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Abstract

Arsenic exposure during pregnancy may increase the risk for intellectual deficits in children, 

but limited data exist from prospective epidemiologic studies, particularly at low arsenic 

exposure levels. We investigated the association between prenatal maternal urinary arsenic 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Corresponding author. Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA. asignes@umh.es, 
antonio.j.signes-pastor@dartmouth.edu (A.J. Signes-Pastor).
1Antonio J. Signes-Pastor and Megan E. Romano share first authorship.

Credit authors contribution statement
Antonio J. Signes-Pastor (AS): Conceptualization, refinement of the statistical analytic plan, drafting of the manuscript, and critical 
review of the manuscript; Megan E. Romano (MR): Conceptualization, implementation of formal statistical analysis, drafting of the 
manuscript, and critical review of the manuscript; Brian Jackson (BJ): urine samples analysis and critical review of the manuscript; 
Joseph M. Braun (JB): refinement of the statistical analytic plan and critical review of the manuscript; Kimberly Yolton (KY): 
supervision of the neurodevelopmental tests and critical review of the manuscript; Aimin Chen (AC), Bruce Lanphear (BL), and 
Margaret Karagas (MK): Conceptualization, refinement of the statistical analytic plan, and critical review of the manuscript.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijheh.2022.114009.

HHS Public Access
Author manuscript
Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

Published in final edited form as:
Int J Hyg Environ Health. 2022 August ; 245: 114009. doi:10.1016/j.ijheh.2022.114009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


concentrations and childhood cognitive abilities in the Health Outcomes and Measures of the 

Environment (HOME) Study. We used anion exchange chromatography coupled with inductively 

coupled plasma mass spectrometry detection to measure arsenic species content in pregnant 

women’s urine. The summation of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and 

dimethylarsinic acid (DMA) refers to ∑As. We assessed children’s cognitive function (n = 260) 

longitudinally at 1-, 2-, and 3-years using Bayley Scales of Infant and Toddler Development, 

at 5 years using Wechsler Preschool and Primary Scale of Intelligence, and at 8 years using 

Wechsler Intelligence Scale for Children. We observed a modest decrease in mental development 

index and full-scale intelligence quotient at ages 3 and 5 years with each doubling of ∑As with 

estimated score (ß) differences and 95% confidence interval (CI) of −1.8 from −4.1 to 0.5 and 

−2.5 from −5.1 to 0.0, respectively. This trend was stronger and reached statistical significance 

among children whose mothers had lower iAs methylation capacity and low urinary arsenobetaine 

concentrations. Our findings suggest that arsenic exposure levels relevant to the general US 

population may affect children’s cognitive abilities.
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1. Introduction

Arsenic, which occurs in organic and inorganic forms, is ubiquitous (WHO, 2001). Inorganic 

arsenic (iAs) is an established cause of cancer of the lung, skin, and bladder (IARC, 2012). 

Also, evidence is growing that iAs is a risk factor for non-cancer health outcomes, such as 

diabetes and cardiovascular disease (IARC, 2012; Kapaj et al., 2006; Nachman et al., 2017; 

Ng et al., 2003; Sanchez et al., 2016; Tolins et al., 2014; Tsuji et al., 2015). Arsenic crosses 

the placenta and enters the fetus (Davis et al., 2014; Gilbert-Diamond et al., 2016; Gluckman 

et al., 2008; Hall et al., 2007; Punshon et al., 2015; Steinmaus et al., 2014; Vahter, 2008, 

2009). Arsenic exposure during early brain development may result in impaired cognitive 

abilities that last throughout the life course (EFSA, 2009; Freire et al., 2018; Gluckman 

et al., 2008; Grandjean and Landrigan, 2014; Nachman et al., 2017; Signes-Pastor et al., 

2017b; Tolins et al., 2014; Tsuji et al., 2015; Wasserman et al., 2014).

Several countries have established a maximum contaminant level (MCL) of 10 μg/L for 

arsenic in drinking water. Yet, several million people worldwide consume water with 

arsenic content above this MCL (Ayotte et al., 2017; EPA, 2001; US EPA, 2012; WHO, 

2017, 2011). When arsenic exposure from water and occupation is low, diet becomes 

the major source (EFSA, 2009; Nachman et al., 2018). Food contains iAs along with 

several organic forms with variable toxic effects (Cubadda et al., 2016). A multistep 

process via the one-carbon cycle metabolizes the iAs in the liver. The metabolism cycle 

generates monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Then, the 

human body excretes them in the urine within a few days along with unmetabolized iAs 

(Antonelli et al., 2014; Challenger, 1951; Jansen et al., 2016; Tseng, 2009). Hence, urinary 

arsenic concentration is a widely used biomarker of iAs exposure (Signes-Pastor et al., 

2017b, 2017c) and the concentrations ratio of MMA
iAs  and DMA

MMA  reflects iAs methylation 
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capacity (Niedzwiecki et al., 2014). The methylation capacity is considered the major iAs 

detoxification process (Niedzwiecki et al., 2014), and is regulated by the polymorphisms in 

AS3MT gene (Agusa et al., 2011; Jiang et al., 2018; López-Carrillo et al., 2014).

Previous prospective studies on arsenic exposure and childhood neurodevelopment include 

populations from Bangladesh (Hamadani et al., 2010, 2011; Rodrigues et al., 2016; Tofail et 

al., 2009; Vahter et al., 2020; Valeri et al., 2017; Wasserman et al., 2016), China (Liang et 

al., 2020; Wang et al., 2018), Mexico (Levin-Schwartz et al., 2019), Nepal (Parajuli et al., 

2013, 2014, 2015), and Spain (Forns et al., 2014; Freire et al., 2018). Most published studies 

are from contaminated areas with water arsenic above the MCL and show inconsistent 

findings (Hamadani et al., 2010, 2011; Nahar et al., 2014a, 2014b; Parvez et al., 2011; 

Rodrigues et al., 2016; Rosado et al., 2007; Tofail et al., 2009; Vahter et al., 2020; 

Wasserman et al., 2004, 2007). Evidence regarding the effects of arsenic exposure on 

childhood neurodevelopment among populations with access to low arsenic drinking water 

is still scarce (Desai et al., 2018, 2020; Forns et al., 2014; Freire et al., 2018; Kordas et al., 

2015; Liang et al., 2020; Signes-Pastor et al., 2019; Wasserman et al., 2014).

We hypothesized that higher prenatal arsenic exposure impairs childhood cognitive function 

in communities with low-level exposure. We also expect that a decreased iAs methylation 

capacity would exacerbate the toxic effect. To test our hypothesis, we measured maternal 

urinary arsenic species concentrations in pregnancy and calculated maternal iAs methylation 

capacity. Then, we evaluated their association with cognitive abilities in US children 

enrolled in Health Outcomes and Measures of the Environment, the HOME Study, a 

prospective birth cohort study.

2. Methods

2.1. Study participants

The HOME Study enrolled pregnant women from the greater metropolitan area of 

Cincinnati, Ohio between March 2003 and February 2006. The study was designed to 

investigate the effects of exposure to environmental toxicants on neurodevelopment and 

other health endpoints in children. Eligibility criteria for HOME Study mothers were i) 

being ≥18 years old; ii) living in a house built before 1978; iii) having no history of human 

immunodeficiency virus infection; and iv) not taking medication for seizures or thyroid 

disorders. Children completed multiple longitudinal follow-up visits through age 12. The 

visits included assessment of mental, psychomotor, and cognitive development, physical 

growth, and health conditions (Braun et al., 2017; Chen et al., 2014). The HOME Study 

enrolled 389 singleton infants and nine sets of twins (Braun et al., 2017); however, only 

singletons were included in this study. Among singletons (n = 389), 310 had pregnancy 

urinary arsenic concentrations (excluding 79) and 276 at least one cognitive assessment 

to age 8 years (excluding 34). We also excluded children with missing values in relevant 

covariates (n = 16). The statistical analysis included 260 children (Fig S1). Mothers gave 

informed consent before enrollment in the study and at postnatal follow-up visits for 

their children’s participation. The institutional review board for the Cincinnati Children’s 

Hospital Medical Center and participating hospitals and clinics approved the HOME Study 

Protocols (i.e, 2015–6165 and 2015–6170).
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2.2. Sample preparation and chemical analyses

We collected maternal urine samples at 16- and 26-week gestation; however, samples 

collected at 16-week gestation were only analyzed for arsenic speciation when the 26-week 

gestation urine samples had insufficient volume. Among the 310 participants with arsenic 

data, 298 and 12 had their urinary arsenic speciation measured in samples collected at 26- 

and 16-week gestation, respectively. The Trace Element Analysis Core (TEA) at Dartmouth 

College determined urinary arsenic speciation (Jackson, 2015; Signes-Pastor et al., 2020). 

TEA analyzed the urine samples with an Agilent LC 1260 equipped with a Thermo AS7, 2 

× 250 mm column and a Thermo AG7, 2 × 50 mm guard column interfaced with an Agilent 

8900 inductively coupled plasma mass spectrometry in oxygen reaction cell mode. Each 

urine samples batch included blanks and replicate samples of certified reference material. 

The urinary arsenic species included iAs (arsenite + arsenate), and the organic compounds 

MMA, DMA, and arsenobetaine (AsB). The average (standard deviation) recoveries for the 

certified reference material NIST 2669 level I (n = 38) were 109% (13), 121% (19), 106% 

(11), and 111% (32) for AsB, DMA, MMA, and iAs, respectively. The average (standard 

deviation) recoveries for the NIST 2669 level II (n = 34) were 102% (10), 97% (11), and 

106% (20) for DMA, MMA, and iAs, respectively. The arsenic species limit of detection 

(LOD) was 0.5 μg/L for iAs, MMA, and DMA, and 0.1 μg/L for AsB. A kinetic Jaffe 

reaction measured the urine creatinine content (Lausen, 1972).

2.3. Cognitive assessment

Children’s cognitive abilities were assessed at ages 1, 2, 3, 5, and 8 years by HOME Study 

examiners trained and certified by a developmental psychologist (KY). We administered 

the Bayley Scales of Infant and Toddler Development, 2nd edition (Bayley) Mental 

Development Index (MDI) at 1, 2, and 3 years of age. Intelligence was evaluated using 

Wechsler Preschool and Primary Scale of Intelligence, 3rd edition (WPPSI) and Wechsler 

Intelligence Scale for Children, 4th edition (WISC) Full-Scale Intelligence Quotient (FSIQ) 

at ages 5 and 8 years, respectively (Bayley, 1993; Wechsler, 2003, 2004). Examiners were 

blinded to the mother’s urinary arsenic concentrations. The Bayley-MDI, WPPSI-FSIQ, 

and WISC-FSIQ are commonly used in research studies. They provide reliable and valid 

measures of cognitive function and are statistically equivalent to a population mean of 100 

and a standard deviation of 15 (Jiang et al., 2018; Kordas et al., 2015; Parajuli et al., 2015; 

Tofail et al., 2009; Wasserman et al., 2011, 2018). Prior publications provide further details 

(Braun et al., 2017; Chen et al., 2014; Nellis and Gridley, 1994).

2.4. Statistical analyses

We calculated summary statistics for each variable: median (range and interquartile range) 

for continuous variables and relative and absolute frequencies for categorical variables. The 

LOD/ 2 value was imputed for statistical analysis when maternal urinary arsenic species 

concentrations were <LOD (Hornung and Reed, 1990). Maternal sum of urinary arsenic 

(∑As) was calculated as the summation of arsenate, arsenite, MMA, and DMA. The iAs 

refers to the summation of arsenate and arsenite, and the primary and secondary methylation 

indices (PMI = MMA
iAs  and SMI = DMA

MMA ) were calculated as measures for iAs methylation 

capacity. Maternal urinary arsenic concentrations were positively skewed; thus, they were 
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log2-transformed to reduce the influence of extreme values in regression analyses. The MDI 

and FSIQ scores were normally distributed, and thus transformation was unnecessary.

The dose-response association between arsenic exposure and child cognitive function was 

evaluated using log2-transformed maternal prenatal arsenic concentrations using generalized 

additive models (GAM) and using tertiles in regression analysis. We observed no strong 

evidence of non-linearity. Thus, we used linear mixed models to create the regression 

estimates of maternal urinary ∑As and methylation indices in pregnancy with children’s 

cognitive function, using unstructured covariance to account for correlation across repeated 

measurements in the same child. To investigate the association between arsenic exposure 

and cognitive function at different ages, we included interaction terms between arsenic 

(continuous) and child age (categorical) in the models. The ∑As, iAs, PMI and SMI were 

investigated as independent variables in separate regression models. The regression analyses 

were also performed for each cognitive ability assessment approach individually (i.e., MDI 

at 1, 2 and 3 years, and FSIQ at 5 and 8 years, respectively).

We identified covariates based on a priori associations with exposures and outcomes 

observed in the literature, previous work investigating neurodevelopmental outcomes in 

the HOME Study, and the Directed Acyclic Graph using the DAGitty software (Fig. 

S2) (Desai et al., 2020; Kordas et al., 2015; Liang et al., 2020; Parajuli et al., 2015; 

Signes-Pastor et al., 2019; Textor et al., 2017; Vahter et al., 2020; Valeri et al., 2017; 

Wang et al., 2018; Wasserman et al., 2018). We adjusted the models for household 

income (categorical), maternal race (categorical), maternal age at delivery (continuous), 

maternal Intelligence Quotient (IQ) measured by Wechsler Abbreviated Scale of Intelligence 

(continuous), maternal pre-pregnancy body mass index (continuous), log10-average serum 

cotinine in pregnancy based on two time point measurements as an indicator of tobacco 

smoke exposure, log10-urinary creatinine (continuous), Home Observation for Measurement 

of the Environment score at 1 year - HOME score (continuous), and child sex (binary). 

Further details regarding covariates can be found in our prior publication (Braun et al., 

2017). Models for PMI and SMI were further adjusted for maternal ∑As to account 

for the overall iAs exposure. Urinary AsB comes from direct ingestion of fish/seafood 

and does not pose a health risk; however, it is prone to iAs exposure misclassification 

when urinary arsenic speciation is not performed and total arsenic is used to measure the 

exposure (Jones et al., 2016; Navas-Acien et al., 2011; Signes-Pastor et al., 2017b, 2019). 

Here maternal urinary arsenic species concentrations were measured and ∑As excluding 

AsB was applied to estimate iAs exposure. Fish/seafood may also contain other complex 

organosenical compounds that are excreted as MMA and DMA after ingestion, thus we 

performed statistical models restricted to participants with urinary AsB concentrations <1 

μg/L suggesting little, or no fish/seafood consumption (Navas-Acien et al., 2011; Signes-

Pastor et al., 2020). In sensitivity analysis, we examined maternal blood lead concentration 

from 16 weeks of gestation as a potential confounder. We also explored the potential effect 

measure modification of the arsenic-MDI/FSIQ relations by child sex, maternal smoking 

(i.e., maternal serum cotinine ≥3 ng/mL indicating active smoker status (Benowitz et al., 

2008)), and maternal whole blood folate (above/below median of 510 nmol/L). Associations 
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with a nominal level of 0.05 was defined as statistically significant. All statistical analyses 

were conducted using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results

The biochemical, socioeconomic, and anthropometric characteristics of participants included 

in the analysis (n = 260) did not differ from those who were excluded (n = 129) (Table 

S1). Most mothers were non-Hispanic white; 67% of them were within the range of 25–34 

years of age. Over 80% of participants’ household income was ≥$20,000/year and were not 

exposed to tobacco smoke based on serum cotinine levels during pregnancy. Only 9% of 

women had serum cotinine levels >3 ng/mL, indicative of active tobacco smoking (Benowitz 

et al., 2008; Braun et al., 2017). Among these women we observed an average (standard 

deviation) pregnancy serum cotinine concentration of 78 (86) ng/mL, whereas the remaining 

women (91%) had an average concentration of 0.11 (0.27) ng/mL.

The studied children included 46% males and 54% females. Maternal urinary ∑As had a 

median (interquartile range) of 3.63 (2.40–5.86) μg/L (Table 1). Maternal urinary MMA 

concentrations were <0.5 μg/L for almost all participants. Concentrations of urinary arsenic 

in the HOME Study participants were lower than that noted for women of 18–45 years from 

NHANES 2003-04 or 2005-06 cycles (Table 2) (NHANES, 2022). The average (standard 

deviation) scores for MDI and FSIQ were 94 (1), 89 (14), 94 (13), and 103 (15) and 103 (16) 

at 1, 2, 3, 5 and 8 years of age, respectively.

A modest, non-statistically significant, decrease in MDI and FSIQ was observed at ages 

3 and 5 years with each doubling of ∑As with −1.8 points lower child MDI score 

(95% confidence interval (CI): −4.1, 0.5) and −2.5 points lower IQ score (95% CI: −5.1, 

0.0), respectively (Fig. 1; Table S2). Stronger score reductions, but still not statistically 

significant, were observed for PMI with −2.2 points lower MDI (95% CI: −5.0, 0.6) and 

−2.6 points lower FSIQ (95% CI: −5.8, 0.5) compared to SMI with −1.1 points lower MDI 

(95% CI: −3.2, 0.9) and −1.2 points lower FSIQ (95% CI: −3.4, 1.0) assessed at children’s 3 

and 5 year of age, respectively (Fig. 1; Table S2). The estimates from the regression analyses 

for each cognitive ability assessment approach or timing had a similar pattern of results, 

though confidence intervals tended to be less precise, likely due to reduced statistical power 

in these analyses with smaller sample sizes (Table S3).

The overall pattern of results was also consistent among participants with maternal urinary 

AsB <1 μg/L (n = 167). The association of ∑As with MDI at 3 years was attenuated (ß 

= −1.5; 95% CI: −4.5, 1.5), whereas a doubling of ∑As was associated with a −4.1-point 

decrease in FSIQ score at 5 years (95% CI: −7.4, −0.7). Statistically significant decreases 

were observed in children’s MDI at 3 years and FSIQ at 5 and 8 years with each doubling 

of PMI, with reductions of −4.5 points (95% CI: −7.9, −1.1), −6.3 points (95% CI: −10.2, 

−2.4), and −5.9 points (95% CI: −10.5, −1.3), respectively (Fig. 1; Table S2). However, 

differences were not observed with SMI (Fig. 1; Table S2).

In our population, we observed average (standard deviation) maternal blood lead of 0.69 

(0.31) μg/dL, and our sensitivity analyses showed that blood lead was weakly correlated 
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with urinary ∑As (r = 0.13, p-value = 0.10), but did not correlate with urinary iAs, PMI 

or SMI (r < 0.08, p-value >0.18). The inclusion of maternal blood lead in the multivariable 

models did not change the regression coefficients for associations of any arsenic measure 

with MDI/FSIQ by >10% (Fig. S3). The analysis did not show evidence of effect measure 

modification of the associations of interest by child sex, maternal smoking, or maternal 

whole blood folate (data not shown).

4. Discussions

Fetal exposure to environmental toxicants such as arsenic may impact brain development 

with a marked effect throughout the lifespan (Grandjean and Landrigan, 2006, 2014). 

Oxidative stress, apoptosis, thiamine deficiency, and decreased acetyl cholinesterase activity 

are suggested arsenic-induced neurotoxic mechanisms (Ahmed et al., 2011; Mochizuki, 

2019; Singh et al., 2011). Prior studies suggest that arsenic exposure associates with 

impaired cognitive abilities in populations living in water arsenic-contaminated regions 

(Hamadani et al., 2011; Nahar et al., 2014a, 2014b; Parvez et al., 2011; Rodrigues et al., 

2016; Rosado et al., 2007; Vahter et al., 2020; Wasserman et al., 2004, 2007). However, the 

effects of arsenic neurotoxicity during vulnerable windows at levels relevant to the general 

US population and others, where public water arsenic concentrations are below 10 μg/L 

(EPA, 2001; US EPA, 2012; WHO, 2017, 2011), are not well established (Desai et al., 2018, 

2020; Forns et al., 2014; Freire et al., 2018; Kordas et al., 2015; Liang et al., 2020; Signes-

Pastor et al., 2019; Wasserman et al., 2014). While maternal urinary arsenic concentrations 

during pregnancy were relatively low in our study, they related to reduced cognitive scores 

during childhood. There was evidence that a lower maternal iAs methylation capacity may 

exacerbate the adverse effects.

In the present study, we did not observe a clear association between gestational arsenic 

exposure at levels relevant to the general US population and children’s MDI at 1 and 2 

years of age, but pregnancy urinary arsenic concentrations were associated with a reduction 

in MDI at 3 years, and FSIQ at 5 and 8 years of age. Other studies also reported that 

children ≥3 years of age showed impaired cognitive abilities related to prenatal exposure to 

toxicants such as mercury, polybrominated diphenyl ether (PBDEs), and chlorpyrifos, but 

not at earlier ages (Chen et al., 2014; Karagas et al., 2012; Rauh et al., 2006). While we 

were not able to consider these factors in our analysis, we do not anticipate they would be 

strongly associated with arsenic concentrations.

Although we did not observe associations between maternal urinary arsenic concentrations 

and cognitive abilities until age 3, some prior work from China (Liang et al., 2020; Wang 

et al., 2018), Nepal (Parajuli et al., 2013), and Bangladesh (Rodrigues et al., 2016; Valeri 

et al., 2017) found that gestational arsenic exposure at various levels may have an impact 

at earlier time points. In mother-infant pairs, cord blood arsenic concentrations related to 

a decrease in neonatal neurobehavioral scores (Wang et al., 2018) and increased risk of 

personal-social function at 6 months of age in China (Liang et al., 2020). Cord blood 

arsenic also related to reduced behavior responses and reflex scores at birth in Nepal 

(Parajuli et al., 2013), but the latter did not persist at 6 or 36 months of age (Parajuli et 

al., 2014, 2015). Studies from Bangladesh reported reduced IQ scores in 5-year-old children 
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associated with urinary arsenic during pregnancy (Hamadani et al., 2011), but no relation 

with mental and psychomotor development indices at 18 months of age (Hamadani et al., 

2010). Also, from Bangladesh, drinking water arsenic during pregnancy and cord blood and 

urine concentrations related to reduced cognitive function in children of ~3 (Rodrigues et 

al., 2016; Valeri et al., 2017) and ~10 (Vahter et al., 2020) years of age. However, another 

study from Bangladesh did not detect effects of gestational arsenic exposure assessed with 

maternal urinary arsenic on infants’ problem-solving ability and motor development at 7 

months (Tofail et al., 2009). Differences across neurodevelopmental domains, biological 

matrices used for exposure assessment, exposure levels, or participant characteristic across 

studies could in part explain these inconsistencies.

Among populations with lower levels of exposure, a study from Spain observed that 

detectable placenta arsenic concentrations were associated with impaired global and verbal 

executive abilities in children of 4-5-years of age (Freire et al., 2018). However, a prior 

study did not observe clear associations with maternal total urinary arsenic, which included 

AsB, and raises concerns of iAs exposure misclassification in this study (Forns et al., 2014). 

In the present study, we analyzed urinary arsenic species concentrations and calculated the 

summation of urinary iAs metabolites (i.e., iAs, MMA, and DMA excluding AsB) as a 

proxy for iAs exposure. In addition, we performed analysis restricted to women who were 

low consumers of fish/seafood (AsB <1 μg/L) (Navas-Acien et al., 2011; Signes-Pastor et 

al., 2020). In the above analysis, we observed stronger inverse associations of ∑As with 

FSIQ at 5 years and of PMI with MDI at 3 years and FSIQ at 5 and 8 years. Although, this 

sensitivity analysis was likely underpowered given the reduction in sample size, it suggests 

that accounting for the association of fish/seafood consumption with arsenic exposure and 

neurodevelopment may be critically important for future research studies, especially among 

populations whose diets play a major role in arsenic exposure.

In this study, we found that a diminished iAs methylation capacity in mothers was inversely 

associated with child cognitive abilities. In humans, there is large inter-individual variation 

in methylation capacity of iAs and is characterized by the formation of DMA (60–70%) 

and MMA (10–20%) excreted along with unmetabolized iAs (10–30%) (Signes-Pastor et 

al., 2017a; Vahter, 2002). Altered profiles of urinary arsenic species in urine, which are 

genetically driven, appear to reflect differences in the efficacy of iAs metabolism (Agusa et 

al., 2011). In Taiwan, a stronger methylation capacity defined as higher urinary DMA% in 2-

year-old children related to an increased cognitive and fine motor (Jiang et al., 2018). Thus, 

it is necessary to consider iAs methylation capacity when investigating the neurotoxicity of 

arsenic.

We did not have data on childhood exposure. However, prior studies suggest an inverse 

association between arsenic exposure during childhood and impaired neurodevelopment. 

Among ≤5-year-old children, urinary arsenic (median of 4.85 μg/L) related to a decreased in 

motor functions in Spain (Signes-Pastor et al., 2019). Urinary arsenic concentrations among 

7-year-old children (median of 9.9 μg/L) were inversely associated with executive function 

in Uruguay (Desai et al., 2020), but not with the cognition (Desai et al., 2018; Kordas et 

al., 2015) in accordance with a recent study from China (Zhou et al., 2020). Reduced IQ 

and behavior scores were reported to be associated with children’s biomarkers of arsenic 
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exposure (e.g., blood, urine, nails, and hair) in Bangladesh (Hamadani et al., 2011; Nahar 

et al., 2014a, 2014b; Nahar and Inaoka, 2012; Vahter et al., 2020; Wasserman et al., 2011, 

2016, 2018), India (Ghosh et al., 2017; Manju et al., 2017) and Mexico (Calderón et al., 

2001; Roy et al., 2011). In the US, children consuming water arsenic ≥5 μg/L had lower 

IQ scores compared to those consuming water arsenic <5 μg/L (Wasserman et al., 2014). 

Several studies from China (Wang et al., 2007), India (Ehrenstein et al., 2007), Taiwan 

(Tsai et al., 2003), Bangladesh (Wasserman et al., 2004, 2007), and Mexico (Rocha-Amador 

et al., 2007) reported impaired cognitive ability associated with water arsenic exposure. A 

recent dose-response meta-analysis described a 0.08% decrease in IQ scale associated with 

each 1 μg/L increase in water arsenic concentration (Hasanvand et al., 2020). Studies from 

Italy (Lucchini et al., 2019) and Mexico (Rosado et al., 2007; Roy et al., 2011) found that 

proximity to industrial arsenic emissions may also affect children’s cognitive abilities.

Exposure to environmental toxicants occur simultaneously as a mixture in real-life scenarios 

and their health impact may relate to the concentrations of each component of the mixture 

(Levin-Schwartz et al., 2019; Valeri et al., 2017; Wasserman et al., 2018). A negative effect 

of a mixture of arsenic, lead, and manganese assessed using cord blood concentrations, on 

children’s cognitive abilities was reported in a Bangladesh study (Valeri et al., 2017), and 

an additional study suggested that arsenic and cadmium exposures are the most important 

mixture components associated with a decrease in adolescent intelligence when applying 

the same flexible statistical methods (Wasserman et al., 2018). Other studies have applied 

multivariable-adjusted regression models to account for multiple exposures (Freire et al., 

2018; Parajuli et al., 2015; Vahter et al., 2020). While little is known about the impact 

of multiple metal exposure, including arsenic, at relatively low levels on the development 

of cognitive abilities in childhood, in our study, maternal blood Pb concentrations did not 

appear to influence observed associations of arsenic with childhood cognition, but other 

neurotoxicants could confound or modify the effect of arsenic.

This study is based on a well-characterized US cohort (Braun et al., 2017) that counted on 

extensively trained research personnel to longitudinally assess children’s cognitive abilities 

using established quality assurance/quality control (QA/QC) protocols (Bayley, 1993; Braun 

et al., 2017; Wechsler, 2003, 2004), and measured urinary arsenic species concentrations. 

While our findings are based on a modest sample size, we nevertheless observed that 

gestational exposure to arsenic may impair children’s cognitive abilities, especially among 

older children whose mother had lower methylation capacity when adjusting for several 

potential confounding factors. Still, the effect of unknown factors or residual confounding, 

including from unknown or unmeasured co-exposures, remains a possibility. Our findings 

are among the first to suggest that even low-level arsenic exposure during vulnerable 

windows of growth and development may adversely impact children’s congnitive abilities 

(Desai et al., 2020; Freire et al., 2018; Signes-Pastor et al., 2019; Wasserman et al., 2014). 

More prospective research is needed to confirm the relevant windows of exposure from 

gestation to early life on arsenic neurotoxicity at levels relevant to the general population 

and to evaluate cumulative exposures and mixture effects.

Signes-Pastor et al. Page 9

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding sources

This work was supported in part by National Institute of Environmental Health Science (NIEHS) grants P01 
ES11261, R01 ES014575, R01 ES020349 and P01ES022832 by National Institute of General Medicine (NIGMS) 
grant P20 GM104416 from the US National Institutes of Health (NIH) and RD83544201 from the US EPA. 
AS, MR, and MK are funded in part by P42ES007373 and UG3/UH3OD023275. AS is currently funded by 
CIDEGENT/2020/050.

References

Agusa T, Fujihara J, Takeshita H, Iwata H, 2011. Individual Variations in Inorganic Arsenic 
Metabolism Associated with AS3MT Genetic Polymorphisms. 10.3390/ijms12042351.

Ahmed S, Khoda SM, Rekha RS, Gardner RM, Ameer SS, Moore S, Ekström E-C, Vahter M, Raqib R, 
2011. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta 
and cord blood. Environ. Health Perspect 10.1289/ehp.1002086.

Antonelli R, Shao K, Thomas DJ, Sams R, Cowden J, 2014. AS3MT, GSTO, and PNP 
polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ. 
Res 132, 156–167. 10.1016/j.envres.2014.03.012. [PubMed: 24792412] 

Ayotte JD, Medalie L, Qi SL, Backer LC, Nolan BT, 2017. Estimating the high-arsenic domestic-well 
population in the conterminous United States. Environ. Sci. Technol 51, 12443–12454. 10.1021/
acs.est.7b02881. [PubMed: 29043784] 

Bayley N, 1993. Bayley Scales of Infant Development. Psychological Corporation.

Benowitz NL, Bernert JT, Caraballo RS, Holiday DB, Wang J, 2008. Optimal serum cotinine levels for 
distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United 
States between 1999 and 2004. Am. J. Epidemiol 169, 236–248. 10.1093/aje/kwn301. [PubMed: 
19019851] 

Braun JM, Kalloo G, Chen A, Dietrich KN, Liddy-Hicks S, Morgan S, Xu Y, Yolton K, Lanphear BP, 
2017. Cohort profile: the health outcomes and measures of the environment (HOME) study. Int. J. 
Epidemiol 46, 1–11. 10.1093/ije/dyw006. [PubMed: 28338818] 

Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz M.a., Golden a, Rodriguez-Leyva 
I, Borja-Aburto V, Díaz-Barriga F, 2001. Exposure to arsenic and lead and neuropsychological 
development in Mexican children. Environ. Res 85, 69–76. 10.1006/enrs.2000.4106. [PubMed: 
11161656] 

Challenger F, 1951. Biological methylation. In: Advances in Enzymology and Related Subjects of 
Biochemistry, wiley, pp. 429–491. 10.1002/9780470122570.ch8.

Chen A, Yolton K, Rauch SA, Webster GM, Hornung R, Sjödin A, Dietrich KN, Lanphear BP, 2014. 
Prenatal polybrominated diphenyl ether exposures and neurodevelopment in U.S. children through 
5 years of age: the home study. Environ. Health Perspect 122, 856–862. 10.1289/ehp.1307562. 
[PubMed: 24870060] 

Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M, Ornelas Y, Horne 
V, Kurzius-Spencer M, 2016. Human exposure to dietary inorganic arsenic and other arsenic 
species: state of knowledge, gaps and uncertainties. Sci. Total Environ 579, 1228–1239. 10.1016/
j.scitotenv.2016.11.108. [PubMed: 27914647] 

Davis MA, Li Z, Gilbert-Diamond D, Mackenzie TA, Cottingham KL, Jackson BP, Lee JS, Baker ER, 
Marsit CJ, Karagas MR, 2014. Infant toenails as a biomarker of in utero arsenic exposure. J. Expo. 
Sci. Environ. Epidemiol 24, 467–473. 10.1038/jes.2014.38. [PubMed: 24896769] 

Desai G, Barg G, Queirolo EI, Vahter M, Peregalli F, Mañay N, Kordas K, 2018. A cross-sectional 
study of general cognitive abilities among Uruguayan school children with low-level arsenic 
exposure, potential effect modification by methylation capacity and dietary folate. Environ. Res 
164, 124–131. 10.1016/j.envres.2018.02.021. [PubMed: 29486343] 

Signes-Pastor et al. Page 10

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Kordas K, 2020. 
Executive functions in school children from Montevideo, Uruguay and their associations with 
concurrent low-level arsenic exposure. Environ. Int 142, 105883 10.1016/j.envint.2020.105883. 
[PubMed: 32599352] 

EFSA, 2009. European Food Safety Authority. Scientific opinion on arsenic in food. EFSA panel on 
contaminants in food chain (CONTAM). EFSA J. 7.

von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A, Hira-Smith M, Ghosh N, 
Lahiri S, Haque R, Ghosh A, Kalman D, Das S, Smith AH, 2007. Children’s intellectual function 
in relation to arsenic exposure. Epidemiology 18, 44–51. 10.1097/01.ede.0000248900.65613.a9. 
[PubMed: 17149142] 

EPA, 2001. Drinking Water Arsenic Rule History. Environmental Protection Agency.

Forns J, Fort M, Casas M, Cáceres A, Guxens M, Gascon M, Garcia-Esteban R, Julvez J, Grimalt JO, 
Sunyer J, 2014. Exposure to metals during pregnancy and neuropsychological development at the 
age of 4 years. Neurotoxicology 40, 16–22. 10.1016/j.neuro.2013.10.006. [PubMed: 24211492] 

Freire C, Amaya E, Gil F, Fernández MF, Murcia M, Llop S, Andiarena A, Aurrekoetxea J, 
Bustamante M, Guxens M, Ezama E, Fernández-Tardón G, Olea N, 2018. Prenatal co-exposure to 
neurotoxic metals and neurodevelopment in preschool children: the Environment and Childhood 
(INMA) Project. Sci. Total Environ 621, 340–351. 10.1016/j.scitotenv.2017.11.273. [PubMed: 
29190557] 

Ghosh SB, Chakraborty D, Mondal NK, 2017. Effect of arsenic and manganese exposure on 
intellectual function of children in arsenic stress area of purbasthali, burdwan, West Bengal. 
Exposure and Health 9, 1–11. 10.1007/s12403-016-0216-8.

Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR, 2016. Relation between in 
utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New 
Hampshire. Environ. Health Perspect 10.1289/ehp.1510065.

Gluckman PD, Hanson MA, Cooper C, Thornburg KL, 2008. Effect of in Utero and Early-Life 
Conditions on Adult Health and Disease, 10.1056/NEJMra0708473.

Grandjean P, Landrigan PJ, 2014. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 
13, 330–338. 10.1016/S1474-4422(13)70278-3. [PubMed: 24556010] 

Grandjean P, Landrigan PJ, 2006. Developmental neurotoxicity of industrial chemicals. Lancet 
(London, England) 368, 2167–2178. 10.1016/S0140-6736(06)69665-7.

Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z, van Geen A, Yunus M, Rahman M, 
Pilsner JR, Graziano J, 2007. Determinants of arsenic metabolism: blood arsenic metabolites, 
plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ. 
Health Perspect 115, 1503–1509. 10.1289/ehp.9906. [PubMed: 17938743] 

Hamadani JD, Grantham-McGregor SM, Tofail F, Nermell B, Fangstrom B, Huda SN, Yesmin S, 
Rahman M, Vera-Hernandez M, Arifeen SE, Vahter M, 2010. Pre- and postnatal arsenic exposure 
and child development at 18 months of age: a cohort study in rural Bangladesh. Int. J. Epidemiol 
39, 1206–1216. 10.1093/ije/dyp369. [PubMed: 20085967] 

Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, Arifeen SE, Huda SN, Vahter 
M, 2011. Critical windows of exposure for arsenic-associated impairment of cognitive function 
in pre-school girls and boys: a population-based cohort study. Int. J. Epidemiol 40, 1593–1604. 
10.1093/ije/dyr176. [PubMed: 22158669] 

Hasanvand M, Mohammadi R, Khoshnamvand N, Jafari A, Palangi HS, Mokhayeri Y, 2020. Dose-
response meta-analysis of arsenic exposure in drinking water and intelligence quotient. Journal of 
Environmental Health Science and Engineering, 10.1007/s40201-020-00570-0.

Hornung RW, Reed LD, 1990. Estimation of average concentration in the presence of nondetectable 
values. Appl. Occup. Environ. Hyg 5, 46–51. 10.1080/1047322X.1990.10389587.

IARC, 2012. Arsenic, metals, fibers and dusts. A review of human carcinogens. IARC Monogr. Eval. 
Carcinog. Risks Hum 100C, 527.

Jackson B, 2015. Fast ion chromatography-ICP-QQQ for arsenic speciation. Physiol. Behav 6, 1405–
1407. 10.1039/C5JA00049A.Fast.

Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT, Slavkovich V, Ahmed A, 
Navas-Acien A, Parvez F, Chen Y, Gamble MV, Graziano JH, Pierce BL, Ahsan H, 2016. 

Signes-Pastor et al. Page 11

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: 
demographics, lifestyle, genetics, and toxicity. Cancer Epidemiol. Biomark. Prev 25, 381–390. 
10.1158/1055-9965.EPI-15-0718.

Jiang C, Hsueh Y, Kuo G, Hsu C, Chien L, 2018. Preliminary study of urinary arsenic concentration 
and arsenic methylation capacity effects on neurodevelopment in very low birth weight preterm 
children under 24 months of corrected age. 10.1097/MD.0000000000012800.

Jones MR, Tellez-Plaza M, Vaidya D, Grau M, Francesconi KA, Goessler W, Guallar E, Post WS, 
Kaufman JD, Navas-Acien A, 2016. Estimation of inorganic arsenic exposure in populations with 
frequent seafood intake: evidence from MESA and NHANES. Am. J. Epidemiol 184, 590–602. 
10.1093/aje/kww097. [PubMed: 27702745] 

Kapaj S, Peterson H, Liber K, Bhattacharya P, 2006. Human health effects from chronic arsenic 
poisoning - a review. J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng 41, 2399–
2428. 10.1080/10934520600873571.

Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick 
S, 2012. Evidence on the Human Health Effects of Low-Level Methylmercury Exposure. 10.1289/
ehp.1104494.

Kordas K, Ardoino G, Coffman DL, Queirolo EI, Ciccariello D, Ma??ay N, Ettinger AS, 2015. 
Patterns of exposure to multiple metals and associations with neurodevelopment of preschool 
children from Montevideo, Uruguay. J. Environ. Publ. Health 2015. 10.1155/2015/493471.

Lausen K, 1972. Creatinine assay in the presence of protein with LKB 8600 reaction rate analyser. 
Clin. Chim. Acta 38, 475–476. 10.1016/0009-8981(72)90146-5. [PubMed: 5026368] 

Levin-Schwartz Y, Gennings C, Schnaas L, Del Carmen Hernández Chávez M, Bellinger DC, Téllez-
Rojo MM, Baccarelli AA, Wright RO, 2019. Time-varying associations between prenatal metal 
mixtures and rapid visual processing in children. Environ. Health : Global Access Sci. Source 18, 
92. 10.1186/s12940-019-0526-y.

Liang C, Wu X, Huang K, Yan S, Li Z, Xia X, Pan W, Sheng J, Tao R, Tao Y, Xiang H, Hao J, Wang 
Q, Tong S, Tao F, 2020. Domain- and sex-specific effects of prenatal exposure to low levels of 
arsenic on children’s development at 6 months of age: findings from the Ma’anshan birth cohort 
study in China. Environ. Int 135, 105112 10.1016/j.envint.2019.105112. [PubMed: 31881426] 

López-Carrillo L, Hernández-Ramírez RU, Gandolfi a.J., Ornelas-Aguirre JM, Torres-Sánchez L, 
Cebrian ME, 2014. Arsenic methylation capacity is associated with breast cancer in northern 
Mexico. Toxicol. Appl. Pharmacol 280, 53–59. 10.1016/j.taap.2014.07.013. [PubMed: 25062773] 

Lucchini RG, Guazzetti S, Renzetti S, Conversano M, Cagna G, Fedrighi C, Giorgino A, Peli M, 
Placidi D, Zoni S, Forte G, Majorani C, Pino A, Senofonte O, Petrucci F, Alimonti A, 2019. 
Neurocognitive impact of metal exposure and social stressors among schoolchildren in Taranto, 
Italy. Environ. Health: Glob. Access Sci. Source 18, 67. 10.1186/s12940-019-0505-3.

Manju R, Hegde AM, Parlees P, Keshan A, 2017. Environmental arsenic contamination and its effect 
on intelligence quotient of school children in a historic gold mining area Hutti, North Karnataka, 
India: a pilot study. J. Neurosci. Rural Pract 8, 364–367. 10.4103/jnrp.jnrp_501_16. [PubMed: 
28694614] 

Mochizuki H, 2019. Arsenic neurotoxicity in humans. Int. J. Mol. Sci 20 10.3390/ijms20143418.

Nachman KE, Ginsberg GL, Miller MD, Murray CJ, Nigra AE, Pendergrast CB, 2017. Mitigating 
dietary arsenic exposure: current status in the United States and recommendations for an improved 
path forward. Sci. Total Environ 581–582, 221–236. 10.1016/j.scitotenv.2016.12.112.

Nachman KE, Punshon T, Rardin L, Signes-Pastor AJ, Murray CJ, Jackson BP, Guerinot ML, Burke 
TA, Chen CY, Ahsan H, Argos M, Cottingham KL, Cubadda F, Ginsberg GL, Goodale BC, 
Kurzius-spencer M, Meharg AA, Miller MD, Nigra AE, Pendergrast CB, Raab A, Reimer K, 
Scheckel KG, Schwerdtle T, Taylor VF, Tokar EJ, Warczak TM, Karagas MR, 2018. Opportunities 
and challenges for dietary arsenic intervention. Environ. Health Perspect 126, 6–11. 10.1289/
EHP3997.

Nahar MN, Inaoka T, 2012. Intelligence quotient and social competence of junior high school students 
drinking arsenic contaminated groundwater in Bangladesh. Res. J. Environ. Toxicol 6, 110–121. 
10.3923/rjet.2012.110.121.

Signes-Pastor et al. Page 12

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nahar MN, Inaoka T, Fujimura M, 2014a. A consecutive study on arsenic exposure and intelligence 
quotient (IQ) of children in Bangladesh. Environ. Health Prev. Med 19, 194–199. 10.1007/
s12199-013-0374-2. [PubMed: 24368742] 

Nahar MN, Inaoka T, Fujimura M, Watanabe C, Shimizu H, Tasnim S, Sultana N, 2014b. Arsenic 
contamination in groundwater and its effects on adolescent intelligence and social competence in 
Bangladesh with special reference to daily drinking/cooking water intake. Environ. Health Prev. 
Med 19, 151–158. 10.1007/s12199-013-0369-z. [PubMed: 24254803] 

Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E, 2011. Seafood intake and urine 
concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ. 
Res 111, 110–118. 10.1016/j.envres.2010.10.009. [PubMed: 21093857] 

Nellis L, Gridley BE, 1994. Review of the Bayley Scales of Infant Development-Second Edition. 
10.1016/0022-4405(94)90011-6.

Ng JC, Wang J, Shraim A, 2003. A Global Health Problem Caused by Arsenic from Natural Sources. 
10.1016/S0045-6535(03)00470-3.

NHANES, 2022. Questionnaires, Datasets, and Related Documentation.

Niedzwiecki MM, Hall MN, Liu X, Slavkovich V, Ilievski V, Levy D, Alam S, Siddique AB, Parvez 
F, Graziano JH, Gamble MV, 2014. Interaction of plasma glutathione redox and folate deficiency 
on arsenic methylation capacity in Bangladeshi adults. Free Radic. Biol. Med 73, 67–74. 10.1016/
j.freeradbiomed.2014.03.042. [PubMed: 24726863] 

Parajuli RP, Fujiwara T, Umezaki M, Furusawa H, Watanabe C, 2014. Home environment and prenatal 
exposure to lead, arsenic and zinc on the neurodevelopment of six-month-old infants living in 
Chitwan Valley, Nepal. Neurotoxicol. Teratol 41, 89–95. 10.1016/j.ntt.2013.12.006. [PubMed: 
24418190] 

Parajuli RP, Fujiwara T, Umezaki M, Watanabe C, 2013. Association of cord blood levels of lead, 
arsenic, and zinc with neurodevelopmental indicators in newborns: a birth cohort study in Chitwan 
Valley, Nepal. Environ. Res 121, 45–51. 10.1016/j.envres.2012.10.010. [PubMed: 23164520] 

Parajuli RP, Umezaki M, Fujiwara T, Watanabe C, 2015. Association of cord blood levels of lead, 
arsenic, and zinc and home environment with children neurodevelopment at 36 Months living 
in chitwan valley, Nepal. PLoS One 10, e0120992. 10.1371/journal.pone.0120992. [PubMed: 
25803364] 

Parvez F, Wasserman GAGA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, Sultana RRR, 
Sultana RRR, Islam T, Levy D, Mey JLJL, van Geen A, Khan K, Kline J, Ahsan H, Graziano 
JH, 2011. Arsenic exposure and motor function among children in Bangladesh. A.B.A.B. Environ. 
Health Perspect 119, 1665–1670. 10.1289/ehp.1103548. J.H.J.H.J.H.

Punshon T, Davis MA, Marsit CJ, Theiler SK, Baker ER, Jackson BP, Conway DC, Karagas MR, 
2015. Placental arsenic concentrations in relation to both maternal and infant biomarkers of 
exposure in a US cohort. J. Expo. Sci. Environ. Epidemiol 25, 599–603. 10.1038/jes.2015.16. 
[PubMed: 25805251] 

Rauh VA, Gaifinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt 
RW, 2006. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of 
life among inner-city children. Pediatrics 118, e1845–e1859. 10.1542/peds.2006-0338. [PubMed: 
17116700] 

Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderón J, 2007. Decreased intelligence 
in children and exposure to fluoride and arsenic in drinking water. Cad. Saúde Pública 23, S579–
S587. 10.1590/S0102-311X2007001600018. [PubMed: 18038039] 

Rodrigues EG, Bellinger DC, Valeri L, Hasan MOSI, Quamruzzaman Q, Golam M, Kile ML, 
Christiani DC, Wright RO, Mazumdar M, 2016. Neurodevelopmental outcomes among 2- to 
3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese 
in drinking water. Environ. Health 15, 44. 10.1186/s12940-016-0127-y. [PubMed: 26968381] 

Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, del 
Caamaño MC, Cebrián ME, Stoltzfus RJ, 2007. Arsenic exposure and cognitive performance in 
Mexican schoolchildren. Environ. Health Perspect 115, 1371–1375. 10.1289/ehp.9961. [PubMed: 
17805430] 

Signes-Pastor et al. Page 13

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Roy A, Kordas K, Lopez P, Rosado JL, Cebrian ME, Vargas GG, Ronquillo D, Stoltzfus RJ, 2011. 
Association between arsenic exposure and behavior among first-graders from Torreón, Mexico. 
Environ. Res 111, 670–676. 10.1016/j.envres.2011.03.003. [PubMed: 21439564] 

Sanchez TR, Perzanowski M, Graziano JH, 2016. Inorganic arsenic and respiratory health, from early 
life exposure to sex-specific effects: a systematic review. Environ. Res 147, 537–555. 10.1016/
j.envres.2016.02.009. [PubMed: 26891939] 

Signes-Pastor AJ, Carey M, Vioque J, Navarrete-Muñoz EM, Rodríguez-Dehli C, Tardón A, Begoña-
Zubero M, Santa-Marina L, Vrijheid M, Casas M, Llop S, Gonzalez-Palacios S, Meharg AA, 
2017a. Urinary arsenic speciation in children and pregnant women from Spain. Exposure and 
Health 9, 105–111. 10.1007/s12403-016-0225-7. [PubMed: 28553665] 

Signes-Pastor AJ, Punshon T, Cottingham KL, Jackson BP, Sayarath V, Gilbert-Diamond D, Korrick S, 
Karagas MR, 2020. Arsenic exposure in relation to apple consumption among infants in the New 
Hampshire birth cohort study. Exposure and Health. 10.1007/s12403-020-00356-7.

Signes-Pastor AJ, Vioque J, Navarrete-Muñoz EM, Carey M, García de la Hera M, Sunyer J, Casas M, 
Riaño-Galán I, Tardón A, Llop S, Amorós R, Karagas MR, Meharg AA, 2017b. Concentrations of 
urinary arsenic species in relation to rice and seafood consumption among children living in Spain. 
Environ. Res 159, 69–75. 10.1016/j.envres.2017.07.046. [PubMed: 28772151] 

Signes-Pastor AJ, Vioque J, Navarrete-Muñoz EM, Carey M, García-Villarino M, Fernández-Somoano 
A, Tardón A, Santa-Marina L, Irizar A, Casas M, Guxens M, Llop S, Soler-Blasco R, García-de-
la-Hera M, Karagas MR, Meharg AA, 2019. Inorganic arsenic exposure and neuropsychological 
development of children of 4–5 years of age living in Spain. Environ. Res 174, 135–142. 10.1016/
j.envres.2019.04.028. [PubMed: 31075694] 

Signes-Pastor AJ, Woodside JV, Mcmullan P, Mullan K, Carey M, Karagas MR, Meharg AA, 2017c. 
Levels of Infants’ Urinary Arsenic Metabolites Related to Formula Feeding and Weaning with 
Rice Products Exceeding the EU Inorganic Arsenic Standard. 10.1371/journal.pone.0176923.

Singh AP, Goel RK, Kaur T, 2011. Mechanisms pertaining to arsenic toxicity. Toxicol. Int 18, 87–93. 
10.4103/0971-6580.84258. [PubMed: 21976811] 

Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J, Durán V, Cuevas S, García J, Meza R, 
Valdés R, Valdés G, Benítez H, Van Der Linde V, Villagra V, Cantor KP, Moore LE, Perez 
SG, Steinmaus S, Smith AH, 2014. Increased lung and bladder cancer incidence in adults 
after in utero and early-life arsenic exposure. Cancer Epidemiol. Biomark. Prev 23, 1529–1538. 
10.1158/1055-9965.EPI-14-0059.

Textor J, Zander BVD, Gilthorpe MS, Li M, Ellison GTH, 2017. Robust Causal Inference Using 
Directed Acyclic Graphs: the R Package ’dagitty’ - White Rose Research Online.

Tofail F, Vahter M, Hamadani JD, Nermell B, Huda SN, Yunus M, Rahman M, Grantham-McGregor 
SM, 2009. Effect of arsenic exposure during pregnancy on infant development at 7 months in 
rural matlab, Bangladesh. Environ. Health Perspect 117, 288–293. 10.1289/ehp.11670. [PubMed: 
19270801] 

Tolins M, Ruchirawat M, Landrigan P, 2014. The developmental neurotoxicity of arsenic: cognitive 
and behavioral consequences of early life exposure. Ann. Glob. Health 80, 303–314. 10.1016/
j.aogh.2014.09.005. [PubMed: 25459332] 

Tsai SY, Chou HY, The HW, Chen CM, Chen CJ, 2003. The effects of chronic arsenic exposure from 
drinking water on the neurobehavioral development in adolescence. In: NeuroToxicology. Elsevier, 
pp. 747–753. 10.1016/S0161-813X(03)00029-9.

Tseng CH, 2009. A review on environmental factors regulating arsenic methylation in humans. 
Toxicol. Appl. Pharmacol 235, 338–350. 10.1016/j.taap.2008.12.016. [PubMed: 19168087] 

Tsuji JS, Garry MR, Perez V, Chang ET, 2015. Low-level arsenic exposure and developmental 
neurotoxicity in children: a systematic review and risk assessment. Toxicology 337, 91–107. 
10.1016/j.tox.2015.09.002. [PubMed: 26388044] 

US EPA, 2012. US Environmental Protection Agency: 2012 Edition of the Drinking Water Standards 
and Health Advisories, pp. 2–6, 2012 Edition of the Drinking Water Standards and Health 
Advisories.

Vahter M, 2009. Effects of arsenic on maternal and fetal health. Annu. Rev. Nutr 29, 381–399. 
10.1146/annurev-nutr-080508-141102. [PubMed: 19575603] 

Signes-Pastor et al. Page 14

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vahter M, 2008. Health effects of early life exposure to arsenic. Basic Clin. Pharmacol. Toxicol 102, 
204–211. 10.1111/j.1742-7843.2007.00168.x. [PubMed: 18226075] 

Vahter M, 2002. Mechanisms of arsenic biotransformation. Toxicology 181–182, 211–217. 10.1016/
S0300-483X(02)00285-8.

Vahter M, Skröder H, Rahman SM, Levi M, Derakhshani Hamadani J, Kippler M, 2020. Prenatal and 
childhood arsenic exposure through drinking water and food and cognitive abilities at 10 years of 
age: a prospective cohort study. Environ. Int 139, 105723 10.1016/j.envint.2020.105723. [PubMed: 
32298878] 

Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, Kile ML, Quamruzzaman 
Q, Afroz S, Golam M, Amarasiriwardena C, Bellinger DC, Christiani DC, Coull BA, Wright 
RO, Henn BC, Rodrigues E, Sharif OIA, Kile ML, Quamruzzaman Q, Afroz S, Golam M, 
Amarasiriwardena C, Bellinger DC, Christiani DC, Coull BA, Wright RO, 2017. The joint effect 
of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 Months of age: 
evidence from rural Bangladesh. Environ. Health Perspect 125, 1–11. 10.1289/EHP614. [PubMed: 
27384039] 

Wang B, Liu J, Liu B, Liu X, Yu X, 2018. Prenatal exposure to arsenic and neurobehavioral 
development of newborns in China. Environ. Int 121, 421–427. 10.1016/j.envint.2018.09.031. 
[PubMed: 30261463] 

Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP, Zhang XD, Han LL, Qiao XY, Wu ZM, Wang 
ZQ, 2007. Arsenic and fluoride expose in drinking water: children’s IQ and growth in Shanyin 
Country, Shanxi Province, China. Environ. Health Perspect 115, 643–647. 10.1289/ehp.9270. 
[PubMed: 17450237] 

Wasserman GA, Liu X, LoIacono NJ, Kline J, Factor-Litvak P, Van Geen A, Mey JL, Levy D, 
Abramson R, Schwartz A, Graziano JH, 2014. A cross-sectional study of well water arsenic 
and child IQ in Maine schoolchildren. Environ. Health: Glob. Access Sci. Source 13, 1–10. 
10.1186/1476-069X-13-23.

Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, LoIacono 
NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH, Lolacono NJ, Cheng Z, Hussain I, Momotaj 
H, Graziano JH, 2004. Water arsenic exposure and children’s intellectual function in Araihazar, 
Bangladesh. Environ. Health Perspect 112, 1329–1333. 10.1289/EHP.6964. [PubMed: 15345348] 

Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, 
Lolacono NJ, Levy D, Cheng Z, Graziano JH, 2007. Water arsenic exposure and intellectual 
function in 6-year-old children in Araihazar, Bangladesh. Environ. Health Perspect 115, 285–289. 
10.1289/ehp.9501. [PubMed: 17384779] 

Wasserman GA, Liu X, Parvez F, Chen Y, Factor-Litvak P, LoIacono NJ, Levy D, Shahriar H, Uddin 
MN, Islam T, Lomax A, Saxena R, Gibson EA, Kioumourtzoglou MA, Balac O, Sanchez T, 
Kline JK, Santiago D, Ellis T, van Geen A, Graziano JH, 2018. A cross-sectional study of water 
arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ. Int 
118, 304–313. 10.1016/j.envint.2018.05.037. [PubMed: 29933234] 

Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Ahsan H, Levy D, Kline J, van Geen A, Mey 
J, Slavkovich V, Siddique AB, Islam T, Graziano JH, 2011. Arsenic and manganese exposure 
and children’s intellectual function. Neurotoxicology 32, 450–457. 10.1016/j.neuro.2011.03.009. 
[PubMed: 21453724] 

Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Kline J, Siddique AB, Shahriar H, Uddin MN, 
van Geen A, Mey JL, Balac O, Graziano JH, 2016. Child intelligence and reductions in water 
arsenic and manganese: a two-year follow-up study in Bangladesh. Environ. Health Perspect 124, 
1114–1120. 10.1289/ehp.1509974. [PubMed: 26713676] 

Wechsler D, 2004. Wechsler Preschool and Primary Scale (WPPSI-III) of Intelligence. The 
Psychological Corporation, San Antonio.

Wechsler D, 2003. Wechsler Intelligence Scale (WISC-IV) for Children. The Psychological 
Corporation., San Antonio.

WHO, 2017. Guidelines for Drinking-Water Quality, fourth ed. 1st addendum. WHO.

WHO, 2011. WHO guidelines for drinking-water quality. WHO Chron. 38, 104–108. 10.1016/
S1462-0758(00)00006-6.

Signes-Pastor et al. Page 15

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WHO, 2001. In: Environmental Health Criteria 224 Arsenic and Arsenic Compounds, second ed. 
World Health Organization Geneva, pp. 1–66.

Zhou T, Guo J, Zhang J, Xiao H, Qi X, Wu C, Chang X, Zhang Y, Liu Q, Zhou Z, 2020. Sex-Specific 
differences in cognitive abilities associated with childhood cadmium and manganese exposures 
in school-age children: a prospective cohort study. Biol. Trace Elem. Res 193, 89–99. 10.1007/
s12011-019-01703-9. [PubMed: 30977088] 

Signes-Pastor et al. Page 16

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Estimated beta coefficients and 95% CIs for child cognitive scores by a doubling increase 

in maternal prenatal arsenic concentrations (∑As), HOME Study among all women (n = 

260) and among women with urinary arsenobetaine concentration <1 μg/L suggesting little, 

or no fish/seafood consumption (n = 167). All estimates are adjusted for household income, 

maternal race, maternal age at delivery, maternal intelligence quotient measured by Wechsler 

Abbreviated Scale of Intelligence, maternal pre-pregnancy body mass index (kg/m2), log10-

average serum cotinine in pregnancy (smoking), log10-urinary creatinine, HOME score, and 
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child sex. Models for primary and secondary methylation indices are further adjusted for 

sum of maternal urinary arsenic concentrations (∑As).

Signes-Pastor et al. Page 18

Int J Hyg Environ Health. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Signes-Pastor et al. Page 19

Table 1

Maternal urinary arsenic concentrations (∑As) in pregnancy according to maternal and children’s factors, 

HOME Study.

Characteristics n (%)
a ∑As (μg/L) Median (IQR)

b

All participants 260 (100) 3.63 (2.40–5.86)

Maternal age at delivery (years)

 < 25 47 (18) 4.62 (2.82–6.39)

 25-34 173 (67) 3.52 (2.43–5.56)

≥ 35 40 (15) 3.33 (1.78–6.60)

Maternal race/ethnicity

 Non-Hispanic white 185 (71) 3.16 (2.23–5.27)

 Non-Hispanic black and others 75 (29) 5.17 (3.34–7.22)

Maternal education

 High school or less 42 (16) 5.59 (2.93–7.65)

 Some college or 2-year degree 62 (24) 3.86 (2.82–5.26)

 Bachelor’s 92 (36) 3.18 (2.32–6.40)

 Graduate or professional 64 (25) 3.20 (2.14–4.86)

Maternal marital status

 Married or living with partner 224 (86) 3.48 (2.32–5.63)

 Not married and living alone 36 (14) 5.06 (3.10–6.95)

Household income

 < $20,000 41 (16) 5.28 (3.00–7.27)

 $20,000–79,999 137 (53) 3.63 (2.54–5.43)

 ≥ $80,000 82 (32) 3.07 (2.14–5.86)

Child sex

 Male 119 (46) 3.74 (2.43–6.39)

 Female 141 (54) 3.61 (2.40–5.63)

a
At enrollment.

b
Sum of iAs (arsenate + arsenite), MMA and DMA.
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