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Abstract: A representative number of decalin and hydrindane derivatives 2a–l were prepared in
11–91% yield by means of a cascade reaction of cyclohexanone/cyclopentanone enolates and methyl
acrylate through a Michael–Michael ring closure (MIMIRC) process. The relative stereochemistry
of the four stereogenic centers formed in all products was determined by analyzing the vicinal
coupling constants from the 1H NMR and X-ray crystallography. Such a stereochemical outcome was
corroborated by conformational analysis supported by DFT calculations and simulating the 1H NMR
spectra of representative products. All products showed the same relative stereochemistry at C-1
and C-8a, while at C-3 and bridgehead carbon C-4a, configurational changes were observed. The
present results provide some insights about the scope and limitations of the triple cascade reaction
between cycloalkanone enolates with methyl acrylate. This synthetic protocol is still a simple and very
practical alternative to generate decalin and hydrindane derivatives with great structural diversity.

Keywords: decalin/hydrindane derivatives; double Michael addition; methyl acrylate; cycloalkanone
enolates; stereochemical outcome

1. Introduction

Decalins and hydrindane frameworks are structural motifs present in a large number
of natural polycyclic compounds produced by a wide diversity of plants and microorgan-
isms [1,2]. The synthesis of decalin derivatives has been a research topic that dates back
several years due to their diverse and significant biological properties, such as their antifun-
gal [3], antibacterial [4], anticancer [5,6] and immunosuppressive [7] activities. Among the
wide variety of synthetic strategies developed to prepare them [8], Robinson annulation [8],
inter-/intramolecular Diels–Alder cycloadditions [9] and Michael or Aldol reactions [10,11]
continue to be widely used due to their simplicity and effectiveness. In fact, the latter
synthetic approach could be considered as a practical synthetic alternative due to the
availability of a wide variety of cyclic and acyclic enolates and conjugated vinylic systems
capable of providing a rich structural variety of decalin derivatives. Figure 1 shows the
representative approach for the synthesis of decalin derivatives through the addition of
enolates over conjugated vinylic systems used as starting material.

In particular, it appears that the preparation of decalin derivatives by Michael–Michael
ring closure (MIMIRC) double addition [10,11] has partially been overlooked due to the
large number of novel synthetic alternatives that were developed for the same purpose
in the last 20 years [12–16]. However, since the pioneering work of Posner and col-
leagues [10,11], the synthetic value of this protocol due to its high convergence, atom
economy and simplicity of the reaction conditions has been demonstrated, thus remaining
as a competitive alternative to produce decalins with a rich assortment of functional groups.
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Figure 1. General approach for the synthesis of decalin derivatives via Michael’s double addition of
cycloalkanone enolates over conjugated vinylic systems.

While exploring this protocol in our research group by reacting cycloalkanone lithium
enolates with methyl acrylate, it was observed that the stereochemistry of products at
C-3 and C-4a demonstrates a lack of consistency, giving rise to a mixture of up to four
possible diastereomeric products. Contrary to this, the relative stereochemistry at C-1 and
C-8a is uniformly maintained as cis. This behavior was also systematically observed in the
literature [17–20]. It should be noted that C-4a defines the cis or trans fusion of the newly
formed cycle; however, discerning between these geometries is often not so trivial in some
cases. Accordingly, we sought to prepare a representative series of decalin and hydrindane
derivatives to analyze the relative stereochemistry at C-3 and C-4a of the main isolated
products. The present structural analysis was mainly performed by suggesting transition
states explaining the substituent effects on the stereochemistry of the products, as well as
simulating the 1H NMR spectra of some representative compounds. These results could be
useful to support future MIMIRC synthetic protocols.

2. Results and Discussion
2.1. Preparation of Decalin and Hydrindane Derivatives

A set of cyclohexanones with structural diversity was selected for the first ten assays
(Table 1). Entry 1 shows the reaction of lithium enolate of cyclohexanone with methyl
acrylate in anhydrous THF at −78 ◦C under nitrogen atmosphere. After column chro-
matography of the crude reaction, the presence of a decalin derivative was revealed, which
in turn was fully characterized as trans-decalin 2a (vide infra). Under similar reaction
conditions, the respective lithium enolates of substituted (1b–d, 1f, 1j; Table 1, entries 2–4,
6 and 10) and conjugated (1e, 1h and 1i; Table 1, entries 5, 8 and 9) cyclohexanones were
also condensed with methyl acrylate, affording the corresponding decalin derivatives in a
range of 11–77% yield after column chromatography.

Some structural features of the obtained products can be mentioned. It can be observed
that decalins 2a and 2b have the same stereochemistry at C-1, C-3, C-4a and C-8a. In
contrast, a particular structural feature of decalins 2c–e and 2g–i is the β stereochemistry
at C-3, which allowed the formation of a lactone ring between the methylester at C-3 and
the hydroxyl group attached to C-8a. It is worth noting that despite a 3:1 diastereomeric
mixture of trans- and cis-2,6-dimethylcyclohexanone 1d, respectively, being used (Table 1,
entry 3), decalin 2d bearing both methyl groups in a cis relationship was isolated as a major
product. It can also be observed that a C-2 epimeric mixture of menthone 1g was used, thus
affording a complex mixture of at least three lactonized decalins 2g (Table 1, entry 7), as
is shown in its respective 1H NMR spectrum (See Supplementary Materials). Besides the
inherent lack of a OMe signal in the 1H NMR spectrum of lactones, differentiation between
non-lactonized and lactonized decalins can also be performed according to the 13C NMR
chemical shifts (δ) of C-8a: δ~67–75 for non-lactonized (2a, 2b, 2e, 2f, 2j) and δ~80–85 for
lactonized (2c, 2e and 2g–i) decalins. This fact can be useful to differentiate a lactone from a
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carboxylic acid derivative, as occurred in decalin 2e, which likely was lactonized and later
opened during its purification through silica gel column chromatography. In this sense,
C8a in this decalin appears at δ 66.9, clearly belonging to a non-lactonized decalin.

Table 1. Structures of decalin and hydrindane derivatives obtained in higher yields among 8 possible
diastereoisomers that could be generated by the MIMIRC reaction between cycloalkanone enolates
and methyl acrylate.

Entry a Ketone Product Yield (%) b Entry a Ketone Product Yield (%) b

1
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Crystals suitable for X-ray diffraction analysis were obtained for lactonized decalins
2c and 2d and for perhydrophenantrene derivative 2j (Figure 2). Lactones revealed two
interesting structural features: (a) all substituents have a β relationship around the bicyclic
system, and (b) they can differ in the stereochemistry of the bridgehead carbon at C-4a
position; while 2c is a trans-decalin, 2d is a cis-decalin.
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hydrogen atoms are drawn at 30% probability.

The above examples represent clear evidence of the great structural diversity that
can be obtained through this synthetic protocol just by using different cycloalkanones. In
addition, esters (or lactone), ketal (2f) and double bonds (2e, 2h and 2i) present in products
should allow us to further functionalize them to increase their structural assortment. It is
noteworthy that chiral naturally occurring ketones as well as polycyclic ketones should lead
to optically active products or polycyclic structures in just one-pot procedure, respectively,
which could be harder to achieve by other synthetic methods. Such is the case of pulegone
1h and carvone 1i, which led to chiral decalins 2h and 2i, respectively, and bicyclic ketone 1j
afforded the perhydrophenantrene derivative 2j. The structural diversification of acrylates
should provide a greater richness of functional groups around the bicyclic structures.

On the other hand, the reaction of cyclopentanone enolates 1k and 1l (Table 1, entries 11
and 12) with methyl acrylate afforded cis-hydrindanes 2k (75%) and 2l (91%), respectively.
As can be observed, a similar stereochemical outcome was obtained as compared with
some decalins: a cis relationship at C-1 and C-7a (C8a for decalins), as well as α (2l) or β
(2k) stereochemistry at C-3.

2.2. A Theoretical Structural Analysis

As can be observed, decalin 2a possesses four stereogenic centers. This means that this
reaction should give rise to up to eight NMR-distinguishable diastereoisomers (Figure 2);
however, 2a was obtained as the major one (43%). After analyzing its 1H NMR spectrum
(see Supplementary Materials), it was found that its relative stereochemistry at C-1, C-3,
C-4a and C-8a is β, α, α and β, respectively, as was obtained by the scalar couplings of
H-1/H-2ax, H-2eq (JH-1,H-2ax = 13.0, JH-1/H-2eq = 4.0 Hz), H-2ax,H-2eq/ H-3 (JH-3,H-2ax = 5.0,
JH-3/H-2eq = 2.1 Hz) and H-3/H-4ax,H-4eq (JH-3,H-4ax = 5.0, JH-3/H-4eq = 2.0 Hz). In contrast
with this finding, different diastereomers have been described [17,20] as the major product
for the same MIMIRC reaction under similar conditions (Figure 3). It can be observed
that the stereochemical outcome is consistent at C-1 and C-8a, while configurations at C-3
and C-4a change in a seemingly random event. Therefore, these stereochemical changes
are responsible for producing a mixture of two to four possible diastereoisomers, and this
could be one of the reasons why the MIMIRC reaction has a range of low to medium overall
chemical yields for the major product.

According to the above, it was considered useful to know the relative stability of the
eight possible decalin diastereoisomers obtained by reacting cyclohexanone enolate and
methyl acrylate (Figure 4). Thus, each diastereomer was subjected to a conformational
search using PC Spartan Pro [21] and Molecular Mechanic Force Field [22]. The resulting
conformers were optimized by using Gaussian 09 program [23] at the HF-631G* level of
theory. Finally, each minimum was submitted to geometry optimization using functional
ωB97X-D [24] along with the 6-31 + G(d,p) basis set. All calculations were performed on
the corresponding lithium alkoxides. Table 2 shows the obtained relative energies (∆G,
kcal/mol) for the four to five most stable conformers for diastereoisomers I–VIII (found for
each diastereomer below 20 kcal/mol), and in Figure 4 the plain structures and geometry
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of the most stable conformers of the eight possible diastereomers can be observed, along
with the relative energy shown in brackets. It should be noted that diastereomer VIII is the
most stable, followed by IV and I, whose structural frameworks belong to compounds 2m,
2a and 2n, respectively, their protonated version.
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Figure 4. Plain and optimized 3D structures of the eight possible diastereomers (I–VIII) obtained by
MIMIRC reaction between cyclohexanone lithium enolate and methyl acrylate. These projections
show the most stable conformer for each diastereomer and its relative energies in brackets. Diastere-
omers 2n (R = Et), 2a and 2m correspond to the protonated version of compounds I, IV and VIII,
respectively. The energy shown for 2n is for the dimethyl ester (R = Me).

Assuming that thermodynamic equilibrium is reached in the formation of the eight di-
astereomeric alkoxides, it would be possible to estimate the ratio in which these compounds
would be obtained from their relative stabilities. Table 3 shows the relative population
(%) for the two most stable conformers of diastereoisomers 2a (20%), 2n (~3%) and 2m
(~77%) obtained from the Boltzmann distribution law at 25 ◦C. As can be seen, the expected
population of decalin 2m (~77%) is close to the experimental yield (79%) previously de-
scribed [15]; however, other experimental results reveal the presence of decalins 2a (43%,
this work) and 2n (36%) [18]. This behavior may be due to subtle variations in reaction
conditions carried out by each research group, which likely influence some step of the
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cascade reaction. Therefore, this theoretical information could be useful to homogenize
criteria about the reaction conditions required to achieve optimized and coincident results.

Table 2. Relative free energies (∆G, kcal/mol, 1 atm, 25 ◦C) a obtained for the 4–5 most stable
conformers of lithium alkoxides I–VIII.

Conformer I b II b III IV V b VI b VII VIII

a 1.85 3.41 18.39 0.91 3.28 3.11 5.68 0.00
b 2.77 4.52 18.48 1.39 4.28 3.87 7.43 0.97
c 9.31 10.00 18.51 9.22 11.38 10.01 11.85 7.51
d 10.89 11.16 19.97 9.42 12.11 10.06 13.23 8.94
e 10.33

a Relative to the most stable conformer of the most stable diastereoisomer (VIII, 2n). b For cis-decalins, only
energies obtained for the most stable conformation of the bicycle are shown.

Table 3. Populations (%) of the most stable geometries for systems I–VIII, obtained from the relative
free energies (∆G, 25 ◦C) and the Boltzmann distribution law.

Geometry ∆G (kcal/mol) Population (%) Diast. Ratio (%) a

VIIIa 0.00 64.1
76.6 (VIII, 2m)VIIIb 0.97 12.5

IVa 0.91 13.9
20.0 (IV, 2a)IVb 1.39 6.1

Ia 1.85 2.8
3.4 (I, 2n)Ib 2.77 0.6

a Obtained for each system as the sum of the contributions of the two most significant conformers.

On the other hand, it is feasible to argue that during the first Michael addition, di-
astereomeric transition states (TSs) with nearby energies can be formed when using cyclo-
hexanone lithium enolate, affording two possible diastereoisomers due to the formation
of the two first stereogenic centers. However, the following stage (consecutive 1,4- and
1,2-addition) of the triple cascade reaction involves a more rigid Zimmerman–Traxler-type
TS [25], which could adopt any of the three chair–chair configurational/conformational
arrangements shown in Figure 5. These three chelated TSs explain the cis relationship
between OH and CO2Me at C-1 as was mentioned above. As can be seen, in the last step
the cis/trans stereochemistry will be determined, in which substituents at ring A (if present)
and at the incipient ring B could influence the stereochemistry of the products. Firstly, it
should be emphasized that the following reasoning applies for non-lactonized decalins and
for those prior to lactonization, where applicable.
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Figure 5. Transition states (TSs) proposed for the MIMIRC reaction between methyl acrylate and
lithium enolate of substituted cycloalkanones. Substituent patterns will determine the stereochemistry
of the obtained products.

Thus, TS-I will preferably conduct trans-decalin 2m when R1 = CO2Me(Et), R2 = R3 =
R4 = R5 = H, and will afford trans-decalin 2a (R2 = CO2Me(Et), R1 = R3 = R4 = R5 = H) in
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lower yield than 2m because in 2a, R2 shows 1,3-diaxial interaction with H-1 and R5 (H-4a,
or alkyl group). In turn, TS-II gives cis-decalin 2n (R1 = CO2Me; R2 = R3 = R4 = R5 = H),
which is obtained in the lowest yield. This reasoning makes sense, and it is supported by
the relative energy of diastereomers VIII, IV and I determined by theoretical calculations
(Figure 3), which should be formed through TS-I (R1 = CO2Me), TS-I (R2 = CO2Me) and
TS-II (R1 = CO2Me), respectively. In other words, it can be assumed that in the absence
of substituents on the cycloalkanone ring (R3–7 = H), trans decalins will be favored over
cis decalins.

The proposed TSs help to visualize the steric effects of substituents at ring A that
can drive the stereochemistry of the obtained products. Firstly, it can be assumed that cy-
cloalkanone bearing an α-substituent (1b, 1d, 1g, 1j and 1l) will produce the kinetic lithium
enolate with LDA, which will react with methyl acrylate, affording decalins/hydrindanes
substituted at C-8/C-7, respectively. In all TSs (Figure 5), such substituents may have β
(R3) or α (R4) orientation when C-8 has an sp3 hybridization; however, the results shown
in Table 1 reveal that β orientation is preferred over α orientation, giving 2b, 2d, 2g (at
least one diastereomer of the three formed), 2j and 2l. Accordingly, TS-I reveals that any
alkyl substituent will prefer β-equatorial orientation (R3) over α-axial orientation (R4), as
the later orientation shows 1,3-axial interactions with H-1, H-4a (R5) and H-6α. It can also
be observed in TS-I that the larger the size of R3, the more important the 1,3-diquatorial
interaction with the CO2Me group at C-1 is. Moreover, if this condition is met, the forma-
tion of a cis-decalin via TS-II or TS-III may be preferred, as described by Jaafar et al. [19].
Although this 1,3-diequatorial interaction may also be present between R4 and the CO2Me
group at C-1 in TS-II, this TS would be less available than TS-I due to the expected higher
stability of a trans-decalin-type TS compared with a cis-decalin-type TS.

Besides substituents at C-8/C-7 (decalin/hydrindane), substituents at C-4a and C-5
would also influence stereochemistry of products by inducing the formation of any of
the TSs proposed. For instance, the formation of cis-decalin precursor of lactone 2d can
be explained through TS-II, since it has the lowest number of 1,3-diaxial interactions
(R3 = R5 = Me, R1 = CO2Me; R2 = R4 = R6 = R7 = H) as compared with TS-I in either of
the diastereomeric combinations R3 = R5 = Me, or R4 = R5 = Me. In turn, an α substituent
(R7 = alkyl) at C-5 is expected to induce the formation of a trans-decalin via TS-I, whereas
if it is at β (R6 = alkyl) it will favor a cis-decalin through ET-II. The latter case explains
formation of decalins 2g and 2h, and the former afford decalin 2i. On the other hand, the
absence of substituents at ring A or the presence of substituents at C-6 or C-7 normally will
afford trans-decalin derivatives, as compounds 2a, as well as 2c and 2f, respectively. In
general, these three TS models reasonably fit the results shown in Table 1.

2.3. A 1H NMR-Based Structural Analysis of Decalin and Hydrindane Derivatives

Finally, to complete the present structural study, we decided to further analyze the
1H NMR parameters of the MIMIRC products since they are often decisive in establishing
the relative stereochemistry of derivatives that did not provide suitable crystals for X-ray
diffraction. It is well known that this goal can be achieved by correlating dihedral angles (φ)
with scalar coupling constants (J) between vicinal protons [26,27]. However, when strong
coupling or signal overlapping occurs, it is a challenge to know the precise values of δ and
J, thus complicating the configurational/conformational analysis. Under this circumstance,
simulating the 1H NMR spectra represents a reliable alternative to knowing the NMR
parameters that helps to reveal the relative stereochemistry of a given molecule [28–30],
as well as to correctly assign its corresponding spectra. Accordingly, in the search to
establish the relative stereochemistry at C-1, C-3, C-4a and C-8a for each product, it was
useful to simulate the 1H NMR spectrum comprising signals of protons of the newly
formed six-membered ring (H-1, H-2αβ, H-3, H-4αβ and H-4a) of a representative number
of derivatives (Figures 6 and 7 and Supplementary Materials). Thus, Figure 6 shows
the experimental and simulated 1H NMR spectra of lactones cis-2h and trans-2i, which
show a particular chemical shift and multiplicity pattern related to the configurational
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relationship of substituents and cis or trans ring fusion. Firstly, the multiplicity of the
downfield isolated signals of H-1 and H-3 provides explicit structural information about
their relative configuration. As expected, in all lactonized decalins, these protons show a
consistent pattern of multiplicity due to the restricted conformational freedom on this part
of the molecule.

On the other hand, the relative cis/trans configuration at C4a-C8a should be carefully
analyzed through scalar coupling constants (J) in fragment CH2-4/H-4a/CH(R)-5. For
instance, trans decalone 2i shows the following dihedral angles (φ) and expected Js: H4α-
H4a (20◦, J = 9.3 Hz), H4β-H4a (138◦, J = 7.6 Hz) and H4a-H5α (171◦, J = 11.5 Hz), whereas
the same NMR parameters for cis decalone 2h are H4α-H4a (238◦, J = 6.6 Hz), H4β-H4a
(345◦, J = 9.8 Hz) and H4a-H5α (175◦, J = 12.1 Hz). A similar analysis for decalins 2a, 2e
and 2d was performed, whose simulated spectra and full expected and simulated NMR
parameters are shown in the Supplementary Materials section. It should be mentioned that
the cis- or trans-stereochemistry around the C8a-C4a bond of decalins 2h, 2i and 2j was
fully supported by nOe difference experiments by selective irradiation of H-1 and/or H-3
on 2h and 2i, as well as H-2 and/or H-4 on 2J (Figures S23 and S27).
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A special emphasis was placed on hydrindanes 2k and 2l, since their simulated
NMR parameters led to different conformations even though they possess the same cis-
stereochemistry at C4a-C7a. In order to support this finding, we sought to determine the
relative stability of cis-hydrindane 2k, considering two possible epimers at C-3, giving a
couple of conformers for each epimer. Figure 7E,F show the structure for each couple of
conformers as well as their relative energy (DFT/PBEPBE/DGDZVP//HF/631G*) [31,32],
where it can be observed that conformer 2k-1eq,3eq possesses the lower energy. The
resulting 1H NMR simulated spectrum (Figure 7B) is consistent with dihedral angles
expected for the above molecular geometry. It should be noted that if there is no substituent
on the 5-membered ring, the preferred product is 2k-1eq,3eq, since the other structures
contain at least one CO2Me group in the axial position. In turn, hydrindane 2l has a Me
group at C-7, and so the resulting pair of conformers for each epimer were considered in
this case. In Figure 7G,H are shown the mentioned coupled of conformers, from which
it can be observed that conformer 2l-1ax,3eq is the most stable. Such geometry is also
consistent with the 1H NMR simulated spectrum shown in Figure 7D. From these results, it
is possible to argue the following: if the CO2Me group at C-3 is α, the 1,3-diaxial interaction
between it and C-5 is destabilizing (2k-1ax,3eq vs. 2k-1eq,3ax); however, if there is an α
alkyl group at C-7 and an α CO2Me group at C-3, the dominant conformer is the one where
the CO2Me group is axial (2l-1eq,3ax(Meα) vs. 2l-1ax,3eq(Meβ)). On the other hand, if the
alkyl group at C-7 is β, the CO2Me group adopts an equatorial position (2l-1eq,3ax(Meβ)
vs. 2l-1ax,3eq(Meβ)). These results are consistent with the transition states proposed
in Figure 5. Furthermore, a nOe difference experiment provided information on the β
stereochemistry of methyl group at C-7, as an enhancement in H-7 was observed after the
selective irradiation of H-1.
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3. Conclusions

The present results provide useful information about the structural features of decalin
and hydrindane derivatives obtained from the Michael–Michael addition of cycloalkanone
enolates on methyl acrylate. This procedure offers a short alternative to reach a variety of
such derivatives with a rich structural diversity due to the wide availability of cycloalka-
none and acrylate derivatives. Although the reaction generates polymerization by-products
and epimeric mixing at C-3 or C-4a, on average, 30–40% of the major products are obtained
among eight possible diastereoisomers, which is equivalent to about 70% yield for each
of the three consecutive reactions occurring in the whole process. As expected, kinetic
enolates were formed when α-monosubstituted cyclohexanones were used (1b and 1g;
Table 1, entries 2 and 7), as was corroborated through their corresponding isolated products
(2b and 2g, respectively). Further, a relative cis stereochemistry at C-1 and C-8a was always
obtained, while epimeric possibilities were observed at C-3 and C-4a. For instance, when
β-stereochemistry of the CO2Me group at C-3 is obtained, this allowed lactonization with
the OH group at C-8a, yielding lactones 2c, 2d, 2g–i, whilst epimers at C-4a give raise to
trans- or cis-decalin/hydrindane derivatives. Simulating the 1H NMR spectra of products,
considering the protons where the new stereogenic centers are generated, helps to deter-
mine the relative stereochemistry of those derivatives that do not provide suitable crystals
for X-ray diffraction.

4. Materials and Methods
4.1. General Information

1H and 13C NMR experiments were performed at 500 and 125 MHz (Varian NMR
System), or at 600 and 150 MHz (Bruker Avance III), respectively, using CDCl3 as the solvent
and TMS as the internal reference. 1H NMR spectra simulations were performed by using
MestReNovaTM software v. 12.0.0 (Mestrelab Research S.L.), and they correlation between
vicinal dihedral angles and 3J1H-1H was calculated by using MestReJ [30] and Altona
programs [29]. High resolution mass spectra (HRMS) were obtained in a Jeol JSMGCMate II
mass spectrometer, using electron impact techniques (70 eV). X-ray data were collected on
an Oxford Diffraction Xcalibur S single-crystal X-ray diffractometer. Optical rotations for
compounds 2h and 2i were acquired with a JASCO P-2000 polarimeter in CH2Cl2 solutions.
TLC analyses were performed on silica gel plates, visualized with UV (254 nm) or were
developed with a spray of phosphomolybdic acid solution. Lithium diisopropylamide
(2.0 M in hexane) was used as purchased (Sigma-Aldrich, Burlington, MA, USA). All
reactions were carried out under nitrogen in anhydrous solvent. All glassware was dried
in an oven prior to use and all commercially available compounds were used without
further purification. Melting points are not corrected. Tetrahydrofuran was distilled from
benzophenone ketyl-sodium indicator under N2 atmosphere prior to use. n-Hexane and
ethyl acetate for chromatographic separations were distilled before use.

4.2. Theoretical Calculations

Geometries of the lithium alkoxide decalins I–VIII were generated with PC Spartan
Pro 1.0.5 [21]. For the cis decalins, the two possible decalin conformations were considered
as independent systems. For each system, a conformational search was carried out using
the conformational search method included in PC Spartan Pro, using the Merck Molecular
Force Field (MMFF) [22]. Duplicates were eliminated and the unique geometries were
optimized with Gaussian 09 [23] at the HF/6-31G* level of theory. The surviving minima
were optimized using theωB97X-D functional [24] combined with the 6-31 + G(d,p) basis
set. All optimizations with Gaussian 09 were carried out using the OPT = TIGHT option.
In addition, DFT calculations were carried out using the INT(GRID = ULTRAFINE) option.
In all cases, vibrational frequencies were calculated at the optimized geometries at the
same level of theory to verify that they corresponded to minima (no imaginary frequencies)
and to obtain free-energy corrections to the electronic energies at 298 K. A similar protocol
was used to perform the conformational analysis of hydrindanes 2k and 2l. Thus, after
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the conformational search performed with PC Spartan Pro (MMFF), conformers under
10 kcal/mol were further optimized at the HF/631G* level of theory with Gaussian 09. Af-
terwards, each conformer was optimized by using DFT level of theory and functional/basis
set PBEPBE [26]/DGDZVP [32].

4.3. General Procedure for the Preparation of Decalin Derivatives 2a–j and Hydrindane 2k,l by
Reacting Cycloalkanone Enolates (1a–k) with Methyl Acrylate

To a cooled solution (−78 ◦C) of the corresponding ketone (1a–k) (1.0 mol equiv) in
THF (5 mL) was added LDA solution 2.0 M in n-hexane (1.1 mol equiv) dropwise. The
mixture was stirred at −78 ◦C for 30 min; then, a solution of methyl acrylate in THF
(1.0 mol equiv) was slowly added. The reaction mixture was kept at −78 ◦C for 1 h and
then warmed up to room temperature. The mixture was quenched after 3–12 h with a
saturated aqueous solution of NH4Cl (10.0 mL) and then was extracted with ethyl acetate
(3 × 25 mL). The combined organic layers were washed with brine, dried over anhydrous
Na2SO4, filtered, and concentrated under vacuum. The resulting residue was purified by
column chromatography over silica gel using n-hexane/EtOAc (9:1) as an eluent, to afford
the corresponding products (2a–l).

4.3.1. Dimethyl 8a-Hydroxydecahydronaphthalene-1,3-Dicarboxylate (2a)

Following the general procedure, a solution of 500 mg (5.0 mmol) of cyclohexanone
1a in anh. THF was treated with 1.43 mg (6.6 mmol) of LDA. To the resulting enolate
was added methyl acrylate (10.59 mmol) to afford 318 mg (47.0%) of 2a as a white solid.
Mp = 32.5–34 ◦C. 1H NMR (600 MHz, CDCl3) δ 3.74 (s, 3H, OMe), 3.73 (s, 3H, OMe), 3.07
(s, 1H, OH), 2.79 (dddd, J = 5.3, 5.0, 2.5, 1.8 Hz, 1H, H-3), 2.62 (dd, J = 12.7, 4.1 Hz, 1H, H-1),
2.20–2.07 (m, 2H, H2ax, H2eq), 1.84 (td, J = 13.0, 5.5 Hz, 1H, H-4ax), 1.72 (m, 1H, H-4ec),
1.76–1.18 (m, 9H, H-4a, H-5ax, H-5eq, H-6ax, H-6eq, H-7ax, H-eq, H-8ax, H-8eq). 13C NMR
(151 MHz, CDCl3) δ 176.8 (C-9), 175.4 (C-11), 68.7 (C-8a), 51.7 (OMe), 51.7 (OMe), 48.54,
40.19, 38.36, 37.24, 29.71, 28.72, 27.94, 26.23, 25.94, 21.37.

4.3.2. Dimethyl 8a-Hydroxy-5-Methyl-8-(Propan-2-Ylidene) Decahydronaphthalene-
1,3-Dicarboxylate (2b)

Following the general procedure, a solution of 100 mg (0.89 mmol) of 2-methylcyclohexanone
1b in anh. THF was treated with 0.19 mg (0.89 mmol) of LDA. To the resulting enolate was
added methyl acrylate (1.78 mmol) to afford 0.105 g (42%) of a diastereomeric mixture of
2b as a yellowish syrup.

Major diastereomer 2b. IR (KBr): 3507.2, 2033.4, 2861.1, 1737.7, 1711.8 cm−1. 1H NMR
(600 MHz, CDCl3) δ 3.64 (s, 3H, OMe), 3.62 (S, 3H, OMe), 2.67 (m, 1H, H-3), 2.52 (dd,
J = 12.8, 4.1 Hz, 1H, H-1), 2.01 (m, 1H, 2α), 1.94 (td, 12.8, 5.0 Hz, 1H, 2β), 1.79 (dt, J = 13.3,
5.4 Hz, H-4β), 1.74-1.10 (m, 8H, H-4a, H-5ax, H-5eq, H-6ax, H-6eq, H-7ax, H-eq, H-8),
0.63 (d, J = 6.7 Hz, 3H, H-13). 13C NMR (151 MHz, CDCl3) δ 174.80 (C-11), 172.81 (C-9),
72.39 (C-8a), 52.02 (OMe), 51.79 (OMe), 45.94, 45.69, 42.13, 41.33, 38.27, 37.42, 31.71, 29.15,
28.53, 28.36, 25.83, 24.73, 16.39 (C-13). HRMS (EI+) calcd for C15H24O5 284.1616. Found
(MH+) 284.1624.

4.3.3. Methyl 7-Methyl-10-Oxooctahydro-2H-4a,2-(Epoxymethano)Naphthalene-4-
CARBOXYLATE (2c)

Following the general procedure, a solution of 100 mg (0.89 mmol) of 3-methylcyclohexanone
1c in anh. THF was treated with 0.19 mg (0.89 mmol) of LDA. To the resulting enolate
was added methyl acrylate (1.78 mmol) to afford 176 mg (77%) of 2c as a white solid.
Mp = 122–123 ◦C. IR (KBr): 3735.7, 522.3, 2929.5, 1731.9, 1715.4, 1436.1 cm−1. 1H NMR
(600 MHz, CDCl3) δ 3.74 (s, 3H, OMe), 3.13 (dd, J = 10.7, 5.7 Hz, 1H, H-1), 2.72 (m, 1H, H-3),
2.12–2.23 (m, 3H, H-2β, H-4β, H-7), 2.07 (ddd, J = 13.4, 10.6, 2.8 Hz, 1H, H-2α), 1.98 (ddd,
J = 14.2, 2.81, 1.5 Hz, 1H, H-8β), 1.87 (dd, J = 14.2, 6.1 Hz, 1H, H-8α), 1.81 (m, 1H, H-4a),
1.72 (dbq, J = 13.8, 4.0 Hz, 1H, H-5α), 1.62 (m, 1H, H-6α), 1.50 (m, 1H, H-6β), 1.35 (qd,
J = 13.1, 4.0, 1H, H-5β), 1.22 (ddd, J = 13.1, 8.6, 1.4 Hz, 1H, H-4α), 1.06 (d, J = 7.6 Hz).13C
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NMR (151 MHz, CDCl3) δ 175.3 (CO2Me), 172.9 (CO2), 82.5 (C-8a), 52.0 (OMe), 41.9 (C-1),
41.4 (C-4a), 37.9 (C-8), 35.3 (C-3), 30.9 (C-6), 30.0 (C-4), 29.9 (C-2), 26.6 (C7), 25.1 (C-5), 20.2
(CH3). HRMS(EI+) calcd for C14H20O4 252.1362. Found (MH+) 252.1358.

4.3.4. Methyl 5,8a-Dimethyl-10-Oxooctahydro-2H-4a,2-(Epoxymethano)Naphthalene-4-
Carboxylate (2d)

Following the general procedure, a solution of 0.3 mL (2.3 mmol) of trans-2,6- dimethyl-
cyclohexanone 1d in anh. THF was treated with 0.5 mg (2.4 mmol) of LDA. To the resulting
enolate was added methyl acrylate (4.7 mmol) to afford 350 mg (52%) of 2d as a colorless
solid. Mp 136–137 ◦C. IR (KBr): 3464.1, 2947.6, 1760.9, 1738.6 cm−1. 1H NMR (600 MHz,
CDCl3) δ 3.70 (s, 3H, -OMe), 3.42 (dd, J = 10.4, 6.8 Hz, 1H, H-1), 2.71 (m, 1H, H-3), 2.13
(m, 1H, H-2β), 2.07–2.03 (ddd, J = 12.4, 10.3, 3.2 HZ, 1H, H-2α), 2.00 (ddt, J = 12.3, 9.3,
5.2 Hz, 1H, H-8), 1.84 (m, 1H, H-7α), 1.78–1.62 (m, 3H, H-5β, H-4β, H-6α), 1.57–1.46 (m, 3H,
H-5α, H-6β, H-7β), 1.36 (d, J = 13.0 Hz, 1H, H-4α), 1.17 (d, J = 7.3 Hz, 3H, H-9), 1.12 (s, 3H,
H-10).13C NMR (151 MHz, CDCl3) δ 175.5 (C-11).56, 173.76 (C-12), 85.60 (C-8a), 52.15(C-13),
42.69(C-1), 42.24 (C-4), 38.92(C-4a), 37.36(C-5), 35.25(C-3), 34.33(C-8), 30.41(C-2), 28.17(C-7),
24.81 (C-10), 16.45 (C-6), 15.77 (C-9). HRMS(EI+) calcd for C15H22O4 266.1518. Found
(MH+) 266.1510.

4.3.5. 4a-Hydroxy-4-(Methoxycarbonyl)-1,2,3,4,4a,7,8,8a-Octahydronaphthalene-2-
Carboxylic Acid (2e)

Following the general procedure, a solution of 300 mg (3.0 mmol) of cyclohexenone
1e in anh. THF was treated with 0.68 mg (3.0 mmol) of LDA. To the resulting enolate
was added methyl acrylate (6.6 mmol) to afford 242 mg (31%) of 2e as a white solid. Mp
113–114 ◦C. IR (KBr): 3513.6, 3022.1, 2933.8, 2870.8, 1709.3, 1436 cm−1. 1H NMR (600 MHz,
CDCl3) δ 5.85 (ddd, J = 9.7, 4.1, 2.7 Hz, 1H, H-7), 5.70 (d, J = 9.7, 1.8 Hz, 1H, H-8), 3.76 (s,
3H, OMe), 2.51 (tt, J = 12.5, 4.0 Hz, 1H, H-3), 2.43 (dd, J = 12.9, 3.9 Hz, 1H, H-1), 2.19 (q,
J = 12.9 Hz, 1H, 2ax), 2.19–2.05 (m, 3H, H-2eq, H-6α, H-6β), 1.89 (q, J = 12.6 Hz, 1H, H-4ax),
1.82 (m, 1H, H-5β), 1.74 (bd, J = 12.6 Hz, 1H, H-4eq), 1.45 (m, 2H, H-4a, H-5α). 13C NMR
(151 MHz, CDCl3) δ 180.34 (C-10), 175.69 (C-9), 131.44 (C-7), 129.96 (C-8), 66.93 (C-8a), 51.99
(OMe), 49.74 (C-1), 41.94 (C-4a), 41.82 (C-3), 29.49 (C-4), 27.23 (C-2), 25.99 (C-6), 23.64 (C-5).
HRMS(EI+) calcd for C14H20O5 256.1311. Found (MH+) 256.1306.

4.3.6. Dimethyl 4a-Hydroxyoctahydro-1H-Spiro [Naphthalene-2,2′-[1,3]Dioxolane]-5,7-
Dicarboxylate (2f and 2f′)

Following the general procedure, a solution of 300 mg (1.0 mmol) of 1,4-cyclohexanodione
monoethylenketal 1f in anh. THF was treated with 400 mg (1.0 mmol) of LDA. To the
resulting enolate was added methyl acrylate (3.9 mmol) to afford 152 mg (51%) of 2f as
a white solid. Major diastereoisomer 2f. Mp 135-136 ◦C. IR (KBr): 3514.6, 2953.4, 2884.7,
1730.8 cm−1. 1H NMR (600 MHz, CDCl3) δ 3.98–3.89 (m, 4H, H-6’), 3.73 (s, OMe), 3.72
(s, 1H, OMe), 3.20 (d, J = 1.68 Hz, 1H, -OH), 2.78 (m, 1H, H-3), 2.62 (dd, J = 11.9, 4.9 Hz,
1H, H-1), 2.15–2.06 (m, 2H, H-2ax, H-2eq), 2.06–1.96 (m, 2H, H-5eq), 1.86 (m, 1H, H-4eq),
1.75 (m, 1H, H-4ax), 1.79-1.71 (m, 2H, H-4ax, H-8eq), 1.65-1.49 (m, 4H, H-4a, H-7eq, H-7ax,
H-5eq), 1.42 (m, 1H, H-8ax). 13C NMR (151 MHz, CDCl3) δ 176.9 (C-9), 175.0 (C-10), 108.74
(C-6), 68.7 (C8a), 64.31 (C-6′), 64.18 (C-7′), 51.9 (OMe), 51.78 (OMe), 47.6 (C-1), 38.1 (C-3),
36.6 (C-8), 34.7 (C-7), 30.2 (C-5), 28.4 (C-4), 26.2 (C-2).

Minor diastereoisomer 2f′. 1H NMR (600 MHz, CDCl3) δ 3.72 (s, OMe), 3.68 (s, OMe),
3.22 (d, J = 1.68 Hz, 1H, OH), 2.43 (tt, J = 12.4, 3.83 Hz, 1H, H-3), 2.33 (dd, J = 12.90, 3.81 Hz,
1H, H-1), 2.09 (m, 1H, H-2eq), 2.05-1.96 (m, 2H, H-2ax, H-5eq), 1.90-1.86 (m, 1H, H-8eq),
1.77 (m, 1H, H-4eq), 1.69-1.49 (m, 5H, H-4a, H-4ax, H-5ax, H-7eq, H-7ax), H-6’), 1.42 (m,
1H, H-8ax). 13C NMR (151 MHz, CDCl3) δ 176.2 (C-9), 174.8 (C-10), 108.8 (C-6), 68.3 (C8a),
64.3 (C-6’), 64.2 (C-7’), 51.9 (OMe), 51.8 (OMe), 50.49 (C-1), 41.9 (C-3), 40.9 (C-4a), 36.58
(C-8), 34.5 (C-7), 30.19 (C-5), 29.9 (C-4), 27.7 (C-2). HRMS(EI+) calcd for C16H24O7 328.1522.
Found (MH+) 328.1534.
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4.3.7. Methyl 5-Isopropyl-8-Methyl-10-Oxooctahydro-2H-4a,2-(Epoxyme†Hano)naph†Halene-
4-Carboxylate (Mixture of 2g, 2g′ and 2g′′)

Following the general procedure, a solution of 300 mg (1.9 mmol) of menthone 1g in
anh. THF was treated with 0.416 mg (1.94 mmol) of LDA. To the resulting enolate was
added methyl acrylate (3.8 mmol) to afford 64 mg (11%) of a mixture 2g, 2g′ and 2g′′ as
a yellowish syrup. IR (KBr): 2954.5, 2872.9, 1736.5, 1437.9. 1H NMR (600 MHz, CDCl3) δ
3.72 and 3.68 (s, 3xOMe) 2g, 2g′ and 2g′′, 3.35 (dd, J = 10.7, 5.2 Hz, 1H, H-1) 2g, 3.16 (dd,
J = 10.7, 5.8 Hz, 1H, H-1) 2g′, 2.73–2.66 (m, 3xH-3) 2g, 2g′ and 2g′′, 2.60 (dd, J = 10.8, 4.8 Hz,
H-1) 2g′′. 13C NMR (151 MHz, CDCl3) δ 177.0-173.0 (6xC = O), 88.5-86.0 (3xC-8a), 53.0-49.0
(3xOMe), 47.78, 47.55, 47.12, 44.88, 41.88, 38.43, 36.41, 35.04, 34.47, 33.69, 30.98, 30.09, 29.95,
29.76, 29.52, 29.13, 27.07, 26.49, 26.31, 25.65, 24.87, 24.46, 23.48, 21.51, 21.31, 19.72, 19.55,
18.52. HRMS(EI+) calcd for C17H26O4 294.1831. Found (MH+) 294.1835.

4.3.8. Methyl 8-Methyl-10-Oxo-5-(Propan-2-Ylidene)Octahydro-2H-4a,2-
(Epoxymethano)Naphthalene-4-Carboxylate (2h)

Following the general procedure, a solution of 100 mg (0.65 mmol) of pulegone 1h
in anh. THF was treated with 0.140 mg (0.65 mmol) of LDA. To the resulting enolate
was added methyl acrylate (1.3 mmol) to afford 97 mg (51%) of 2h as a yellowish syrup.
[α]D

25 = −74.0◦ (c 0.50, CH2Cl2). IR (KBr): 3462.1, 2953.8, 2928.2, 2871.2, 1738.0 1712.4,
1620.7 cm−1. 1H NMR (600 MHz, CDCl3) δ 3.62 (s, 1H, OMe), 3.31 (dd, J = 10.6, 6.0 Hz, 1H,
H-1), 2.77–2.71 (m, 1H, H-3 y H-7), 2.34 (dddd, J = 13.4, 5.9, 2.9, 2.7 Hz, 1H, H-2β), 2.20
(dddd, J = 12.8, 10.2, 4.8, 2.9 Hz, 1H, H-4β), 2.01 (ddd, J = 13.6, 10.6, 3.1 Hz, 1H, H-2α), 1.96
(s, 3H, Me-12), 1.91 (m, 1H, H-7′), 1.77–1.70 (s/m, 3H/1H, Me-11/H-6), 1.59–1.46 (ddd,
J = 11.1, 10.2, 6.8 Hz, 1H, H-4a), 1.50 (m, 1H, H-5), 1.32 (ddd, J = 13.2, 7.8, 1.5 Hz, 1H,
H-4α), 1.1), 1.32 (ddd, J = 13.2, 7.8, 1.5 Hz, 1H, H-0–1.02 (m, 1H, H-6), 0.97 (d, J = 6.2 Hz,
3H, H-14).13C NMR (151 MHz, CDCl3) δ 174.8 (C-10), 172.9 (C-9), 128.7 (C-8), 126.4 (C-13),
87.9 (C-8a), 51.9 (C-15), 49.0 (C-4a), 41.2 (C-1), 34.09 (C-5), 34.06 (C-6 and C-3), 29.3 (C-4),
28.3 (C-2), 28.3 (C-7), 23.9 (C-11), 22.5 (C-12),19.7 (C-14). HRMS(EI+) calcd for C17H24O4
292.1675 Found (MH+) 292.1669.

4.3.9. Methyl-8-Methyl-10-Oxo-5-(Prop-1-En-2-yl)1,3,4,5,6,8a-Hexahydro-2H-4a,2-
(Epoxymethano)Naphthalene-4-Carboxylate (2i)

Following the general procedure, a solution of 100 mg (0.66 mmol) of carvone 1i in
anh. THF was treated with 0.142 mg (0.6 mmol) of LDA. To the resulting enolate was added
methyl acrylate (1.32 mmol) to afford 72 mg (37%) of 2i as a white solid. Mp: 144–145 ◦C.
[α]D

25 = −65.3◦ (c 0.70, CH2Cl2). IR (KBr): 3447.5, 2951.6, 1732.6, 1436.6 cm−1. 1H NMR
(600 MHz, CDCl3) δ 5.87 (bd, J = 1.46 Hz 1H, H-7), 4.87 (m, 1H, H-11a), 4.80 (m, 1H, H-11b),
3.73 (s, 3H, OMe), 2.74-2.78 (m, 2H, H-1, H-3), 2.23–2.12 (m, 3H, H-5, H-2α, 2β), 2.10–1.97
(m, 3H, H-4α, H-6α, H-6β), 1.83 (m, 1H, H-4a), 1.77 (quint, J = 1.33 Hz, 3H, H-9), 1.67 (bq,
J = 0.8 Hz, 3H, H-12), 1.59 (m, 1H, H-4β). 13C NMR (151 MHz, CDCl3) δ 175.0 (C-15), 174.5
(C-13), 144.7 (C-10), 130.9 (C-7), 130.7 (C-8), 114.1 (C-11), 82.50 (C-8a), 52.22 (C-14), 47.46
(C-1), 44.52 (C-5), 39.68 (C-4a), 34.34 (C-3), 31.08 (C-6), 29.68 (C-4), 29.29 (C-2), 18.81 (C-12),
18.29 (C-9). HRMS(EI+) calcd for C17H22O4 290.1518. Found (MH+) 290.1519.

4.3.10. Dimethyl 4a-Hydroxytetradecahydrophenanthrene-2,4-Dicarboxylate (2j)

Following the general procedure, a solution of 100 mg (0.65 mmol) of trans-decahydro-
1-naphthalenone 1j in anh. THF was treated with 0.140 mg (0.65 mmol) of LDA. To the
resulting enolate was added methyl acrylate (1.31 mmol) to afford 124 mg (58.2%) of 2j as
colorless crystals.

Mp: 39–40 ◦C. IR (KBr): 3480.1, 2929.2, 2854.2, 1734.9, 1434.9 cm−1. 1H NMR (600 MHz,
CDCl3) δ 3.73 (s, 3H, H-12), 3.69 (s, 3H, H-14), 3.28 (S, 1H, OH), 3.09 (dd, J = 4.7, 2.8 Hz, 1H,
H-4), 2.65 (tt, J = 12.8, 4.0 Hz, 1H, H-2), 2.24–2.18 (m, 2H, H-3eq, H-10a), 2.12 (tt, J = 13.5,
4.6 Hz, 1H, H-10ax), 1.90 (q, J = 13.2 Hz, 1H, H-1ax), 1.84–1.75 (m, 2H, H-3ax, H-6eq), 1.73
(m, 1H, H-1eq), 1.67–1.52 (m, 4H, H-7eq, H-8eq, H-5eq, H-4b), 1.46 (t, J = 9.0 Hz, 1H, H-8a),
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1.37 (dt, J = 13.2, 3.3 Hz, 1H, H-9eq), 1.30–1.17 (m, 5H, H-5ax, H-6ax, H-8ax, H-9ax, H-10eq),
1.04–0.94 (m, 1H, H-7ax). 13C NMR (151 MHz, CDCl3) δ 175.82 (C-11), 175.68 (C-13), 73.16
(C-4a), 51.89 (C-12), 51.73 (C-14), 45.13 (C-4), 41.68 (C-8a), 39.25 (C-2), 38.67 (C-10a), 36.84
(C-4b), 34.75 (C-7), 30.97 (C-1), 28.39 (C-9), 27.77 (C-3), 26.85 (C-6), 26.18(C-10), 26.02 (C-8),
24.36 (C-5). HRMS(EI+) calcd for C18H28O5 324.1937 Found (MH+) 324.1934.

4.3.11. Dimethyl 3a-Hydroxyoctahydro-1H-Indene-4-6-Carboxylate (2k)

Following the general procedure, a solution of 100 mg (1.1 mmol) of cyclopentanone
1k in anh. THF was treated with 0.254 mg (1.18 mmol) of LDA. To the resulting enolate
was added methyl acrylate (3.5 mmol) to afford 75 mg (75%) of 2k as a white solid. Mp
57–58 ◦C. IR (KBr): 3507.2, 2953.1, 2879.6, 1732.8 cm−1. 1H NMR (600 MHz, CDCl3) δ 4.03
(s, 1H, OH), 3.75 (s, 3H, H-11), 3.70 (s, 3H, H-10), 2.57 (m, 1H, H-3), 2.52 (m, 1H, H-1), 2.19
(m, 1H, H-4a), 2.07–1.98 (m, 2H, H-2α, H-2β), 1.94 (td, 1H, H-4β), 1.86–1.72 (m, 5H, H-5β,
H-6α, H-6β, H-7β, H-4α), 1.61 (m, 1H, H-7α), 1.48 (m, 1H, H-5α). 13C NMR (151 MHz,
CDCl3) δ 176.1 (C-9), 175.4 (C-8), 77.0 (C-7a), 52.0 (C-11), 51.8 (C-10), 44.9 (C-3), 43.9 (C-4a),
38.2 (C-6), 37.6 (C-1), 27.4 (C-2), 26.1 (C-4), 25.5 (C-5), 19.5 (C-7). HRMS(EI+) calcd for
C13H20O5 256.1311. Found (MH+) 256.1312.

4.3.12. Dimethyl 3a-Hydroxy-3-Methyloctahydro-1H-Indene-4,6-Dicarboxylate (2l)

Following the general procedure, a solution of 100 mg (1.0 mmol) of 2-methylcyclopentanone
1l in anh. THF was treated with 0.220 mg (1.0 mmol) of LDA. To the resulting enolate was
added methyl acrylate (2.0 mmol) to afford 250 mg (91%) of 2l as a colorless syrup. IR (KBr):
3526.7, 2953.0, 2873.5, 1732.0 cm−1. 1H NMR (600 MHz, CDCl3) δ 3.75 (s, 3H, H-10), 3.68
(s, 3H, H-11), 2.91 (dd, J = 5.4, 4.3 Hz, 1H, H-1), 2.70 (s, 1H, OH), 2.66 (tt, J = 11.9, 4.1 Hz,
1H, H-3), 2.30–2.24 (m, 1H, H-4a), 2.18–2.00 (m, 3H, H-6β, H-7, H-2β), 1.98–1.85 (m, 3H,
H-2α, H-5β, H-4β), 1.43 (m, 1H, H-5α), 1.34 (q, J = 13.3 Hz, 1H, H-4α), 1.24 (m, 1H, H-6α),
0.96 (d, J = 6.8 Hz, 3H, H-12).13C NMR (151 MHz, CDCl3) δ 171.7 (C-8, C-9), 79.8 (C7a),
51.92 (C-10), 51.75 (C-11), 44.96 (C1), 44.64 (C-4a), 38.01 (C-3), 37.63 (C-7), 32.86 (C-4), 29.34
(C-5), 28.31 (C-6), 28.01 (C-2), 12.81 (C-12). HRMS(EI+) calcd for C14H22O5 270.1472 Found
(MH+) 270.1467.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092810/s1. Experimental 1H, 13C NMR and HRMS
spectra for synthesized compounds are available. Representative simulated 1H NMR spectra and
parameters are also provided. Crystallographic data for 2c, 2d, and 2j.
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