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Abstract

Large-scale, reproducible manufacturing of therapeutic cells with consistently high

quality is vital for translation to clinically effective and widely accessible cell thera-

pies. However, the biological and logistical complexity of manufacturing a living prod-

uct, including challenges associated with their inherent variability and uncertainties

of process parameters, currently make it difficult to achieve predictable cell-product

quality. Using a degradable microscaffold-based T-cell process, we developed an arti-

ficial intelligence (AI)-driven experimental-computational platform to identify a set of

critical process parameters and critical quality attributes from heterogeneous, high-

dimensional, time-dependent multiomics data, measurable during early stages of

manufacturing and predictive of end-of-manufacturing product quality. Sequential,

design-of-experiment-based studies, coupled with an agnostic machine-learning

framework, were used to extract feature combinations from early in-culture media

assessment that were highly predictive of the end-product CD4/CD8 ratio and total

live CD4+ and CD8+ naïve and central memory T cells (CD63L+CCR7+). Our results

demonstrate a broadly applicable platform tool to predict end-product quality and

composition from early time point in-process measurements during therapeutic cell

manufacturing.
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1 | INTRODUCTION

T-cell-based immunotherapies have received great interest from clini-

cians and industry due to their potential to treat, and often function-

ally cure some hematological cancers and their potential applicability

in many other diseases.1,2 Since 2017, four genetically modified
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autologous Chimeric Antigen Receptor (CAR) T-cell therapies

(Yescarta™, Kymriah™, Tecartus™, and Breyanzi®) have received

approval from the U.S. Food and Drug Administration to treat certain

B-cell malignancies. Despite these successes, T-cell-based immuno-

therapies are constrained by time-intensive, high cost, complex

manufacturing processes that are time-intensive, expensive, and diffi-

cult to scale3,4 and lack methods and tools to predict the end-product

quality during manufacturing. Quality assessment is performed only at

the end of manufacturing which takes many days. Identification of

early putative critical quality attributes (CQAs) and the associated crit-

ical process parameters (CPPs) that can be measured nondestructively

during culture and can predict end-product attributes early in the

manufacturing timeline could be transformative for the cell therapy

field.

Translating laboratory-scale T-cell expansion experiments into a

large-scale manufacturing process is hindered by the incomplete

understanding of cell properties and how they are affected by process

variables, lack of detailed characterization, and high variability of

materials during manufacturing.5 These challenges of manufacturing a

“living product” are further magnified since current chemistry,

manufacturing, and control, analytics, regulations, and product specifi-

cations are designed for conventional chemical and biopharmaceutical

manufacturing systems.6 This underscores the need to develop inno-

vative tools, methods, and standards to ensure appropriate quality

controls, and new strategies involving quality by design and good

manufacturing practices for cell-based therapies.7–9 The intricate

manufacturing process for T cells and other cell therapies must be

deeply assessed and appropriately controlled to ensure scalability,

predictability, and a high-quality manufacturing process at the most

reasonable cost. A key step for reaching this goal is to identify puta-

tive CQAs and CPPs early in the manufacturing process that can pre-

dict the quality of the manufactured cell-therapy product. We

hypothesized that rigorous characterization of process parameters

along with longitudinal measurements of cell-secreted cytokine, che-

mokine, and metabolites from the culture media early during

manufacturing will allow us to develop an artificial intelligence (AI)-

based mathematical-computational framework for the identification

of multivariate parameters that are predictive of the end-of-

manufacturing product phenotypes.

Characterization studies of approved autologous anti-CD19

CAR-T cell therapies have recently revealed initial sets of candi-

date quality attributes, that is, percent transduction, vector copy

number, and interferon-γ production for axicabtagene ciloleucel

(Yescarta™),10 while CAR expression and release of interferon-γ are

a few of those identified for tisagenlecleucel (Kymriah™).11 Many of

these attributes are calculated as endpoint responses and thus a

deeper understanding of the cell growth process impacted by

starting conditions and performance during their manufacturing is

essential. Hence, CQAs that enable early monitoring through real-

time process measurements such as multiomics cell characterization

can overcome current challenges in assessing product consistency.

Yet, the computational complexity of dealing with the heterogeneity

and multivariate nature of multiomics measurements to characterize

T-cell quality, that is, high-definition phenotyping of naïve and mem-

ory subsets, remains a challenge.

Generally, T cells with a lower differentiation state such as naïve

and stem cell or central memory cells have been shown to provide

superior anti-tumor potency, presumably due to their higher potential

to replicate, migrate, and engraft, leading to a long-term, durable

response.12–15 Likewise, CD4 T cells are similarly important to anti-

tumor potency due to their cytokine release properties and ability to

resist exhaustion.16,17 Our group has developed a novel degradable

microscaffold (DMS)-based method using porous microcarriers

functionalized with anti-CD3 and anti-CD28 mAbs for use in T-cell

expansion cultures. We showed that compared to commercially avail-

able microbeads (Miltenyi), DMSs generated a higher number of

migratory naïve (TN) and central memory (TCM) (CCR7+CD62L+) T

cells and CD4+ T cells across multiple donors.18 We used this

manufacturing process as an exemplar to develop an experimental-

computational AI-based tool to predict product quality from early pro-

cess measurements. This two-phase approach consists of (1) the opti-

mization of process parameters through experimental designs, and

(2) the extraction of early predictive signatures of T-cell quality by

multiomics integration using regression models. This agnostic compu-

tational approach provides a platform to discover early predictive

CQAs and CPPs to ensure consistent product quality that can be

widely applicable for other cellular therapies.

2 | RESULTS

2.1 | Overall multiomics study design

T cells were expanded ex vivo for 14 days and 100 μl of supernatant

media samples were collected at days 4, 6, 8, 11, and 14 to measure

cytokine profiles and perform nuclear magnetic resonance (NMR)

analysis. Endpoint responses on DMS-based T-cell extracts were mea-

sured for different combinations of DMS parameters: IL2 concentra-

tion, DMS concentration, and functionalized antibody percent. Two

experimental regions were determined using a design-of-experiments

(DOE) methodology to maximize the yields of CD62L+CCR7+ cells

(i.e., naïve and central memory T cells, TN + TCM) as a function of

these process parameters. The first DOE resulted in a randomized

18-run I-optimal custom design where each DMS parameter was eval-

uated at three levels. To further optimize this DOE in terms of total

live CD4+ TN + TCM cells, a sequential adaptive design-of-experiment

(ADOE) was designed with 12 additional samples (Figure 1b). All

30 runs from both experiments (DOE, ADOE) were molecularly char-

acterized to model total live TN + TCM (a) CD4+, (b) CD8+, and

(c) their ratio (Supporting Figure S1). The extraction of early predictive

CPPs and CQAs for the expansion of TN + TCM cells during ex vivo

culture was performed in two phases: (1) optimization of process

parameters and (2) integration of multiomics for predictive modeling

(Figure 1).
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F IGURE 1 Two-phase approach to extract early predictive critical process parameters (CPPs) and critical quality attributes (CQAs) for CD4+/
CD8+ TN + TCM cells. (a) Design-of-experiment (DOE) modeling and optimization of process parameters. (b) Experimental region studied and
optimized for total live CD4+ TN + TCM cells. (c) Total live CD4+ TN + TCM cells across the overall study design (two experiments varying process
parameters). (d) Integrative multiomics approach through (e) a machine learning consensus analysis to identify early predictive CPPs and CQAs
putative candidates for both total live CD4+ and CD8+ TN + TCM cells

TABLE 1 LOO-R2 prediction
performance results for all machine
learning (ML) models when evaluating
process parameters, and features from
cytokine and nuclear magnetic resonance
(NMR) media analysis at day 6 or day 4

LOO-R2 ML

Response/predictors SR RF GBM CIF LASSO PLSR SVM

Ratio of CD4 to CD8 TN + TCM cells

PP + N4 99% 86.8% 96.3% 84.5% 88.6% 92.5% 88.5%

PP + N6 99% 73.6% 95.9% 70.1% 81.0% 95.8% 79.7%

PP + S6 99% 87.1% 99.9% 83.4% 87.2% 97.9% 86.8%

PP + S6 + N6 99% 85.5% 95.3% 83.4% 92.9% 99.7% 90.5%

Total live CD4+ TN + TCM cells

PP + N4 97% 67.0% 93.6% 69.3% 34.3% 90.1% 75.5%

PP + N6 96% 45.9% 92.6% 51.2% 42.8% 92.1% 79.4%

PP + S6 98% 71.4% 99.9% 75.0% 74.9% 80.0% 75.5%

PP + S6 + N6 98% 68.2% 95.6% 74.4% 72.5% 81.7% 77.0%

Total live CD8+ TN + TCM cells

PP + N4 93% 4.7% 44.4% 9.2% 1.2% 65.1% 9.1%

PP + N6 86% 2.0% 29.9% 15.8% 28.5% 63.3% 30.6%

PP + S6 93% 7.8% 28.0% 15.1% 76.2% 98.4% 49.8%

PP + S6 + N6 93% 0.3% 32.7% 9.8% 51.5% 96.4% 37.8%

Notes: ML models' prediction performance is measured as the leave-one-out cross-validated R2 (LOO-R2)

while SR prediction performance is measured as R2 of the ensemble prediction where the ensemble

is composed of diverse models with complexity constrained. Predictors evaluated: (PP) Process

parameters, (N) NMR, (S) Cytokines measured at day 4 or 6. Maximum R2 within each ML method are

shown in bold.
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2.2 | Optimization of TN + TCM cells as a function
of process parameters

Using symbolic regression (Data Modeler software from Evolved Ana-

lytics LLC), we examined the interactive effects of the DMS parame-

ters on yield to simultaneously predict and optimize both CD4+ and

CD8+ TN + TCM. A model ensemble predicted 4.2 � 106 CD4+

TN + TCM cells at an optimum setting of 30 U/μl IL2, 2500 carriers/μl,

and 100% functionalized mAbs (Supporting Figure S2). This result was

consistent with the observed maximum value of 4.0 � 106, highlight-

ing that CD4+ TN + TCM yield was maximized at high levels of DMS

parameters (Figure 1b). In contrast, the predicted optimum yield for

CD8+ TN + TCM was 1.9 � 107 cells at a setting of 30 U/μl IL2,

600 carriers/μl, and 100% functionalized mAbs (data not shown).

Although this combination was not experimentally tested, the closest

measured record (30 U/μl IL2, 500 carriers/μl, 100% functionalized

mAbs) achieved the predicted maximum yield. Hence, the CD8+

TN + TCM yield was maximized at high IL2 concentration and

functionalized mAbs percentage but low DMS concentration.

The DOE analysis highlighted the potential for further optimiza-

tion of total live CD4+ TN + TCM cells, as well as the potential to opti-

mize the CD4+ to CD8+ TN + TCM cells ratio, at DMS levels greater

than those originally evaluated (DOE). Therefore, to test and validate,

a second adaptive design of experiment (ADOE) was designed to max-

imize the total live CD4+ TN + TCM cells. We expanded the parameter

range, assessing IL2 concentration >30 U/μl and DMS concentration

F IGURE 2 Multiomics culturing media prediction profiles of highly predictive features for early monitoring of T-cell manufacturing. (a)
Prediction model profiles from day 6 cultured media monitoring where total live CD4+ TN + TCM is maximized. (b) Machine learning (ML) models
consensus for ratio CD4+ to CD8+ TN + TCM cells, and (c) ML models consensus for total live CD4+ TN + TCM cells. Feature names are shown for
consensus with 5 or more ML models at the highest-ranking standing (see the Materials and Methods section)
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>2500 carriers/μl (Figure 1b). CD4+ TN + TCM and its ratio to CD8+

TN+ TCM, 4.7 � 106 cell and 0.49 respectively, were maximized when

IL2 concentration (40 U/μl) and DMS concentration (3500 carriers/μl)

were maximized (Figure 1b; Supporting Table S1; Figure S2). Utilizing

the ADOE data set, new response ensembles were generated enabling

more robust prediction over the expanded parameter space ("IL2 and

"DMS concentrations).

2.3 | Multiomic integrative analysis for early
monitoring of T-cell manufacturing

Due to the heterogeneity of the multivariate data collected and know-

ing that no single model structure is perfect for all applications, we

implemented an agnostic modeling approach to better understand

these TN + TCM responses. To achieve this, a consensus analysis using

seven machine learning (ML) techniques, random forest (RF), gradient

boosted machine (GBM), conditional inference forest (CIF), least abso-

lute shrinkage and selection operator (LASSO), partial least-squares

regression (PLSR), support vector machine (SVM), and data modeler's

symbolic regression (SR), was implemented to molecularly characterize

TN + TCM cells and to extract predictive features of quality early on

their expansion process (Figure 1d,e).

SR models achieved the highest predictive performance

(R2 > 93%) when using multiomics predictors for all endpoint

responses (Table 1). SR achieved R2 > 98%, while GBM tree-based

ensembles showed leave-one-out cross-validated R2 (LOO-R2) >95%

for CD4+ and CD4+/CD8+ TN + TCM responses. Similarly, LASSO,

PLSR, and SVM methods showed consistent high LOO-R2, 92.9%,

99.7%, and 90.5%, respectively, to predict the CD4+/CD8+ TN + TCM.

Yet, about 10% reduction in LOO-R2, 72.5%–81.7%, was observed for

CD4+ TN + TCM with these three methods. Lastly, SR and PLSR

achieved R2 > 90% while other ML methods exhibited exceedingly vari-

able LOO-R2 (0.3%, RF-51.5%, LASSO) for CD8+ TN + TCM cells. The

top-performing technique, SR, showed that the median aggregated pre-

dictions for total live CD4+ and CD8+ TN + TCM cells increases when

IL2 concentration, IL15, and IL2R increase, while IL17a decreases in

conjunction with other interactive features. These patterns combined

with low values of DMS concentration and GM_CSF uniquely charac-

terized maximum CD8+ TN + TCM. Meanwhile, higher glycine but lower

IL13 in combination with others showed maximum CD4+ TN + TCM

predictions (Figure 2a).

Selecting CPPs and CQAs candidates consistently for T-cell mem-

ory across different models is desired. Here, TNFα was found in con-

sensus across all seven ML methods for predicting CD4+/CD8+

TN + TCM when considering features with the highest importance

scores across models (Figure 2b; Materials and Methods section).

Other features, IL2R, IL4, IL17a, and DMS concentration, were com-

monly selected in ≥5 ML methods (Figure 2b,c). Moreover, IL13 and

IL15 were found predictive in combination with these using SR

(Table S2).

This integrative analysis of cytokine and NMR media analysis

monitored at early stages of the T-cell process provided highly predic-

tive feature combinations of end-product quality particularly for total

live TN + TCM CD4+ cells and CD4+/CD8+ ratio as shown in

Figure 3a,b. However, when translating a real-time monitoring strat-

egy to a large-scale manufacturing process, measuring both cytokine

and NMR features from media can be difficult and expensive. To be

F IGURE 3 Uniform manifold approximation and projection (UMAP) clustering in 2D (X1, X2) of T-cell samples from early predictive from
nuclear magnetic resonance (NMR) and cytokine media features at day 6 of T-cell culturing (formate, lactate, histidine, ethanol, dimethylamine,
branch chain amino acids (BCAAs), glucose, glutamine, TNFα, IL2R, IL4, IL17a, IL13, IL15, and GM-CSF): for (a) ratio CD4+ to CD8+ TN + TCM,
(b) total live CD4+ TN + TCM cells, and (c) total live CD8+ TN + TCM cells
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cost-efficient and translatable, we demonstrated that either cytokine

profiles or NMR media analysis alone is sufficient to find predictive

features without compromising prediction performance.

2.4 | Single-omics media analysis for early
prediction

ML models using solely media cytokine profiles at day 6 reached simi-

lar or higher R2 than those of the multiomics models (CD4+ TN + TCM:

71.4%–99.9%; CD4+/CD8+: 83.4%–99.7%). However, CD8+

TN + TCM still had variable LOO-R2, 7.8%–93%. Overall, higher cyto-

kine media profiles showed higher CD4+ TN + TCM and consequently

its ratio with CD8+ (Figure 4a). This behavior was evident, even

beyond day 6, for TNFα, IL2R, IL17a, and IL4 which were frequently

selected as predictive features across models (Figures 4b,c and S3g–i).

A more complex behavior was detected for CD8+ TN + TCM which

cannot be explained by cytokine secretion alone (Figure 4d).

Models using only NMR media intensities on day 6 revealed an

R2 decrease of 8.8% and 11.1%, on average, compared with the

F IGURE 4 General characteristics of cytokine media profiles. (a) Heatmap for cytokine profiles from media samples on day 6. Expression in
picograms/milliliter across time points for relevant cytokine features for (b) ratio CD4+ to CD8+ TN + TCM cells, (c) total live CD4+ TN + TCM
cells, and (d) total live CD8+ TN + TCM cells
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multiomics and cytokine models, respectively. Yet, SR, GBM, and

PLSR reached high LOO-R2 (92.1%–99%), specifically for CD4+/

CD8+ and CD4+ TN + TCM. Although good prediction was achieved

with NMR media analysis on day 6, we obtain slightly better predic-

tions with NMR media analysis on day 4 (Table 1). From these

models, formate, lactate, DMS concentration were highly ranked to

predict both, ratio CD4+/CD8+ and CD4+ TN + TCM (Figure S3a–f ).

Some variable combinations also contained histidine, ethanol,

dimethylamine, branch chain amino acids (BCAAs), glucose, and

glutamine (Table S3). Lower intensity values for BCAAs, dim-

ethylamine, glucose, and glutamine displayed higher CD4+

TN + TCM cells across the different media monitoring times

(Figure S5a). Inversely, higher intensities of formate and lactate

showed higher CD4+ TN + TCM and its ratio with CD8+ consistently

across time (Figure 5a,b).

The initial screening of a few samples from a different experimen-

tal batch shows much lower values of TN + TCM responses but main-

tains a similar NMR and cytokine media patterns as the DOE and

ADOE experiments (lower value intensities/secretion, lower

TN + TCM response) in terms of the total live TN + TCM cells for CD4+

and CD8+. However, the decay in total live TN + TCM cells for CD8+

is much rapid than CD4+ which makes the ratio behave in a more

complex behavior (Figures S7 and S8).

3 | DISCUSSION

CPP's understanding is critical to new product development and,

especially in cell therapy development, it can have life-saving implica-

tions. The challenges for effective modeling grow with the increasing

complexity of processes due to high dimensionality, and the potential

for process interactions and nonlinear relationships. Another critical

challenge is the limited amount of available data, mostly small DOE

data sets. SR has the necessary capabilities to resolve the issues of

process effects modeling and has been applied across multiple

industries.21 SR discovers mathematical expressions that fit a given

sample and differs from conventional regression techniques in that a

model structure is not defined a priori.22 Hence, a key advantage

of this methodology is that transparent, human-interpretable models

can be generated from small and large data sets with no prior

assumptions.23,24

Since the model search process lets the data determine the

model, diverse and competitive (e.g., accuracy and complexity) model

structures are typically discovered. An ensemble of diverse models

can be formed where its constituent models will tend to agree when

constrained by observed data yet diverge in new regions. Collecting

data in these regions helps to ensure that the target system is accu-

rately modeled, and its optimum is accurately located.23,24 Exploiting

F IGURE 5 Top-performing features nuclear magnetic resonance (NMR) media analysis. NMR intensities in arbitrary units (AU) across time
points for (a) ratio CD4+/CD8+ TN + TCM cells, and (b) total live CD4+ TN + TCM cells. (c) Simulation of 1H NMR spectrum shows the potential to
detect multiple predictive features at lower magnetic fields. Overlay of a pooled experimental spectrum of T-cell culture medium (green) and
GISSMO19,20 simulated spectrum (blue), composed of 19 compounds that reasonably approximate the experimental spectrum acquired at
600 MHz. Asterisk indicates an unknown feature of high intensity that was simulated with 2,3-dimethylamine (blue feature to right). Annotated
features in the spectrum correspond to those identified as being highly predictive of output responses across computational methods.
(d) GISSMO19,20 simulated spectrum at 80 MHz, corresponding to a field strength of commercially available benchtop NMR systems
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these features allows adaptive data collection and interactive model-

ing. Consequently, this adaptive-DOE approach is useful in a variety

of scenarios, including maximizing model validity for model-based

decision making, optimizing processing parameters to maximize target

yields, and developing emulators for online optimization and human

understanding.23,24

An in-depth characterization of potential DMS-based T-cell CQAs

includes a list of cytokine and NMR features from media samples that

are crucial in many aspects of T-cell fate decisions and effector func-

tions of immune cells. Cytokine features were observed to slightly

improve prediction and dominated the ranking of important features

and variable combinations when modeling together with NMR media

analysis and process parameters (Figure 2a,b). Predictive cytokine fea-

tures such as TNFα, IL2R, IL4, IL17a, IL13, and IL15 were biologically

assessed in terms of their known functions and activities associated

with T cells. T helper cells secrete more cytokines than T cytotoxic

cells, as per their main functions, and activated T cells secrete more

cytokines than resting T cells. It is possible that some cytokines simply

reflect the CD4+/CD8+ ratio and the activation degree by proxy pro-

liferation. However, the exact ratio of expected cytokine abundance is

less clear and depends on the subtypes present, and thus examination

of each relevant cytokine is needed.

IL2R is secreted by activated T cells and binds to IL2, acting as a

sink to dampen its effect on T cells.25 Since IL2R was much greater

than IL2 in solution, this might reduce the overall effect of IL2, which

could be further investigated by blocking IL2R with an antibody. In T

cells, TNF can increase IL2R, proliferation, and cytokine produc-

tion.25 It may also induce apoptosis depending on concentration and

alter the CD4+ to CD8+ ratio.26 Given that TNF has both a soluble

and membrane-bound form, this may either increase or decrease

CD4+ ratio and/or memory T cells depending on the ratio of the

membrane to soluble TNF.27 Since only soluble TNF was measured,

membrane TNF is needed to understand its impact on both CD4+

ratio and memory T cells. Furthermore, IL13 is known to be critical

for Th2 response and therefore could be secreted if there are signifi-

cant Th2 T cells already present in the starting population.28 This

cytokine has limited signaling in T cells and is thought to be more of

an effector than a differentiation cytokine.29 This feature might be

emerging as relevant due to an initially large number of Th2 cells or

because Th2 cells were preferentially expanded; indeed, IL4 is the

conical cytokine that induces Th2 cell differentiation and was

observed to be an important variable (Figure 2b,c). The role of these

cytokines could be investigated by quantifying the Th1/2/17 subsets

both in the starting population and longitudinally. Similar to IL13,

IL17 is an effector cytokine produced by Th17 cells30 thus may

reflect the number of Th17 subset of T cells. GM-CSF has been

linked with activated T cells, specifically Th17 cells, but it is not clear

if this cytokine is inducing differential expansion of CD8+ T cells or

if it is simply a covariate with another cytokine inducing this expan-

sion.31 Finally, IL15 has been shown to be essential for memory sig-

naling and effective in skewing CAR-T cells toward the Tscm

phenotype when using membrane-bound IL15Ra and IL15R.32 Its

high predictive behavior goes with its ability to induce large numbers

of memory T cells by functioning in an autocrine/paracrine manner

and could be explored by blocking either the cytokine or its

receptor.

Similarly, literature suggests that many of the predictive metabo-

lites found here are consistent with metabolic activity associated with

T-cell activation and differentiation, yet it is not clear how the various

combinations of metabolites relate with each other in a heteroge-

neous cell population and should be explored. Formate and lactate

were found to be highly predictive and observed to positively corre-

late with higher values of total live CD4+ TN + TCM cells (Figures 5a,b

and S6). Formate is a byproduct of the one-carbon cycle implicated in

promoting T-cell activation.33 Importantly, this cycle occurs between

the cytosol and mitochondria of cells and formate excreted.34 Mito-

chondrial biogenesis and function have been shown necessary for

memory cell persistence.35,36 Therefore, increased formate in media

could be an indicator of one-carbon metabolism and mitochondrial

activity in the culture.

In addition to formate, lactate was found as a putative CQA of

TN + TCM. Lactate is the end-product of aerobic glycolysis, character-

istic of highly proliferating cells and activated T cells.37,38 Glucose

import and glycolytic genes are immediately upregulated in response

to T-cell stimulation and thus the generation of lactate. At earlier time

points, this abundance suggests a more robust induction of glycolysis

and higher overall T-cell proliferation. Interestingly, our models indi-

cate that higher lactate predicts higher CD4+, both in total and in pro-

portion to CD8+, seemingly contrary to previous studies showing that

CD8+ T cells rely more on glycolysis for proliferation following activa-

tion.39 It may be that glycolytic cells dominate in the culture at the

early time points used for prediction, and higher lactate reflects more

cells.

Ethanol patterns are difficult to interpret since its production in

mammalian cells is still poorly understood.40 Fresh media analysis indi-

cates ethanol presence in the media used, possibly utilized as a carrier

solvent for certain formula components. However, this does not

explain the high variability and trend of ethanol abundance across

time (Figure S5). As a volatile chemical, variation could be introduced

by sample handling throughout the analysis process. Nonetheless, it is

also possible that ethanol excreted into media over time, impacting

processes regulating redox and reactive oxygen species which

have previously been shown to be crucial in T-cell signaling and

differentiation.41

Metabolites that consistently decreased over time are consistent

with the primary carbon source (glucose) and essential amino acids

(BCAA, histidine) that must be continually consumed by proliferating

cells. Moreover, the inclusion of glutamine in our predictive models

also suggests the importance of other carbon sources for certain T-

cell subpopulations. Glutamine can be used for oxidative energy

metabolism in T cells without the need for glycolysis.39 Overall, these

results are consistent with existing literature that show different T-cell

subtypes require different relative levels of glycolytic and oxidative

energy metabolism to sustain the biosynthetic and signaling needs of

their respective phenotypes.42,43 It is worth noting that the trends of

metabolite abundance here are potentially confounded by the partial
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replacement of media that occurred periodically during expansion (see

the Materials and Methods section), thus likely diluting some meta-

bolic byproducts (i.e., formate and lactate) and elevating depleted pre-

cursors (i.e., glucose and amino acids). More definitive conclusions of

metabolic activity across the expanding cell population can be

addressed by a closed system, ideally with online process sensors and

controls for formate, lactate, along with ethanol and glucose.

We demonstrated the ability to identify predictive markers using

high-magnetic field NMR spectrometers. However, these are expen-

sive, require a significant amount of resources to house and maintain,

and would be the unlikely option for routine monitoring in industrial

cell-manufacturing. Another common method, liquid chromatography

(LC) coupled to mass spectrometry, has the advantage of a relatively

smaller footprint and less upfront cost but it has other drawbacks

such as destruction of the sample and difficulty with components in

culture media that damage LC columns without extraction. Neverthe-

less, methods like continuous closed-loop sampling are being devel-

oped to address this and might be readily available in the future.44

Recently, permanent magnet-based NMR spectrometers (benchtop-

size) have become available at a lower cost. Many of these are readily

configured for flow-through reaction monitoring, which can be lever-

aged in a closed-cell manufacturing process. To explore the feasibility

of such system, we utilized a spectral simulation to evaluate if puta-

tive CQAs identified here could theoretically be observed and quanti-

fied at a magnetic field strength of 80 MHz (common commercial

benchtop systems). First, the experimental data acquired at 600 MHz

was approximated by creating a simulated mixture of identified

metabolites (Figure 5c) and then simulated at 80 MHz (Figure 5d).

While the spectral resolution is significantly reduced compared to a

spectrum at high-field, there are still numerous features that can be

attributed to unique metabolites, including those identified as highly

predictive (Figure 5c,d). Although this is promising, there will be chal-

lenges to acquiring high-quality data in a closed bioreactor system,

that is, cells/DMS-particles present in suspension, final media formu-

lation dictated by the amount of spectral complexity/overlap, and

accurate quantitation of features with high overlap from other signals.

However, a dedicated benchtop NMR coupled to a bioreactor could

provide a simple system for real-time monitoring of CQAs.

4 | CONCLUSIONS

Henceforth, this two-phase approach enabled in-depth characterization

and identification of potential CQAs and CPPs for T cells. More sampling

is needed to explore aspects like donor-to-donor variability or orthogo-

nal behaviors from failed expansions when available it can be incorpo-

rated into this workflow which will be enriched due to its data-driven

iterative design that fine-tunes model parameters as more data fit back

into it, providing a powerful framework to optimize a complex experi-

mental space during the cell-manufacturing process, and to facilitate the

identification of CPPs and early predictive CQAs from multiomics, which

can be used broadly in the cell therapy and regenerative medicine field

to accurately predict end-of-manufacturing quality at early stages.

The workflow and methods developed here could eventually

allow manufacturers to identify deviations and problems with a

manufacturing batch early during the culture and potentially imple-

ment corrective in-process controls. This could provide a more thor-

ough understanding of the process parameters and their influence on

end-product quality, and allow manufacturers to reduce batch failures,

and thus improve cost, reduce risk, and increase access to cell-based

therapies.

5 | MATERIALS AND METHODS

5.1 | Microcarrier fabrication

DMSs were fabricated as previously described.18 To vary the surface

concentration of the antibodies, the anti-CD3/anti-CD28 mAb mix-

ture was further combined with a biotinylated isotype control to

reduce the overall fraction of targeted mAbs. All mAbs were low

endotoxin azide-free (Biolegend custom, LEAF specification). The sur-

face concentration of the antibodies was quantified as previously

described using a bicinchoninic acid assay kit (Thermo Fisher

23227).18 See Supplementary Methods.

5.2 | T-cell culture including sample collection

Cryopreserved primary human T cells were obtained as sorted CD3

subpopulations (Astarte Biotech). T cells were activated by adding

DMSs (amount specified by the DOE) at day 0 of culture immedi-

ately after thaw. DMSs were not added or removed during the cul-

ture and had antibodies that were conjugated in proportions

specified by the DOE. Initial cell density was 2.0 � 106 cells/ml in a

96-well plate with 300 μl volume. Media was serum-free TexMACS

(Miltentyi Biotech 170-076-307) supplemented with recombinant

human IL2 in concentrations specified by the DOE (Peprotech

200-02). Cell cultures were expanded for 14 days as counted from

the time of initial seeding and activation. Cell counts and viability

were assessed using acridine orange/propidium iodide (AO/PI) and

a Countess Automated Cell Counter (Thermo Fisher). Media was

added to cultures every 2 days to 3 days in a 3:1 ratio (new volume:

old volume) or based on a 300 mg/dl glucose threshold. The

ADOE was done using the same feeding schedule as the initial DOE

to maintain consistency for validation. Media glucose was mea-

sured using a ChemGlass glucometer to confirm cell growth and

activation.

5.3 | Flow cytometry

At the end of culture, at least 1e5 T cells from each run were washed

with PBS once, resuspended in PBS, and stained with Zombie UV

(Biolegend, 423107) for 30 min at room temperature in the dark at a

1:1000 dilution. Cells were spun and resuspended in FACS buffer
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(1X PBS, 2% bovine serum albumin, 5 mM EDTA) and were stained

with antibodies according to Table S1 for 60 min in the dark at 4�C.

Cells were then resuspended in fresh FACS buffer, after which they

were run on a BD LSR ortessa. All stained was performed in a 96 well

v-bottom plate. See Supplementary Methods.

5.4 | Cytokine measurements

Cytokines were measured using a custom ProcartaPlex Luminex kit

(Thermo Fisher). The assay was performed using media samples taken

at various time points throughout the T-cell culture according to the

manufacturer's instructions with modifications to half the reagent

requirements. Data available at Supporting Dataset S1. See Supple-

mentary Methods.

5.5 | NMR metabolomics sample preparation

Fifty microliter of media was collected from each culture at each

time point (before media exchange, if applicable), flash-frozen in liq-

uid nitrogen, and stored at �80�C. Samples were shipped to CCRC

on dry ice for NMR analysis. Run order of samples was randomized.

Samples were prepared in two batches for each rack of NMR sam-

ples to be run. For each rack, samples were pulled and sorted on dry

ice, then thawed at 4�C for 1 h. Samples were then centrifuged at

2990 � g at 4�C for 20 min to pellet any cells or debris that may

have been collected with the media. 5 μl of 100/3 mM DSS-D6 in

deuterium oxide (Cambridge Isotope Laboratories) were added to

1.7 mm NMR tubes (Bruker BioSpin), followed by 45 μl of media

from each sample that was added and mixed, for a final volume of

50 μl in each tube. Samples were prepared on ice and in pre-

determined, randomized order. The remaining volume from each

sample in the rack (�4 μl) was combined to create an internal pool.

This material was used for internal controls within each rack as well

as metabolite annotation.

5.6 | NMR data collection and processing

NMR spectra were collected on a Bruker Avance III HD spectrometer

at 600 MHz using a 5-mm TXI cryogenic probe and TopSpin software

(Bruker BioSpin). One-dimensional spectra were collected on all sam-

ples using the noesypr1d pulse sequence under automation using

ICON NMR software. Two-dimensional (2D) HSQC and TOCSY spec-

tra were collected on internal pooled control samples for metabolite

annotation. One-dimensional spectra were manually phased and base-

line corrected in TopSpin. 2D spectra were processed in NMRpipe.45

One dimensional spectra were referenced, water/end regions

removed, and normalized with the PQN algorithm46 using an in-house

MATLAB (The MathWorks, Inc.) toolbox (https://github.com/

artedison/Edison_Lab_Shared_Metabolomics_UGA).

5.7 | NMR feature selection

To reduce the total number of spectral features from approximately

250 peaks and enrich for those that would be most useful for statisti-

cal modeling, a variance-based feature selection was performed within

MATLAB. For each digitized point on the spectrum, the variance was

calculated across all experimental samples and plotted. Clearly

resolved features corresponding to peaks in the variance spectrum

were manually binned and integrated to obtain quantitative feature

intensities across all samples (Figure S4). In addition to highly variable

features, several other clearly resolved and easily identifiable features

were selected (glucose, BCAA region, etc.). Some features were later

discovered to belong to the same metabolite but were included in fur-

ther analysis. Data are available at Dataset S1.

5.8 | Metabolite annotation

2D spectra collected on pooled samples were uploaded to COLMARm

web server,47 where HSQC peaks were automatically matched to

database peaks. HSQC matches were manually reviewed with addi-

tional 2D and proton spectra to confirm the match. Annotations were

assigned a confidence score based upon the levels of spectral data

supporting the match as previously described.48 Annotated metabo-

lites were matched to previously selected features used for statistical

analysis. Several low abundance features selected for analysis did not

have database matches and were not annotated.

5.9 | Low-field spectrum simulation

Using the list of annotated metabolites obtained above, an approxima-

tion of a representative experimental spectrum was generated using

the GISSMO mixture simulation tool.19,20 With the simulated mixture

of compounds, generated at 600 MHz to match the experimental

data, a new simulation was generated at 80 MHz to match the field

strength of commercially available benchtop NMR spectrometers. The

GISSMO tool allows visualization of signals contributed from each

individual compound as well as the mixture, which allows annotation

of features in the mixture belonging to specific compounds.

5.10 | ML modeling

Seven ML techniques were implemented to predict TN and TCM

responses related to the memory phenotype of the cultured T cells

under different process parameters conditions. The ML methods exe-

cuted were RF, GBM, CIF, LASSO, PLSR, SVM, and SR. Primarily, SR

models were used to optimize process parameter values based on

TN + TCM phenotype and to extract early predictive variable combina-

tions from the multiomics experiments. SR was done using Evolved

Analytics' Data Modeler software (Evolved Analytics LLC). While
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nonparametric tree-based ensembles were done through the

randomForest, gbm, and cforest regression functions in R, for RF, gradi-

ent boosted trees, and CIF models, respectively. Prediction perfor-

mance was evaluated using LOO-R2 and permutation-based variable

importance scores assessing % increase of mean squared errors, rela-

tive influence based on the increase of prediction error, coefficient

values for RF, GBM, and CID, respectively. Partial least squares

regression was executed using the plsr function from the pls package

in R while LASSO regression was performed using the cv.glmnet R

package, both using leave-one-out cross-validation. Finally, the

kernlab R package was used to construct the SVM regression models.

Parameter tuning was done for all models in a grid search manner

using the train function from the caret R package using LOO-R2 as the

optimization criteria. Prediction performance was measured for all

models using the final model with LOO-R2 tuned parameters. More

details at Table S2. See Supplementary Methods.

5.11 | ML consensus analysis

Consensus analysis of the relevant variables extracted from each ML

model was done to identify consistent predictive features of quality at

the early stages of manufacturing. Using importance scores, key pre-

dictive variables were selected if their importance scores were within

the 80th percentile ranking for the following ML methods: RF, GBM,

CIF, LASSO, PLSR, SVM while for SR variables present in >30% of the

top-performing SR models from Data Modeler (R2 ≥ 90%, complexity

≤100) were chosen to investigate consensus. Only variables with

those high percentile scoring values were evaluated in terms of their

logical relation (intersection across ML models). See Supplementary

Methods.
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