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Short-chain fatty acids (SCFAs) are metabolites released by bacterial

components of the microbiota. These molecules have a wide range of effects

in the microbiota itself, but also in host cells in which they are known

for contributing to the regulation of cell metabolism, barrier function, and

immunological responses. Recent studies indicate that these molecules are

important players in the gut-lung axis and highlight the possibility of using

strategies that alter their intestinal production to prevent or treat distinct lung

inflammatory diseases. Here, we review the effects of the SCFA butyrate and

its derivatives in vitro and in vivo on murine models of respiratory disorders,

besides discussing the potential therapeutic use of butyrate and the other

SCFAs in lung diseases.

KEYWORDS
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Introduction

The prevalence of pulmonary disorders such as asthma and allergic disease has
increased in industrialized countries, which may be partially explained by environmental
exposures and changes in lifestyle. The qualitative and quantitative composition of diets
is central to health and has a profound impact on the emergence and/or prevention of
diseases. In fact, studies comparing different diets and their effects on the composition
of the intestinal microbiota have been carried out in recent years. One of the first

Frontiers in Nutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.1011732
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.1011732&domain=pdf&date_stamp=2022-10-20
https://doi.org/10.3389/fnut.2022.1011732
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.1011732/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1011732 October 14, 2022 Time: 17:45 # 2

Corrêa et al. 10.3389/fnut.2022.1011732

studies that associated the gut microbiome with different diets
in humans occurred when the fecal microbiota of European
children was compared with the microbiota of children from
a rural African village of Burkina Faso where the diet is based
on the ingestion of high amounts of fiber (1). According to
this study, African children showed a distinct composition of
the intestinal bacterial community with enhanced abundance
of Bacteroidetes and lower abundance of Firmicutes, as well as
increased levels of SCFAs propionate and butyrate, which was at
least four times higher than those of European children. These
characteristics were directly linked with the low prevalence of
allergies and autoimmune disease in this African population (1).
After this, many studies have shown the influence of a Western-
style type (WD) diet versus plant-based diets on the intestinal
microbiota and the generation of SCFAs (2).

Western-style type (WD) is primarily characterized by high
content of animal proteins, fat and refined carbohydrates,
which are strongly associated with elevated risks of diseases by
promoting body weight gain and changes in energy metabolism
and immune system activation (3, 4). In addition, WD has been
implicated with negative outcomes on the airway inflammation
in chronic obstructive pulmonary disease (COPD) (5). On
the other hand, plant-based diets, which are enriched in
dietary fibers (DFs), are known to beneficially modulate energy
metabolism, systemic immunity and microbiota composition,
thus contributing to disease prevention (6, 7). A meta-analysis
published by Reynolds et al. (8) found a 15–30% reduced risk of
the incidence of several diseases, including heart disease, type 2
diabetes and colorectal cancer in people eating DFs containing
whole grains and fruits compared with those with those with the
lowest intake (8). In this study, the authors recommend a daily
intake of 25 to 29 grams of fibers to prevent chronic diseases
and suggested a 15 g increment of whole grains consumed
per day to obtain the beneficial effects (8). Regarding the lung
context, a study has analyzed data from 1,921 adults retrieved
from the National Health and Nutrition Examination Surveys
(NHANES) and found that 68.3% of the adults eating more
than 17.5 grams of fiber a day (highest fiber group–ingestion of
fruits, vegetables, and whole grains) had normal lung function,
compared to 50.1% in the group with lowest intake of fiber
(< 10,75 grams of fiber a day) (9). Furthermore, only 14.8%
of the adults in the highest-fiber group had airway restriction
compared to 29.8% in the lowest-fiber group (9).

A diet based on fruits, vegetables, and whole grains was
shown to mitigate the inflammatory responses in COPD
(5). Furthermore, low fiber diets are associated with reduced
diversity of the intestinal microbiota and an imbalanced ratio
of metabolites produced by these microorganisms, a process
known as dysbiosis, which is involved in the genesis of several
pathologies including respiratory diseases (7, 10).

Dietary fibers (DFs) are carbohydrate polymers provided
essentially by plant-derived food that can vary in structure,
size, and physico-chemical properties (11). Fibers are classified

in two main groups: soluble (i.e., gums, fructans, and
pectins) and insoluble fibers (i.e., cellulose, hemicellulose,
and lignin). Soluble fibers are highly metabolized by the
gut microbiota, having relevant effects on composition and
production of bioactive metabolites, which can provide a
link between microbes and host cells (12). As an example,
the consumption of inulin, a type of soluble fiber, has
been associated with an increase in beneficial bacteria
(e.g., Bifidobacterium spp., Lactobacillus spp., Akkermansia
muciniphila, and Faecalibacterium prausnitzii) at the expense
of potentially pathogenic bacteria (e.g., Escherichia coli) in the
intestine of adult humans (12, 13). This modulation has a
significant impact on metabolic capacity of the microbiota,
influencing the profile of metabolites that are produced and
consequently, its interactions and effects on host biological
functions (6).

Several studies have demonstrated that alterations in the
gut microbiome by different dietary approaches can have a
significant impact in the outcome of lung diseases (1, 6, 10),
besides showing a higher prevalence of lung pathologies in
patients with gastrointestinal diseases (14), thus reinforcing the
existence of a crosstalk between the intestinal and pulmonary
compartments. This bidirectional communication is defined
as the gut-lung axis (15), which includes the responses of
immune and epithelial cells of both locations, host and
microbiota distinct signaling pathways, and the action of
bacterial metabolites including the short-chain fatty acids
(SCFAs). Therefore, in this review, we aim to discuss the impact
of the intestinal microbiota and the action of SCFAs, especially
butyrate, on regulating the immune system responses and how
this facet of the gut-lung axis may be altered in respiratory
disorders. This review compiles the most recent advances in this
field, highlighting the gaps and the complexity associated with
the different cellular and molecular targets of the microbiota-
derived molecules in the context of lung disorders.

Butyrate: From dietary fibers to
cellular effects

Short-chain fatty acids (SCFAs) are small carboxylic acids
produced predominantly in the large intestine following
fermentation of soluble DFs by the gut microbiota. This
class of molecules includes acetate, propionate, and butyrate,
with acetate being the most abundant and corresponding
to almost half the total production of SCFAs in the colon.
Besides carbohydrates, amino acids such as valine, leucine,
and isoleucine can also be converted into branched-chain fatty
acids, although they contribute to less than 5% of total SCFA
production (16–18).

Among these metabolites, butyrate has been shown to have
important effects in different aspects of pulmonary diseases such
as allergic asthma, COPD, and lung fibrosis (19, 20). Although
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butyrate can be obtained directly from the diet through the
ingestion of dairy products such as butter, it is mainly obtained
through the bacterial fermentation of soluble fibers in the
colon (19). In humans, most of the Gram-positive bacteria
found in the large intestine are butyrate producers, although
these are interspersed with other non-butyrogenic species.
Butyrogenic bacteria are strictly anaerobic and oxygen-sensitive
saccharolytic bacteria from the Firmicutes phylum, including
Ruminococcaceae, Lachnospiraceae, Erysipelotrichaeceae, and
Clostridiaceae (Clusters IV and XIVa) (19, 21–24). Analysis
of metagenomic and metatranscriptomic data from human
samples has identified an enrichment of butyrate producers,
including 17 taxa, primarily members of the Lachnospiraceae
and Ruminococcaceae family along with some Bacteroidetes,
in 70% of the subjects and in various niches of the gut
ecosystem (22). Most of butyrogenic bacteria species are
founded colonizing the colon mucus layer in proximity of
the intestinal epithelium, which aids the butyrate interaction
and physiological, metabolic, and immunologic effects on the
host cells (25). In addition, non-butyrogenic bacteria can
also influence butyrate formation by the generation of other
metabolites such as lactate, which in turns contributes to
the acidic gut milieu that favors butyrogenic species in the
colon (25).

Once produced, butyrate acts mainly as an energy source
to colonocytes and impacts the mucosal homeostasis with
effects on the epithelial barrier and the associated immune
system (26). Although most of the butyrate is taken up and
consumed in the colon, the literature indicates several effects of
this metabolite in different peripheral tissues with a significant
relevance in the context of lung diseases (27). The systemic
effects of butyrate depend on its uptake by intestinal epithelial
cells (IECs) and the subsequent distribution of this metabolite
through the bloodstream (28). Butyrate is mostly uptaken by
IECs by active transport via sodium-coupled monocarboxylate
transporter 1 (SMCT1, encoded by SLC5A8) and proton-
coupled monocarboxylate transporter 1 (MCT1, encoded by
SLC16A1) (Figure 1; 29). Butyrate can also cross the cellular
membrane by diffusion when it is protonated in luminal low pH
conditions.

Inside the cells, butyrate is largely used to generate ATP in
the mitochondria where it is converted to pyruvate and then
to Acetyl-CoA to feed the citric acid cycle, but it can also
act as a histone deacetylase (HDAC) inhibitor, thus impacting
the host epigenome and overall health (26, 30, 31). It has
been proposed that other transporters such as proton-coupled
monocarboxylate transporter 4 (MCT4, encoded by SLC16A3)
and proton-coupled monocarboxylate transporter 5 (MCT5,
encoded by SLC16A4) move the remaining butyrate out of the
cells (32, 33), therefore contributing to its passage to the portal
circulation into the liver with the other SCFAs (27). In addition,
butyrate is also known to bind and activate different G-protein-
coupled receptors (GPCRs), such as free-fatty acid receptor

3 (FFAR3, or GPR41), free-fatty acid receptor 2 (FFAR2, or
GPR43), and the hydroxycarboxylic acid receptor 2 (HCAR2, or
GPR109a) (Figure 1). These receptors are broadly expressed in
different tissues and cell types, in humans and animals (2, 34).

Short-chain fatty acids (SCFAs) act on several distinct host
organs and tissues including the immune system, brain, bone
marrow, and kidneys, exerting a crucial role in the crosstalk
between them and the intestinal microbiota, a communication
that has relevant implications in the maintenance of the
host homeostasis (35). In this regard, alterations in the
gut microbiome with changes in the pattern of SCFAs
production have local (intestinal) and systemic consequences
on physiological and pathological responses. For example, in
a dysbiotic state with lower production of these bacterial
metabolites, a low-grade systemic inflammation is induced, thus
impairing the kidneys functionality and contributing to chronic
kidney diseases (36). Additionally, studies have shown that
changes in the gut microbiota composition cause a disruption
of intestinal-pulmonary crosstalk, which is associated with
increased susceptibility to respiratory acute infections and
chronic lung diseases (14, 37). Interestingly, the effects of
butyrate in the lungs appear to occur indirectly by modulating
immune cell function, as this metabolite does not seem to
accumulate in the airways, and no significant local production
has been described in this tissue (14, 37). Terms such as the
“Gut-Lung Axis,” “Gut-Brain Axis,” and “Gut-Kidney Axis” were
coined to highlight the relevance of this crosstalk between the
gut microbiota and the respiratory, nervous, and renal systems.
Butyrate has a significant participation on all these axes through
direct or indirect (i.e., through the immune system) actions in
different cell types. Hence, in the next section, we will review
the main immunomodulatory effects of butyrate described in
the recent literature (Figure 2).

The effects of butyrate/SCFAs on
innate immune cells

Neutrophils

Neutrophils are generally the first cell type to arrive
at infectious sites, being a major player that orchestrates
the subsequent immune response by the release of several
mediators such as cytokines and chemokines. FFAR2 is highly
expressed by neutrophils, which makes them very responsive
to SCFAs (38). However, divergent results on the effects of
the SCFA-FFAR2 activation in neutrophils have been described.
In vitro activation of FFAR2 by butyrate present in the culture
supernatant of the oral commensal Fusobacterium nucleatum
acts as chemoattractant to neutrophils (39). In vivo, oral
administration of butyrate has been shown to alleviate intestinal
inflammation conditions, but this response can be achieved
by modulating neutrophils in different ways depending on
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FIGURE 1

Mechanisms of actions of short-chain fatty acids. Production of SCFAs by bacterial fermentation of soluble dietary fibers in the colonic lumen.
These metabolites can activate GPCRs expressed on the surface of intestinal epithelial cells (HCAR2/GPR109a, FFAR2/GPR43, and FFAR3/GPR41)
or be internalized by cellular transporters (MCT and SMCT). Once inside the cells, SCFAs can be used in the mitochondria for ATP generation,
act in the nucleus as HDAC inhibitors, or be transported outside of the cells into the intestinal lamina propria and subsequently into the
bloodstream. Upon reaching systemic circulation, SCFAs can modulate the function of several target tissues, including lungs, kidneys, and brain.
SCFAs, short-chain fatty acids; GPCRs, G-protein-coupled receptors; FFAR, free fatty acids receptor; HCAR2, hydroxycarboxylic acid receptor 2;
MCT, proton-coupled monocarboxylate transporter; SMCT, sodium-coupled monocarboxylate transporter; HDAC, histone deacetylase.

the pathological context. For example, in sterile inflammation
induced by dextran sulfate sodium (DSS), treatment with
butyrate was shown to reduce the recruitment of neutrophils
to the colon, lowering the local production of proinflammatory
cytokines (40). On the contrary, during inflammation induced
by Clostridioides difficile infection, the presence of butyrate
enhances neutrophil recruitment and their inflammatory
activity in the colon, thus improving clinical symptoms (41).

On the contrary, the presence of SCFAs in the site of
bacterial infection does not impact neutrophil migration, but it
impairs their responses by decreasing their phagocytic capacity
and the production of inflammatory molecules. This phenotype
does not depend on the GPCRs activation but may involve
HDAC inhibition (42). More recently, butyrate was shown to
induce the formation of neutrophil extracellular traps (NETs)
when added at colonic luminal levels, but not at peripheral
blood concentrations (43). Some authors have then suggested
that these paradoxical effects of butyrate on neutrophils can
be partially explained by the different concentrations that the
cells are exposed to. For example, low butyrate concentrations
as found in the circulation may activate FFAR2 (and inhibits
HDAC), which in turn suppresses neutrophil recruitment and
activation, preventing an immune response against commensal

microbes and host tissues. However, high concentrations of
this metabolite, as found in the colon, may have the opposite
effect, favoring neutrophil migration and thereby contributing
to elimination of pathogens (44). The discrepancy between the
effects of butyrate may also be due to the activation of other
cellular mechanisms or to the contribution of the other SCFAs
to the biological effects analyzed.

Monocytes, macrophages, and
dendritic cells

Short-chain fatty acids (SCFAs) act as important
immunoregulatory molecules preventing the development
of exaggerated inflammation (45–47), even though the
opposite effect has also been described (48). More recently,
one study demonstrated a dual role of SCFAs, in which the
innate response is reduced while the adaptive response is
promoted, generating effective protection against viral infection
in the airways. The authors showed that the high levels of
SCFAs induced by high-fiber diets affects hematopoiesis,
enhancing the generation of a specific population of patrolling
monocytes and alternatively activated macrophages with
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FIGURE 2

Immunomodulation driven by butyrate. Butyrate produced by butyrogenic bacteria in the intestinal lumen acts on immune cells and regulates
their functions. Butyrate induces neutrophil responses to pathogens, reduces cytokine production by mononuclear cells, decreases mast cell,
eosinophil and innate lymphoid cell activity, and induces a tolerogenic response in lymphocytes. DCs, dendritic cells; ILC2, innate lymphoid
cells type 2; GATA3, GATA binding protein 3; IL-10, interleukin 10; IL-22, interleukin 22; IgA, immunoglobulin A.

a limited capacity to produce chemokines. In this sense,
fewer neutrophils are recruited to the airways during a flu
viral infection, limiting the local inflammatory response
and consequently, the immune-associated pathology, while
boosting influenza-specific CD8+ T cells to control the viral
load (49).

Regarding the actions of SCFAs in macrophages, distinct
populations have been shown to be impacted differently by
these metabolites. For example, in white adipose tissue the
activation of FFAR2 by SCFAs in anti-inflammatory M2-
type macrophages increased their production of TNF-α, a
response that was not observed in inflammatory M1-type
macrophages (50). Moreover, RNA-Seq analysis showed that
butyrate induces an antimicrobial signature on macrophages of
mucosal sites by the inhibition of HDAC3 (51). Lately, even
the systemic inflammatory responses have also been shown
to be modulated by butyrate. In a small cohort of obese
patients with metabolic syndrome, oral supplementation of
butyrate decreased the trained innate immunity of monocytes,
which suggests a potential approach for reducing the overall
inflammatory status of these circulating cells under certain
conditions (52). Corroborating this concept, the literature shows
that butyrate is critical to the induction of tolerogenic dendritic
cells (DCs), which in turn activate regulatory T cells via IL-10
and ALDH1A (53).

A high-fiber diet, via SCFAs, induces vitamin A metabolism
on CD103+ DCs, which correlates with increased Foxp3
expression in regulatory T cells (54). Butyrate can also control
the expression of costimulatory molecules such as CD40,
CD80, and CD83 in DCs, thus limiting their activation
by lipopolysaccharides (LPS) (55), besides impacting their
chemotactic responses by affecting their responsiveness to
CCL19 (56). Furthermore, butyrate profoundly impacts the
immune response to allergens by reducing the ability of DCs to
migrate to lymph nodes and to prime polarization of the Th2
population (19).

Mast cells and eosinophils

Mast cells are abundant at mucosa and submucosa sites
and are critical in diseases such as allergic asthma, food allergy,
colitis, and Crohn’s disease. DFs have a protective effect in
animal models of food allergy by controlling mast cells (57).
HDAC inhibition by butyrate in murine mast cells suppress
their proliferation and production of cytokines (58). In a murine
model of colitis, increased levels of SCFAs in the feces were
correlated with beneficial effects including improvement of the
intestinal barrier and reduction of mast cell degranulation and
inflammation (59, 60). More recently, a study showed that
OVA-sensitized guinea pig precision cut lung slices incubated
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with butyrate had a significantly lower release of histamine
and decreased airway contraction (61). Butyrate also inhibits
degranulation of both human and mouse mast cells, decreasing
their production of IL-6 in IgE-and non-IgE, a response that was
independent of GPCRs, but that can be linked to butyrate role on
HDAC inhibition (61).

Eosinophils are also important players in allergic
asthma (62) which may be modulated by SCFAs. SCFAs
can affect many eosinophil functions, such as adhesion to
the endothelium, migration, and survival. Interestingly,
these effects are associated with histone acetylation and are
normally independent from GPCR signaling (63), Interestingly,
this induction is only observed in eosinophils from allergic
donors, while cells from non-allergic volunteers require
an extra stimulation by IL-5 to show the same phenotype
(63). Inhibition of class IIa HDACs by butyrate also impacts
allergic-donor eosinophil migration by decreasing expression
of homing chemotactic receptors (19). In vivo experiments
with intravenous administration of butyrate revealed that
this metabolite reduces the number of eosinophils and the
concentrations of type-2 cytokines in the bronchoalveolar lavage
fluid, thus impacting the allergic response (63). Altogether, these
findings further corroborate the immunomodulatory role of
butyrate by promoting mucosal tolerogenic responses and
protection against allergic disorders (64).

Innate lymphoid cells

Innate lymphoid cells (ILCs) are regulated by multiple
endogenous mammalian cell-derived factors and integrate
innate and adaptive immune responses to assist in maintaining
physiological homeostasis (65, 66). ILCs are currently divided
into five subsets: ILC1, ILC2, and ILC3 (resembling the classic T
helper division of Th1, Th2, and Th17), natural killer (NK) cells,
and LTi (lymphoid tissue-inducer) cells. This division is based
on their distinct transcription factors and production of specific
cytokines, although it is well-established that ILCs present high
plasticity and can change their phenotype depending on the
signals they receive from the microenvironment (67, 68).

The role of SCFAs in modulating the responses of ILCs
has been investigated by several studies (69). In this context,
due to their location along the gastrointestinal tract, ILC3s
have been the most studied subset, with distinct observed
results. For example, ILC3s from FFAR2 KO mice have a
deficient response to fight against intestinal bacterial pathogens,
as well as impaired proliferation (70–72), indicating a positive
regulation of SCFAs on ILC3s function. Moreover, butyrate
supplementation enhanced IL-22 production by ILCs via both
HDAC inhibition and activation of FFAR3. The latter effect
occurs through activation of the aryl hydrocarbon receptor
by hypoxia-inducible factor 1α, a phenotype that support the
integrity of the intestinal barrier and to ameliorate colitis (73).

However, there are also reports describing inhibitory effects
of butyrate on these cells. For example, butyrate can suppress
RORγt+ ILC3s and their IL-22 expression in terminal ileal
Peyer’s patches via HCAR2 activation (74), a receptor not
expressed by ILC3s found in the colon (75).

Supporting effects of FFAR2 but suppressing effects by
SCFAs have been described also for ILC2s (72). Butyrate
administered either by oral or intranasal routes attenuate
ILC2-driven inflammatory response in IL-33-and Alternaria
alternata-induced allergic inflammation, with downregulation
of GATA3 expression and ILC2 proliferation, reduction of type 2
cytokine production, and reduced overall airway inflammation
and hyperresponsiveness after allergen challenge (76). This
suggests that butyrate as a potential therapeutic option for
asthma conditions mostly due to its action on inhibiting HDACs
(77). Butyrate has also been shown to inhibit pulmonary
ILC2 functions by modulating their GATA3 expression and
metabolism in vivo and in vitro, thus protecting against ILC2-
driven airway hyperreactivity (78, 79).

The effects of butyrate/SCFAs on
adaptive immune cells

T and B lymphocytes

Corroborating the anti-inflammatory and tolerogenic roles
of butyrate as described above, early studies highlighted
the ability of butyrate to promote IL-10 producing T
regulatory (Tregs) cells in different organs, thus preventing
inflammatory diseases (69). For instance, treatments with
butyrate suppressed polarization of pulmonary Th9 cells,
attenuating lung inflammation (80). However, chronic elevation
of SCFAs levels in vivo has been shown to polarize the
immune response toward Th1 and Th17, leading to the
induction of pathological tissue inflammation (81). Butyrate,
via HDAC inhibition, increases Foxp3 protein acetylation,
resulting in higher Foxp3 levels in Treg cell culture (82). Also,
administration of tributyrin, a pro-drug of butyrate, has been
shown to reduce several metabolic and inflammatory alterations
observed in high-fat diet fed mice (83–85). Tributyrin increased
Treg numbers in adipose tissue of obese mice, an effect that was
attributed to the activation of HCAR2 and which may be related
to the reduction in inflammatory markers at this tissue (84).

In addition to the Treg-inducing effect of butyrate, at
high concentrations this metabolite was shown to increase the
expression of the transcription factor T-bet on T cells, resulting
in IFN-γ production by Tregs and by conventional T cells
(86). This dual response might not only depend on butyrate
concentrations, but also on the overall conditions in the host.
For example, immune tolerance is favored at steady state by
SCFAs, with butyrate enhancing the production of IL-10 by Th1
cells via FFAR2 activation (87) elevating the production of IL-22
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by CD4+ T cells (73), while effector T cell responses are triggered
by these metabolites during active immune responses (69).

The effects of SCFAs also extend to CD8+ T cells, with
butyrate increasing their expression of IFN-γ, granzyme B,
and general cytotoxic function via HDAC inhibition (81),
as well as optimizing memory CD8+ T cell generation and
responses (49, 88, 89). Recent studies demonstrated that SCFAs
also have regulatory effects on B cells enhancing plasma cell
differentiation and boosting intestinal IgA and systemic IgG
responses (84). Butyrate may favor tolerogenic responses by
directly enhancing IL-10 producer’s regulatory B lymphocytes
(B10) (69, 90), although contradictory phenotypes have been
reported, with different doses of butyrate suppressing B10
cells, besides arguing that the previous stimulatory effects were
observed due to secondary and indirect effects of this metabolite
(91). Nonetheless, these new data reinforce a positive role of
butyrate on B lymphocytes under steady state. For example,
butyrate causes intrinsic epigenetic alterations on B cells,
modulating class-switch DNA recombination and affecting the
production of antibodies and autoantibodies, thus preventing
harmful responses and helping to maintain the balanced
communication between the microbiota and the host (92).

Effects of butyrate in distinct
respiratory disease

Chronic respiratory diseases such as COPD, asthma, and
lung fibrosis are among the top ten diseases that affect the
respiratory system and are associated with high morbidity,
creating a significant health burden. Scientific advances in the
treatment of these diseases may reduce this burden and promote
health. In the next section, we review the effects of SCFAs and
butyrate on respiratory diseases focusing on human or murine
studies (Table 1).

Chronic obstructive pulmonary disease
and cigarette smoke-induced chronic
bronchitis with emphysema

Chronic obstructive pulmonary disease (COPD) is a group
of progressive inflammatory conditions that lead to irreversible
airflow limitation. The fact that we have only limited knowledge
about these conditions negatively impacts prevention and
treatment options. Tobacco smoking is a major risk factor
that affects intestinal microbiota and may affect the production
of SCFAs (88–90), but information regarding the effects of
SCFAs on COPD is scarce in the literature. Recent studies
have shown that COPD patients present impaired intestinal
functions (93) besides demonstrating that mice develop elevated
lung inflammation and decreased pulmonary functions after
receiving microbial transplantation of feces obtained from

COPD patients (94) evidencing the relationship between the gut
and the lung environments.

Recently, a study in mice investigated the influence of
dietary fibers in an experimental model of COPD. According
to them, the consumption of a high-fiber diet modulated
the diversity of gut microbiota and differentially impacted
the generation of SCFAs, bile acids, and sphingolipids, which
was associated with attenuated emphysema progression and
reduced inflammatory pathology in cigarette smoking-exposed
emphysema model (95). Based on the anti-inflammatory
properties of butyrate, some studies have aimed to analyze
the impact of dietary fibers consumption on the development
of COPD in humans. Although with some limitations, these
studies revealed that the intake of cereal fibers, and, to some
extent, fibers from fruits and vegetables, is inversely associated
with the risk of COPD in smokers (96–98). A role of the gut-
liver-lung axis has been proposed to impact on smoking-related
inflammation: bacterial SCFAs released in the gut, from fiber
fermentation, attenuate the innate immune response in the liver,
which in turn reduces the lung smoking-related inflammation,
ameliorating the symptoms (99). Indeed, cigarette smoke (CS)
is known to be the major cause of COPD, with a chronic daily
exposure to CS for 6 months resulting in lung inflammation,
chronic bronchitis, and emphysema in rodents (100).

Ingestion of a diet enriched in whey peptide was able to
attenuate lung inflammation and elastase-induced emphysema
in mice, an effect that might be related to increased production
of SCFAs in the gut (101). In vitro, CS extract was shown to
induce human embryonic lung fibroblasts to differentiate into
myofibroblasts by causing endoplasmic reticulum (ER) stress,
a condition that is associated with fibrosis and that could be
suppressed to some extent by the treatment with 4-phenyl
butyric acid (4-PBA), a butyrate analog compound (102).

Lung fibrosis-idiopathic pulmonary
fibrosis

Among fibrotic disorders, idiopathic pulmonary fibrosis
(IPF) is the most common idiopathic interstitial pneumonia,
which is a rapidly progressive and lethal fibrotic disease (103).
Recent drugs such Pirfenidone and Nintedanib attenuate disease
progression, but currently is no effective therapy for IPF.
Limited data are available regarding SCFAs actions, but a
recent study has shed some light on this. IPF is characterized
by an excessive collagen matrix deposition and extracellular
remodeling in a TGF-β dependent manner (104). TGF-β1
alters the metabolism and activates pulmonary fibroblasts,
lowering their NADH and ATP levels, the NADH/NAD
ratio and oxidative phosphorylation activity (105). Butyrate
presented a potent antifibrotic effect by inhibiting mitochondrial
elongation in TGF-β-treated pulmonary fibroblasts, increasing
their mitochondrial membrane potential and ATP, NADH,
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TABLE 1 In vitro and in vivo effects of short-chain fatty acids (SCFAs) on distinct pulmonary disorders.

Condition Fiber
type/SCFA

Intervention/dose Model Phenotype References

Chronic obstructive
pulmonary disease
(COPD)

Cellulose and
pectin

Diets with 20% cellulose or
pectin 4 weeks of treatment.

Mice model of
emphysema

↓ emphysema
progression
↓inflammatory responses
↑SCFAs production
↑ microbiota diversity

Jang et al. (141)

Pectin, fecal
microbial
transplantation,
and mix of
SCFAs in the
drinking water

Diet with 10%
cellulose + 10% pectin.
Acetate 76 mM, propionate
29 mM, and butyrate 45 mM.
4 weeks of treatment.

Mice model of
emphysema

↓ emphysema severity
↓weight loss
↓apoptosis
↓inflammatory responses
↑ SFCA producers
Bacteroidaceae and
Lachnospiraceae

Jang et al. (142)

Long-term
intake of dietary
fibers

Data on cereal, fruits, and
vegetable consumption

Cohort of 35,339
Swedish women

↓ risk of COPD (30%) Szmidt et al. (143)

4-phenyl butyric
acid (4-PBA)

0.5 mM of 4-PBA Human embryonic lung
fibroblasts (MRC-5)
exposed to 1% cigarette
smoke (CS) extract
in vitro

↓ fibroblasts
differentiation into
myofibroblasts

Song et al. (98)

Lung fibrosis Butyrate 1–10 mM of butyrate MRC-5 human fetal lung
fibroblasts treated with
TGF-β1 in vitro

↓ fibrosis markers
↓mitochondrial
elongation in fibroblasts
treated with TGF- β1

Li et al. (94)

Sodium butyrate Oral administration of 10 mg
of sodium butyrate five times
a week for 4 weeks.

Lung fibrosis induced by
bleomycin in mice

↓ myofibroblast
activation
↓Macrophage
differentiation in
bronchoalveolar lavage
fluid

Park et al. (105)

Butyrate Intraperitoneal
administration of sodium
butyrate (100 mg/Kg b.w.)
daily for 5 weeks

Pulmonary fibrosis
induced by bleomycin in
rats

↓ pulmonary
inflammation
↓lung fibrosis

Kabel et al. (20)

Allergic asthma Mix of SCFAs Acetate 67.5 mM, propionate
25.9 mM, butyrate 40 mM in
the drinking water

Ovalbumin model of
allergic asthma in mice

↓lung fibrosis
↓IgE and IL-4
production
↓dendritic cell activation
and recruitment

Cait et al. (53)

Inulin One dose of probiotic yogurt
containing 3.5 g of inulin

Analysis of induced
sputum from patients
with stable asthma

↓ airway inflammation
biomarkers
↓immune cell counting,
IL-8 and exhaled nitric
oxide
↑ expression of FFAR2
and FFAR3

Halnes et al. (144)

Pectin 30% pectin diet Allergic airway
inflammation induced by
dust mite extract (HDM)
in mice

↑ circulating SCFAs and
↓ of allergic
inflammation

Trompette et al. (44)

Propionate Intraperitoneal
administration of sodium
propionate (1 g/Kg) daily for
2 weeks or 200 mM of
sodium propionate in
drinking water for 3 weeks

Allergic airway
inflammation induced by
dust mite extract (HDM)
in mice

↓ inflammatory
infiltration in airways

Trompette et al. (44)

(Continued)
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TABLE 1 (Continued)

Condition Fiber
type/SCFA

Intervention/dose Model Phenotype References

Lung cancer Propionate 10 mM of sodium propionate H1299 and H1703
human non-small cell
lung carcinoma

↓proliferation
↑ cell cycle arrest and
apoptosis

Kim et al. (129)

Butyrate 5 mM of sodium butyrate A549 human lung
carcinoma epithelial

↓proliferation and
migration
↑ miR-3935 expression

Xiao et al. (128)

Acute respiratory distress
syndrome (ARDS)

Butyrate Intragastric administration of
sodium butyrate (25 mg/kg)
1 h before LPS treatment.

Mouse LPS-induced
acute lung injury model

↓ IL-1β

↓ TNF
↓ myeloperoxidase
↓ TLR4
↓NF-κB

Liu et al. (113)

SARS-CoV-2 Mix of SCFAs Treatment (drinking water)
5 days before SARS-CoV-2
infection and during
infection with a combination
of acetate (200 mM),
propionate (50 mM) and
butyrate (20 mM)

Syrian hamsters infected
with a sublethal dose of
SARS-CoV-2

SCFAs had no effect on
clinical and
inflammatory parameters

Sencio et al. (135)

Pectin and mix
of SCFAs

Diet with 5% or 30% pectin.
Acetate 67.5 mM, propionate
25.9 mM, butyrate 40 mM in
the drinking water.
Treatments for 2 weeks.

Intranasal infection
model in mice and
hamsters

↓ viral burdens
↓ SARS-COV-2 entry
receptor ACE2
↑ adaptive responses via
FFAR2 and FFAR3 in
males
↓ coagulation and
platelet turnover via the
Sh2b3-Mpl axis

Brown et al. (139)

Mix of SCFAs Mix of SCFAs
(acetate, propionate
and butyrate with
concentrations in the mM
range)

Human colon cancer
cells (Caco-2) and
intestinal biopsies
infected with
SARS-CoV-2

No effects on anti-viral
and inflammatory
mediators

Pascoal and Rodrigues
et al. (137)

and NADH/NAD ratio, affecting myofibroblast differentiation
(105; Figure 3). Administration of bleomycin (BLM) has been
used as a model of lung inflammation and fibrosis, allowing
for investigation of the pathogenic pathways in experimental
fibrosis (106–108). Butyrate attenuates BLM-induced lung
fibrosis in rats. Animals receiving BLM in combination with
butyrate presented a reduction in body weight loss and an
improvement on the levels of inflammatory mediators and
immune cells in their bronchoalveolar lavage compared to those
receiving BLM alone, demonstrating a possible prophylactic role
of this SCFA to certain conditions of pulmonary fibrosis (20,
109).

Allergic asthma

Asthma is an airway chronic inflammatory disorder
characterized as a heterogeneous disease. In this review, we
focused on the allergic asthma, which is the most common
type of this disease (110). Allergic asthma is also associated
with sensitization to aeroallergens such as air pollution, bacteria,

pollen and virus. The exposure to allergens induces airway
epithelial injury and an inflammatory response (Figure 4). It
is well-established in the literature that perturbations in the
gut microbiota are linked to allergic asthma (14, 111). For
instance, the use of antibiotics during pregnancy was found to be
associated, in a dose-dependent way, with the severity of asthma
in the offspring (108), and several studies have shown beneficial
effects of soluble fiber intake and SCFA-producing probiotics
for asthma inflammation throughout different stages of life
(109, 110). In this sense, SCFAs may influence the development
of asthma via epigenetic regulation of distinct immune cell
populations (19).

Animal studies have also supported the use of SCFAs,
including butyrate, to ameliorate allergic asthma (46, 53, 112).
More recently, an inverse relationship between asthma and
the levels of fecal butyrate, the presence of producing-butyrate
bacteria in the gut and the relative abundance of butyrate
metabolism enzymes in infants was revealed (113). The lack
of genes encoding enzymes for carbohydrate metabolization
and butyrate production by the gut microbiota was also shown
in infants who develop allergic sensitization later in life (56).
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FIGURE 3

Effects of butyrate in idiopathic pulmonary fibrosis (IPF). IPF is a chronic, progressive, and fibrotic lung disease. Healthy tissue is replaced by an
extracellular matrix (ECM) composed by collagen in a TGF-β dependent way. In this condition the alveolar architecture is compromised, leading
to decreased lung compliance, disrupted gas exchange, and respiratory failure. TGF-β alters the metabolism and induces pulmonary fibroblasts
differentiation, lowering their mitochondrial NADH, NADH/NAD, and ATP levels, as well as oxidative phosphorylation activity. Butyrate acts as a
potent antifibrotic factor, restoring mitochondrial activity, and affecting myofibroblast differentiation. TGF-β, transforming growth factor beta;
NAD, nicotinamide adenine dinucleotide; NADH, nicotinamide adenine dinucleotide + hydrogen; ATP, adenosine 5’-triphosphate.

Similarly, children with allergic asthma have reduced abundance
of Akkermansia muciniphila and Faecalibacterium prausnitzii,
which are known to induce the production of anti-inflammatory
mediators through secretion of bacterial metabolites, including
butyrate, in the gut microbiota (114). F. prausnitzii also
presented anti-asthmatic effects in mice by modulating the
gut microbiota and altering the levels of SCFAs (115). Other
studies have shown that asthmatic children presented lower
abundance of Faecalibacterium and Roseburia spp., reduced
levels of fecal butyrate, and increased levels of mite-specific
IgE (116). Even a direct intranasal intervention using butyrate
showed a protective effect on airway inflammation and fibrosis
during allergic asthma via HDAC inhibition (Figure 4; 77).

Despite the advances in the field, several important aspects
regarding butyrate’s effect in asthma need to be addressed
including the identification of its main cellular and molecular
targets to prevent the development of asthma (i.e., pulmonary
epithelium, resident, or non-resident immune cells) (117) and if
butyrate treatment could work together with the other SCFAs
(acetate and propionate) or conventional drugs to potentiate
their beneficial effects. Since obesity is significantly associated
with the development of asthma, worsening asthma symptoms,
and leading to poor control of the disease (118) and butyrate
attenuates some of the obesity associated alterations, it will

be important in the future to investigate if this SCFA can be
used for prevention or treatment of obesity-related asthma.
Finally, considering that asthma is a heterogeneous disease, it is
necessary to further investigate the role of butyrate in each type
of inflammation involved with the diseases.

Lung cancer

Lung cancer is the most diagnosed cancer worldwide
and it is implicated in 18.4% of the total cancer deaths
(119). Dysbiosis is a common clinical finding in lung cancer
patients, suggesting an important role of the gut and lung
microbiota in pulmonary carcinogenesis (120, 121). Lung cancer
patients present higher levels of Bacteroidetes, Fusobacteria,
Cyanobacteria, Spirochaetes, and Lentisphaerae, and lower levels
of Bacteroidetes, Firmicutes, and Verrucomicrobia in their lung
and gut microbiota, respectively (120, 122), thus supporting
the link between the imbalanced ratio of Firmicutes and
Bacteroidetes with increased risk of cancer development (121,
123). Besides, distinct microbial signature has been described in
lung tumor tissues compared to normal samples, with decreased
alpha diversity and the presence of specific bacteria such as
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FIGURE 4

Effects of butyrate in ameliorating allergic asthma. Allergic asthma is associated with sensitization to aeroallergens such as air pollution,
bacteria, pollen, and viruses. Exposure to the allergen induces airway epithelial injury, triggering an inflammatory response with enhanced
cytokine production and, consequently, airway hyper-responsiveness, narrowing, and mucus hyperplasia. Butyrate produced in the gut reaches
the lungs through the bloodstream and regulates inflammatory cells through histone deacetylase (HDAC) inhibition, thus attenuating asthmatic
symptoms and pulmonary damage. All figures were created with BioRender.com.

Veillonella and Streptococcus, which can be associated with local
IL-17 responses and pro-tumorigenic environment (124).

The progression of lung cancer mediated by gut dysbiosis
seems to involve mechanisms associated with genotoxicity,
systemic inflammation and defective immunosurveillance (125).
Furthermore, recent studies indicate that the gut microbiome
has a potential to be a novel biomarker for predicting sensitivity
and adverse reactions to immunotherapy in lung cancer patients
(125). In this context, modulation of commensal microbiota
has been shown to impact anti-lung cancer responses in mouse
models, with administration of probiotics and fecal microbiota
transplantation potentializing the effects of antitumoral drugs
(125, 126). Moreover, it was suggested that the altered
composition of the gut microbiota could lead to early resistance
to immune checkpoint inhibitors, and so, supplementation with
bacterial members known to be reduced in lung cancer patients,
such as Akkermansia muciniphila, could be an option to enhance
the action of these inhibitors.

The antitumoral effects of intestinal microbiota metabolites,
such as SCFAs, on the suppression of tumor growth, migration
and invasion have been widely reported in in vivo and in vitro
studies for several types of cancers. Despite that, studies
related to lung cancer are significantly less common (96,
127). Nevertheless, butyrate treatment was shown to inhibit

proliferation and migration of A549 human lung carcinoma
epithelial cells in vitro by upregulation of miR-3935 expression
(128). In another study, propionate treatment was able to
induce cell cycle arrest and cell apoptosis in the H1299 and
H1703 human non-small cell lung carcinoma, besides regulating
Survivin and p21 expression, thus suppressing proliferation
of these lung cancer cells (129). Altogether, even though the
use of SCFAs for therapeutic applications in lung cancer may
be beneficial, further studies are necessary to establish and
confirm the mechanisms involved in antitumor activity and
define optimal doses and routes of administration.

Acute respiratory distress syndrome

Recent data suggest that butyrate inhibits experimental
ARDS (71, 116, 117). Specifically, Liu et al. (113) reported
that endotracheal administration of butyrate in a mouse LPS-
induced acute lung injury model led to reduced IL-1β, tumor
necrosis factor (TNF) alpha and myeloperoxidase in the lung
tissue and blood, and diminished TLR4 and NF-κB expression
and alveolar wall injury, compared to the LPS treated control
group. However, more mechanistic studies are required to
increase our understanding of the butyrate effect through
investigation of other models of ARDS including viral infection.
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In a pertinent example, the ongoing COVID-19 pandemic
caused by the SARS-CoV-2 virus, may lead to acute pneumonitis
and typical ARDS and death in severe cases (115), caused by
cytokine and chemokine overproduction (116). The recruitment
and activation of neutrophils and other innate immune cells is a
major feature of COVID-19 induced ARDS with the formation
of extracellular traps, and damage of the respiratory barrier with
edema (130–132). Thus, neutrophils and other myeloid cells are
being explored as potential therapeutic targets (133).

The pathways involved in COVID-19 and severe influenza
infection in terms of pathophysiology may be shared, but there
are also differences between the infections caused by these
two viruses (134). Investigations on the intestinal microbial
composition and metabolites are of major interest in this case.
Altered composition of microbiota has been reported to be
correlated with severity of disease in infected hamsters (135)
and reduced SCFA and L-isoleucine production in the gut of
patients has also been identified (136). However, the treatment
with different SCFA concentrations in human biopsies and
intestinal epithelial cells infected with SARS-CoV-2 had no
effect on production of antiviral and inflammatory mediators
(137). These results indicate that the changes in intestinal SCFAs
observed on patients with COVID-19 may not be relevant for
SARS-CoV-2 effects in the intestine (137). In contrast, a study
using a non-human primate model found that the composition
and functional activity of the microbiota was altered (138).
From these analyses, it is anticipated that altered microbiomes
may affect the outcome of acute COVID infection and may be
involved in long-COVID sequelae. More recently, one group
demonstrated that treatments with a high-fiber diet containing
pectin and/or with mix of SCFAs in the drinking water were
both able to reduce the levels of SARS-COV-2 entry receptor
angiotensin-converting enzyme 2 (ACE2) and, therefore, to
reduce viral burdens in intranasal infection model using mice
and hamsters (139). According to this study, treatments also
increased immune adaptive responses via activation of FFAR2
and FFAR3 (but only in males), and reduced coagulation and
platelet turnover by regulating the Sh2b3-Mpl axis (139). In
this context, in depth analyses of metabolites including SCFAs
may emerge a potential new therapeutic in the current and
future pandemic.

Concluding remarks

This review focused on how the gut-lung axis acts on
systemic immunity promoting the modulation of aspects
related to pulmonary disorders. Butyrate is a key player
in the microbiota regulation of immune cells functions. In
general, this SCFA contributes to a proper immune response
by stimulating key aspects of immunity including antibody
production and the recruitment and activation of immune cells,
while limiting harmful immune responses. However, butyrate’s

effects are complex and context dependent. The beneficial
impact of the intestinal microbiota and its metabolites on
lung function and on the outcome of diseases such as asthma
and COPD is primarily due to the reduction of local and
systemic inflammation and, in this context, butyrate has been
shown to be a key orchestrator of these responses. Due to
the scarcity of effective therapies and considering the potential
benefits of microbiota metabolites on respiratory function.
Butyrate emerges as a promising agent for the development
of therapeutic approaches applicable to pulmonary disorders.
However, it should be noted that although studies in the gut-
lung axis field are bringing new insights, it is still not possible
to determine the best strategies for applications of SCFAs in
the clinical management of lung diseases. The main limitations
for this application are explained by the fact that most of the
studies have been conducted in rodent models, which makes
it difficult to extrapolate the data to the human context. In
addition, studies performed on humans lack standardization
regarding the delivery routes, concentrations of metabolites
used, and strategies for modulating the intestinal microbiota.
Thus, additional randomized controlled trials are necessary for a
better understanding of the mechanisms involved in promoting
better respiratory health mediated by the intestinal microbiota
and its metabolites. The refinement of these studies may help to
enable the use of microbiota metabolites in the clinical context of
lung diseases. Finally, recent studies demonstrate that the same
strategy used to modulate the lung-intestine axis (i.e., symbiotic,
probiotic, or SCFAs) can have a different outcome on allergic
airway disease in genetically different mice (110, 140). These
findings indicate that the host genetics and its native microbiota
are key aspects that need to be considered for the effective use of
therapeutic tools that act in the lung-gut axis.

Limitation of this review

The present review does not address published data on the
benefit of local or systemic administration SCFAs or butyrate
on IBD, obesity, diabetes, neuro-inflammation, InflammAging,
infections, or autophagy mediated processes.
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