
RESEARCH PAPER

Construction of a 5-feature gene model by support vector machine for 
classifying osteoporosis samples
Minwei Hua, Ling Zoua, Jiong Lua, Zeyu Yanga, Yinan Chena, Yaozeng Xub, and Changhui Suna

aDepartment of Orthopedics, Ruijin Hospital LuWan Branch, School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 
China; bDepartment of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

ABSTRACT
Osteoporosis is a progressive bone disease in the elderly and lacks an effective classification 
method of patients. This study constructed a gene signature for an accurate prediction and 
classification of osteoporosis patients. Three gene expression datasets of osteoporosis samples 
were acquired from the Gene Expression Omnibus database with pre-set criteria. Differentially 
expressed genes (DEGs) between normal and diseased osteoporosis samples were screened using 
Limma package in R language. Protein–protein interaction (PPI) network was established based on 
interaction data of the DEGs from the Human Protein Reference Database. Classification accuracy 
of the classifier was assessed with sensitivity, specificity and area under curve (AUC) using the 
pROC package in the R. Pathway enrichment analysis was performed on feature genes with 
clusterProfiler. A total of 310 differentially expressed genes between two samples were associated 
with positive regulation of protein secretion and cytokine secretion, neutrophil-mediated immu-
nity, and neutrophil activation. PPI network of DEGs consisted of 12 genes. A SVM classifier based 
on five feature genes was developed to classify osteoporosis samples, showing a higher prediction 
accuracy and AUC for GSE35959, GSE62402, GSE13850, GSE56814, GSE56815 and GSE7429 data-
sets. A SVM classifier with a high accuracy was developed for predicting osteoporosis. The genes 
included may be the potential feature genes in osteoporosis development.  
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Introduction

Human skeletal system is in a process of constant 
renewal and dynamic balance, in which bone forma-
tion and bone resorption play important roles in 
maintaining the stability of the system [1]. 
Osteoporosis is a metabolic bone disease characterized 
by decreased bone content, destruction of bone micro-
structure and increased bone fragility. As a common 
clinical bone disease implicating about 200 million 
patients in the world, osteoporosis occurs when bone 
resorption exceeds bone formation [2]. According to 
the World Health Organization (WHO), the total 
number of osteoporosis patients in the world will 
reach 221 million by 2050. In China, osteoporosis is 

also one of the most frequently occurred diseases with 
an increasing incidence each year.

In recent years, machine learning methods have 
been increasingly applied to predict complex biologi-
cal events. As a supervised machine-learning techni-
que, support vector machine (SVM) is widely used in 
classification and pattern recognition. The SVM algo-
rithm performs classification by establishing 
a multidimensional hyperplane that optimally distin-
guishes two classes through maximizing the margin 
between the two data clusters. The algorithm uses 
a special nonlinear function-kernel function to con-
vert the input space into a multi-dimensional space, 
thereby obtaining a high discriminant ability [3]. 
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SVM have also been used in medical applications [4– 
6]. SVM training algorithm builds a model to predict 
whether a new case falls into one of the categories by 
giving a set of training cases, and each training case is 
marked as belonging to one of two categories.

In this study, SVM was employed to classify osteo-
porosis and normal samples. Three data sets were 
used to construct and verify the prediction accuracy 
of the SVM classifier. The function and pathway 
information of the identified SVM classification fea-
ture genes was analyzed with a variety of bioinfor-
matics methods to identify novel biomarkers.

Materials and methods

Data collection and processing

The newest clinical follow-up data and RNA-seq 
data of osteoporosis cases were downloaded from 
Gene Expression Omnibus (GEO) to obtain gene 
expression profiles in the GSE56116, GSE62402, 
GSE35959, GSE13850, GSE56814, GSE56815 and 
GSE7429. GSE35959 dataset served as the training 
set, and GSE62402, GSE13850, GSE56814, 
GSE56815 and GSE7429 datasets served as valida-
tion datasets. For the chip data, probes were matched 
to genes, and those matched to multiple genes were 
removed, whereas multiple probes matching to the 

median of a gene was kept to acquire the gene 
expression profile. The sample data are all presented 
in Table 1. The workflow is presented in Figure 1.

Analysis of differentially expressed genes (DEGs)

Limma package was used to perform DEG analysis. 
Genes conforming to an adjusted p value of less than 
0.05 and an absolute of fold change greater than 2 
were defined as DEGs.

Figure 1. Work flow chart.

Table 1. Sample information of datasets.
Data set Expression Platforms

GSE56116
Normal 3 GPL4133
Osteoporosis 10
GSE62402
High BMD 5 GPL5175
Low BMD 5
GSE35959
Normal 9 GPL570
Osteoporosis 5
GSE13850
High BMD 20 GPL96
Low BMD 20
GSE56814
High BMD 42 GPL5175
Low BMD 31
GSE56815
High BMD 40 GPL96
Low BMD 40
GSE7429
High BMD 10 GPL96
Low BMD 10
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Functional enrichment analysis

Genes with expression changes were annotated into 
Cellular Component (CC), Molecular Function 
(MF), and Biological Process (BP) of Gene 
Ontology (GO) and into Kyoto Encyclopedia of 
Genes and Genomes (KEGG) using the R software 
packages clusterProfiler (v 3.14.0) [7].

Construction of PPI network for DEGs

We examined molecular interactions of the DEGs. 
A PPI network with mutant genes was generate 
using STRING database online (https://string-db. 
org/). The confidence score was set to 0.7 as the 
cutoff criteria, excluding disconnected nodes were 
hidden. Next, the interaction data in tsv format 
was downloaded to modify the PPI network in 
Degree, MNC, Closeness and MCC algorithms of 
Plug-in cytoHubba for Cytoscape (Version: 3.7.2) 
software in JAVA platform.

Support vector machines (SVM) model

SVM, which is a supervised machine learning classi-
fication algorithm, determines sample type through 
estimating the degree of a sample belonging to 
a certain class [8]. For the GSE35959 training set, 
a SVM classifier was constructed based on the hub 
gene set using SVM method with the R package 
e1071 [9]. The performance of the SVM classifier 
was separately evaluated in the training set and 2 
validation sets (GSE62402 and GSE7158).

Results

A total of 310 differentially expressed genes 
between two samples were found to be associated 
with positive regulation of protein secretion and 
cytokine secretion, neutrophil-mediated immu-
nity, and neutrophil activation. PPI network of 
DEGs consisted of 12 genes. A SVM classifier 
based on 5 feature genes was developed to classify 
different osteoporosis samples, showing a higher 
prediction accuracy and AUC for GSE35959, 
GSE62402, GSE13850, GSE56814, GSE56815 and 
GSE7429 datasets.

Screening and functional analysis of DGEs

The DEGs between Normal and GSE56116 geno-
types were calculated using the Limma package. 
The analytical results showed that there were 310 
DEGs (111 down-regulated genes and 199 up- 
regulated genes) (Figure 2(a,b)).

Next, the biological function of DEGs was 
further analyzed with conducting GO and KEGG 
analysis. For biological process (BP) of GO analy-
sis, the targeted genes were noticeably enriched to 
positive regulation of cytokine and protein secre-
tion, neutrophil activation and neutrophil 
mediated immunity (Figure 3(a)). For the cellular 
component (CC), there were 47 pathways 
obviously enriched to these genes (Figure 3(b)). 
For molecular function (MF), genes were found 
to be closely related to phospholipid binding and 
DNA binding pathways (Figure 3(c)). Moreover, 
KEGG analysis showed that the DEGs were 

Figure 2. Screening of differentially expressed genes. (a) Volcano plot of differentially expressed genes in dataset GSE56116; (b) Heat 
map of differentially expressed genes.
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enriched to essential pathways associated with 
osteoporosis progression, including B-cell receptor 
signaling pathway, hematopoietic cell lineage, 
osteoclast differentiation, and viral protein inter-
action with cytokine and cytokine receptor 
(Figure 3(d)).

Protein–protein interaction analysis

Protein–protein interaction (PPI) network analysis 
on a total of 310 DEGs was performed using 
STRING. According to Cytoscape 3.7.2 and its 
plug-in, 12 out of the 310 target genes were filtered 
by the target genes PPI network complex 
(MCODE1(MCODE.csv)) (Figure 4).

Furthermore, KEGG pathway analysis and GO 
functional enrichment analysis were conducted on 
12 genes of MCODE1 module using R software 
package clusterProfiler (V 3.14.0). For BP of GO 
analysis, the targeted genes were found to be 
highly enriched to neutrophil-mediated immunity, 
neutrophil activation involved in immune 

response, positive regulation of leukocyte differen-
tiation, regulation of lymphocyte differentiation 
(Figure 5(a)). For the CC, there were 24 pathways 
obviously enriched to these genes (Figure 5(b)). 
For the MF, there were 33 pathways noticeably 
enriched to these genes (Figure 5(c)). For KEGG 
analysis, the DEGs were enriched to essential path-
ways, such as chemokine signaling pathway, B-cell 
receptor signaling pathway, osteoclast differentia-
tion (Figure 5(d)).

Identification of hub genes

The degree, MNC, Closeness, and MCC algo-
rithms of cytoHubba plug-ins for Cytoscape 3.7.2 
software were applied to calculate and construct 
PPI networks based on 310 DEGs (Figure 6). 
Then, the genes obtained by these four algorithms 
were intersected, and we obtained five genes, 
which were CCR1, CD33, HCK, LILRB2 and 
CYBB (Figure 7). These five genes were regarded 
as final hub genes.

Figure 3. Functional enrichment of differentially expressed genes. (a) BP annotation of differentially expressed genes; (b) CC 
annotation of differentially expressed genes; (c) MF annotation of differentially expressed genes; (d) KEGG annotation of differentially 
expressed genes.

6824 M. HU ET AL.



Figure 4. PPI analysis of the gene of the functional module.

Figure 5. Functional enrichment of functional module genes. (a) BP annotation of functional module genes; (b) CC annotation of 
functional module genes; (c) MF annotation of functional module genes; (d) KEGG annotation of functional module genes.
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Development and verification of the diagnostic 
model

Five hub genes from GSE35959 training data set 
were used to develop an expression spectrum and 
a SVM classification model. We found that the 
sample classification accuracy of the training data 
set was 100%, and that the sensitivity and specificity 
of the model were 100%, with an area under ROC 
curve (AUC) of 1 (Figure 8(a)). In the GSE62402 
data set, similarly, all the 10 samples were correctly 
classified, showing a 100% classification sensitivity, 
specificity, accuracy of the model, with an area 
under ROC curve of 1 (Figure 8(b)). GSE13850 
data set was used for verification, 35 of the 40 
samples were correctly classified, the classification 
accuracy was as high as 87.5%, the model sensitivity 
was 80%, the specificity was 95%, and the area 
under the ROC curve was 0.875 (Figure 8(c)). In 

GSE56814 dataset, 66 out of 73 samples were cor-
rectly classified, the classification accuracy was as 
high as 94.5%, the model sensitivity was 87%, the 
specificity was 100%, and the area under the ROC 
curve was 0.935 (Figure 8(d)). In GSE56815 dataset, 
75 of the 80 samples were correctly classified, the 
classification accuracy was as high as 93.8%, the 
sensitivity of the model was 97.5%, the specificity 
was 90%, and the area under the ROC curve was 
0.938 (Figure 8(e)). In GSE7429 verification dataset, 
and 20 out of 20 samples were correctly classified, 
the classification accuracy was as high as 100%, the 
sensitivity and specificity of the model were 100%, 
and the area under the ROC curve was 1 (Figure 8 
(f)). These results indicated that the SVM classifica-
tion model could accurately distinguish osteoporo-
sis samples from normal samples; moreover, these 
five genes were reliable biomarkers for the diagnosis 
of osteoporosis.

Figure 6. Identification of Hub genes. (a) PPI network diagram of hub genes obtained by Closeness algorithm. (b) PPI network 
diagram of hub genes obtained by MCC algorithm. (c) PPI network diagram of hub genes obtained by MNC algorithm. (d) PPI 
network of hub genes obtained by Degree algorithm.
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Discussion

Compared with traditional machine learning algo-
rithms, SVM algorithm could greatly simplify com-
putational complexity, as it applies a nonlinear 
mapping of the inner product kernel function to 
a high-dimensional space, and this is more suitable 
for classification using high-dimensional data but 
with few training queues in the selection of all 
available functions [8]. Studies demonstrated that 
using only one biomarker will undoubtedly reduce 
the accuracy of predicting disease prognosis [10– 
12]. Also, the generalization ability of SVM and 
advanced algorithm of artificial intelligence (AI) is 
better than neural networks in classifying small 
samples and is less prone to overfitting when 

Figure 7. Venn diagram of hub genes identification.

Figure 8. Development and verification of the model. (a) The classification result and ROC curve of the GSE35959 dataset sample by 
the diagnostic model; (b) The classification result and ROC curve of the GSE62402 dataset sample by the diagnostic model. (c) The 
classification result and ROC curve of the GSE13850 dataset sample by the diagnostic model; (d) The classification result and ROC 
curve of the GSE56814 dataset sample by the diagnostic model; € The classification result and ROC curve of the GSE56815 dataset 
sample by the diagnostic model; (f) The classification result and ROC curve of the GSE7429 dataset sample by the diagnostic model.
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combined with penalty terms. Considering the lim-
ited research samples, we applied SVM rather than 
deep learning for model development [13].

Most of the previous studies focused on the 
study of a single gene in Osteoporosis, such as 
Circular RNA Circ_0005564, or Circular RNA 
circ_0000020 promotes osteogenic differentiation 
via ceRNA mechanism [14,15]. At present, 
multi-gene combined diagnosis is also one of 
the research hotspots. After performing inte-
grated microarray analysis, we screened 310 
DEGs between osteoporosis patients and normal 
controls. Furthermore, gene biomarkers for 
osteoporosis were determined by Cytohubba, 
a plug-in for Cytoscape (Version: 3.7.2) software. 
A 5-gene combination (CCR1, CD33, HCK, 
LILRB2 and CYBB) was established as an opti-
mal and effective biomarker for osteoporosis 
using SVM with feature selection and classifica-
tion procedures. Moreover, the 5-gene classifica-
tion model was 100% accurate in distinguishing 
normal patients from osteoporosis, showing 
100% specificity and 90% sensitivity in three 
datasets.

Among the five genes, CCR1 is a major recep-
tor for CCL3 (MIP-1α), which is a pro- 
inflammatory cytokine that stimulate osteoclasts 
activity and induces osteoclastogenesis [16–18]. 
To the best of our knowledge, the association 
between osteoporosis and the other four genes 
(CD33, HCK, LILRB2 and CYBB) was the first 
described in this study. CD33 is associated with 
a number of diseases, including acute leukemia 
and acute promyelocytic leukemia. Upon bind-
ing of ligands such as C1q or sulfonylated gly-
coproteins, two immunoreceptor tyrosine-based 
inhibitory motifs (ITIM) located in cytoplasmic 
tail of CD33 are phosphorylated by Src-like 
kinases such as LCK [19,20]. HCK is a member 
of the Src family of tyrosine kinases, and it 
mediates the degranulation and activation of 
NADPH oxidase during phagocytosis, mobiliza-
tion of secretory lysosomes, resulting in 
a respiratory burst [21–24]. As a member of 
the leukocyte immunoglobulin-like receptor 
(LIR) family, LILRB2 could recognize HLA-G 
in complex with B2M/β-2 microglobulin and 
ninhydrin self-peptide (peptide-bound HLA- 
G-B2M), subsequently triggering the 

differentiation of myeloid suppressor cells and 
type 1 regulatory T cells. Both of the two could 
help actively sustain maternal-fetal tolerance 
[25–27]. Under the mutations in CYBB, 
NADPH oxidase could not assemble or function 
normally, and phagocytes will not be able to 
produce reactive oxygen species to kill foreign 
invaders, thereby leading to the dysregulation of 
neutrophil activity [28–31]. However, further 
research should be conducted to further explore 
the roles of those genes in osteoporosis.

Conclusions

In summary, five genes significantly associated with 
osteoporosis were identified in this study, providing 
new understanding of the molecular mechanism of 
osteoporosis. These five genes were potential bio-
markers for osteoporosis. But a lack of biological 
validation with a larger sample size was considered 
to be a limitation of this research. Future studies 
should also verify the diagnostic performance of the 
current gene model before clinical use.

Research highlights

● A protein interaction network was developed 
with bioinformatics for osteoporosis.

● CCR1, CD33, HCK, LILRB2, and CYBB were 
key genes in osteoporosis.

● A 5-gene diagnostic model was validated by 
support vector mechanism.

Availability of data and materials

The data that support the findings of this study are openly 
available in GSE35959 [https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE35959], GSE62402 [https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi], GSE13850 [https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi], GSE56814 [https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi], GSE56815 [https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi], and GSE7429 [https://www. 
ncbi.nlm.nih.gov/geo/query/acc.cgi] datasets.
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