cell
populations were defined on the basis of CXCR5 and PD1 staining as shown in the flow cytometry gating scheme. Data shown are
a combination of two separate experiments with six biological replicates (individual mice). Statistical analysis was performed using an
unpaired Student’s t test, with an asterisk indicating p <.05. Error bars represent the standard deviation.
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Absence of cell-intrinsic IFNλ signals favors
plasmablast formation but does not affect CD4 + T
cell differentiation

We had observed differences in the cellular differentia-
tion of both CD4 + T cells and B cells, so we decided to
investigate which effects, if any, were a result of direct
IFNλ signals. Both direct and indirect cellular effects on
lymphocytes could be plausible. IFNλ has been shown
indirectly mediate the differences in CD4+ T cell
response [41,71]. B cells are directly responsive to
IFNλ in vitro [72]. Additionally, in vivo interactions
between CD4+ T cells and B cells can also affect the
differentiation of each cell type, suggesting that either
B cells (or CD4+ T cells) could be driving the effector
phenotype [15].

We hypothesized that the effects of IFNλ for B cell
differentiation were due to B cell intrinsic signals
because IFNλ suppresses B cell proliferation and anti-
body secretion in vitro in PBMCs [40]. To test this
hypothesis, we utilized a congenically-labeled mixed
bone marrow chimera system in which cell intrinsic
effects can be examined in the same mice. Lethally
irradiated CD45.1/CD45.2 mice were reconstituted
with bone marrow from both WT CD45.1 and
Ifnlr1−/- CD45.2 mice. The resulting experimental sys-
tem allowins for testing whether the effects of IFNλ are
intrinsic to any hematopoietic cell of interest.
Additionally, the system normalizes the cytokine envir-
onment, antigen load, host background, and cellular
interactions. After allowing the mixed bone marrow
chimera mice to reconstitute, we infected mice with
non-lethal transgenic P. yoelii 17XNL GP66 as before.
We assessed the antigen-specific CD4+ T cell and B cell
responses on day seven post-infection. We observed
that the Ifnlr1−/- (CD45.2) B cells formed isotype-
switched MSP1-specific plasmablasts at a higher fre-
quency than WT (CD45.1) cells (Figure 4A). When
plasmablasts were gated out from the total B cell popu-
lation, no differences were observed in the formation of
isotype-switched memory B cells or germinal center
precursors (data not shown). We observed no effects
on CD4+ T cell differentiation. From these data, we
concluded that IFNλ signals acting directly upon B cells
were responsible for the difference in plasmablast for-
mation in response to blood-stage malaria infection.
Consistent with other infectious models [41,71], we
observed no differences in the antigen-specific
CD4 + T cell response between WT (CD45.1) and
Ifnlr1−/- (CD45.2) cells (Figure 4B), demonstrating the
shift toward an effector response we observed in the
CD4 + T cells of Ifnlr1−/- mice was due to indirect (cell-
extrinsic) effects.

IFNλ−mediated control of parasitemia and
plasmablasts is due to B cell-intrinsic signals

Since we observed that absence of B cell-intrinsic IFNλ
signaling increased plasmablast formation, we hypothe-
sized these effects were also responsible for mediating
the improved control of parasite burden in Ifnlr1−/-

mice. However, CD4+ T cells have also been demon-
strated to directly mediate protection against blood-
stage Plasmodium [73]. To test whether the absence of
IFNλ signals on B cells was directly responsible for
improved parasite control, we generated a mouse that
conditionally lacked IFNL1 R in the B cell compart-
ment. Transgenic mice that express Cre under the
B cell – specific MB1 promoter were crossed with
mice with a floxed IFNλ receptor allele (MB1-cre x -
Ifnlrfl/fl) [74,75]. The resulting offspring therefore lack
expression of the IFNλ receptor in the B cell compart-
ment [75]. To test whether B cell-restricted IFNλ sig-
naling recapitulated the results we see in the chimeric
setting and were responsible for parasite control, we
infected MB1-cre Ifnlr1fl/fl mice with P. yoelli 17XL
GP66 and measured daily parasitemia. Similar to our
observations in mice with a global deficit in the IFNλ
receptor, we observed improved control of parasitemia
starting at day 10 in MB1-cre Ifnlr1fl/fl mice when
compared to littermate controls that lack the cre allele
(Ifnlr1fl/fl) (Figure 5A). When we assessed the MSP1-
specific B cell response, we again determined that there
were increased plasmablasts (Figure 5B) in cre-
sufficient mice as compared to littermates who lack
the cre-allele. Similar to Ifnlr1-/- mice, MB1-cre fnlr1-
fl/fl mice had increased titers when compared to litter-
mate controls. As expected, we observed no effects on
the CD4 + T cell response (data not shown). These data
indicate that IFNλ signals on B cells control parasite
burden; moreover, consistent with the data from mixed
bone-marrow chimeras (see Figure 4), the observed
increased formation of plasmablasts was due to B-cell
intrinsic IFNλ signals. We would note, however, that
the parasite burden in the control Ifnlr1fl/fl mice was
higher (~50% peak) than the burden in the original
C57BL6/J-background control mice (Ifnlr1+/+) at peak
(~20%), suggesting potential differences in experimen-
tal conditions or host genetic background.

Discussion

Using a murine model of blood-stage malaria infection,
we have determined that the absence of IFNλ improves
early parasite control via direct effects on B cells. Our
findings that IFNλ signals impede parasite clearance
during non-lethal blood-stage infection with P. yoelii
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Figure 4. Interferon lambda signals suppress plasmablast formation in a B cell-intrinsic fashion.
A. Mixed bone marrow Chimeras were prepared by lethally irradiating congenically marked CD45.1/CD45.2 mice and reconstituting bone
marrow with 2.5 × 106 of the respective cell types from Ifnlr1−/- mice and CD45.1 mice. Mice were allowed to reconstitute at least eight
weeks prior to infection. Representative flow cytometry gating scheme for identification of congenically marked, antigen-specific B cells
on day seven post infection. Cells were gated on singlets. Plots representative of four mice from two separate experiments are shown.
Statistical analysis was performed using the paired Student’s t test.
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are reminiscent of the role of anti-inflammatory cyto-
kines such as IL-10, as mice with disrupted IL-10 sig-
naling have reduced parasite burdens during non-lethal
blood-stage malaria infection [76]. Our findings that
removal of IFNλ improves acute parasite control are
consistent with its physiological role in other systems,
as IFNλ has been shown to directly suppress neutro-
phil-mediated inflammation in models of drug induced
colitis [77] and thrombosis [78]. The inferred “suppres-
sive” effect during non-lethal blood-stage malaria
(where removal improves the acute host response) is
interesting given that the functional receptor for IFN-λ
shares a common subunit with the IL-10 receptor [48]
and the IL-10 family has been described as the proto-
typical anti-inflammatory cytokine [79].

Our findings that the in vivo effects of IFNλ signals
repress plasmablast formation add to the understanding
of the biological role of this cytokine during the

humoral response to systemic pathogens. Previous
in vitro investigations have reached differing conclu-
sions regarding the biological effects of IFNλ signaling
for B cells. Exogenous administration of IFNλ reduced
both proliferation and activation of B cells during sti-
mulation with influenza antigens [40] whereas in vitro
administration of IFNλ in conjunction with TLR7 ago-
nists enhanced Ab secretion and proliferation [39]. The
discrepancies between whether IFNλ stimulates or sup-
presses the B cell effector functions are similar to the
discrepancies of the biological role of both Type I and
Type II IFN. We suspect that, like other IFNs, the
in vivo role of IFNλ depends on the immune context.
In general, our observation that IFNλ-deficient B cells
form plasmablasts at a higher rate during blood-stage
malaria infection are more in keeping with an “sup-
pressive” role of IFNλ. While we did not formally assess
proliferation, plasmablasts undergo rapid proliferation
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A. Ifnlr1 fl/fl and MB1cre x Ifnlr1 fl/fl were infected with 1 × 106 P. yoelii 17XNL infected erythrocytes and curves representative of two separate
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and are strongly associated with inflammatory disor-
ders such as systemic lupus erythematosus [80]. An
alternative, non-exclusive explanation could be that
IFNλ induces plasmablast-specific cell death as was
recently demonstrated in intestinal cells [81]. The
exact mechanism by which IFNλ signals reduce the
number of plasmablasts should remain an active area
of investigation.

IFNλ signals appears to influence the CD4+ T cell
response during blood-stage malaria in an indirect
fashion. There is no consensus as to whether T cells
can respond to IFNλ directly, as some groups have
reported direct effects of exogenous IFNλ for
CD4 + T cells (typically on ex vivo human T cells)
[82,83] whereas other groups using both human or
murine systems have not found direct effects
[41,71,84,85]. Our mixed bone marrow chimera
experiments demonstrate that the shift toward an
effector response in Ifnlr1−/- mice during blood-stage
infection is not mediated by direct IFNλ signals on
CD4 + T cells, in keeping with observations using
similar approaches [41,71]. Furthermore, our experi-
ments in MB1-cre Ifnlr1fl/fl mice demonstrate that the
CD4+ T cell effector bias we observed is not mediated
by IFNλ signals on B cell. The cell type responsible
for IFNλ-mediated alterations in the CD4+ T cell
response during blood-stage malaria infection should
be a focus of further investigations. Because conflict-
ing evidence exists regarding the role of CD8 + T cells
during experimental acute blood stage malaria [86–
91], we did not investigate the role of the CD8 + T
cell population in our model. As other groups have
reported increased numbers of CD8+ T cells in
Ifnlr1−/- mice during the acute response to LCMV,
[41], there could be a potential role for alterations
in the CD8+ T cell population in Ifnlr1−/- mice.
Potential effects of IFNλ on the CD8+ T cell popula-
tion should remain an active area of investigation for
future studies. Similar to CD4+ T cells, CD8+ T cells
do not respond directly to IFNλ signals, suggesting
that any potential role would be indirect [41,71].

Our findings also add to the body of literature sug-
gesting that the biological role of IFNλ is distinct from
other IFNs. Forero et al. recently demonstrated that
Type III IFNs preferentially elicit genetic programs
associated with tissue repair when compared to Type
I IFNs [92] Additionally, Ifnlr1−/- mice had different
alterations in the immune response during intransal
vaccination with attenuated influenza compared when
compared Type I IFN receptor-deficient (IFNAR1−/-)
mice [93,94].

Our findings demonstrating that IFNλ suppresses
the acute B cell response to blood-stage malaria suggest

that the biological role of IFNλ extends beyond the
barrier interface. Our findings have potential implica-
tions for antibody-mediated autoimmune diseases
where plasmablasts are thought to contribute to disease
pathogenesis such as SLE or rheumatoid arthritis.
Additionally, our findings suggest that IFNλ can mod-
ulate the acute humoral response. The effects of B-cell
intrinsic IFNλ for the memory response should be an
active area of future investigation.

Materials and methods

Study approval

All experiments involving animals were performed in
accordance with the University of Washington
Institutional Animal Care and Use Committee
guidelines.

Mice

Male 6-to-8 week old C57BL/6 J, SJL 45.1, and MB1cre/cre

mice were purchased from Jackson ImmunoResearch
Laboratories and maintained under specific-pathogen
free conditions per the University of Washington
Guidelines. Ifnlr1−/- and Ifnlr1fl/fl mice were provided as
a kind gift by Michael Gale Jr. Ifnlr1−/- mice were bred
from heterozygotes pairings with genotyping as pre-
viously described [41]. All experiments were performed
in accordance with University of Washington
Institutional Care and Use Committee guidelines.

Mixed bone marrow chimeras

Mixed bone marrow chimeras were generated as pre-
viously described [70]. Bone marrow cells were depleted
of T and NK cells and C57BL/6 J SJL.1 (CD45.1) and
Ifnlr1−/- cells were counted and mixed in equal propor-
tions with 2.5 million cells of each type. Recipient mice
were lethally irradiated with 1000 rads, and bone marrow
was reconstituted via retroorbital injection of marrow
cells. Mice were allowed to reconstitute at least eight
weeks prior to infection. Representative flow cytometry
gating scheme for identification of congenically marked,
antigen-specific B cells on day seven post infection. Plots
representative of four mice from two separate experi-
ments are shown. Statistical analysis was performed
using the paired Student’s t test.

Experimental murine malaria infection

P. yoelii 17XNL GP66 and P. yoelii 17XL were main-
tained by passage through donor mice with no more
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than 3 inoculations prior to recirculation through mos-
quitoes. Infections were induced by intraperitoneal
injection of 106 infected erythrocytes from donor mice
with parasitemia of 1–5%. The transgenic parasite sta-
bly expressing the GP66 epitope was generated as pre-
viously described [24].

Tetramer production

Biotinylated I-Ab LCMV GP 66–77 DIYKGVYQFKSV
monomers were obtained from the NIH tetramer core
and tetramerized with SA-APC as previously described
[95]. For antigen-specific B cell experiments, a 14 kDA
truncated carboxy terminus of PyMSP1 was cloned,
purified, biotinylated, and tetramerized with streptavi-
din-PE (Prozyme) [12,96]. Decoy reagent to detect
B cells specific for tetramer components was con-
structed as previously described [58,97].

Cell enrichment, flow cytometry, and antibodies

Single cell suspensions of spleen and cervical, mediast-
inal, axillary, brachial, pancreatic, renal, mesenteric,
inguinal and lumbar lymph nodes (SLO) were prepared
by mashing through Nitex mesh (amazon.com) and
resuspending in 2% FBS and Fc Block (2.4G2). Cells
were then stained with decoy reagent at a concentration
of 10 nM at room temperature for 15 minutes, followed
by MSP1-PE tetramer for 30 minutes on ice, washed,
and then stained with anti-PE beads prior to a magnetic
enrichment. All bound cells then were stained with
antibodies shown in Supplemental Table 1, detected
on an LSRII Flow Cytometer (BD Biosciences), and
analyzed using Flowjo 9.94 (Treestar).

ELISA-based malaria-specific antibody assay

96 well ELISPOT plates (Millipore) were coated overnight
at 4 C with MSP1+ protein at 1 µg/mL. Plates were then
blocked with 5% dehydrated milk prior to sample incu-
bation. Plates were incubated with serially diluted serum.
Bound antibodies were detected using either IgM Biotin
(Clone II/41) or IgG2 c Biotin (Clone 5.7) followed by
Streptavidin-HRP (BD). Absorbance was measured at
450 nm using an iMark Microplate Reader (Bio-Rad).

Statistics

When data were parametric, unpaired, two-tailed
Student’s t tests were applied to determine the statistical

significance of the difference between groups with
Prism 6 (Graphpad) software.
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