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Abstract

Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment
options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of
viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important
implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial
distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of
patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, we are able to
evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in
size from 4{50 infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded
the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is
seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a
proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and
accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship
between the cluster size and the estimated cluster expansion time. Our method represents a novel approach to make
inferences about infection dynamics in solid tissues from static spatial data.

Citation: Graw F, Balagopal A, Kandathil AJ, Ray SC, Thomas DL, et al. (2014) Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial
Distribution of Infected Hepatocytes. PLoS Comput Biol 10(11): e1003934. doi:10.1371/journal.pcbi.1003934

Editor: Andrew J. Yates, University of Glasgow, United Kingdom

Received March 18, 2014; Accepted September 24, 2014; Published November 13, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The data used in this manuscript have already
been published in Kandathil et al., Gastroenterology 2013. In addition, all relevant data are within the paper and its Supporting Information files.

Funding: Portions of this work were performed under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and supported by NIH
grants GM103452 (RMR, ASP), AI078881, OD011095, AI028433, and HL109334 (ASP). FG was also funded by the Center for Modeling and Simulation in the
Biosciences (BIOMS). The research is also supported by National Institute of Health (NIH) grants DA016078 (DLT and AB) and AI081544 (AB) and EY001765
(WilmerCore Grant). RMR received partial funding from the European Union and from Fundacao para a Ciencia e Tecnologia, Portugal, under grant no PCOFUND-
GA-2009-246542.604605. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: frederik.graw@bioquant.uni-heidelberg.de (FG); asp@lanl.gov (ASP)

. These authors contributed equally to this work.

Introduction

Around 170 million people worldwide are chronically infected with

hepatitis C virus (HCV), representing a major public health problem

[1]. Chronic HCV infection can lead to liver cirrhosis, hepatocellular

carcinoma and liver failure, and it represents the leading cause for

liver transplantation in Western countries [2]. Despite successful

treatment options using mostly type I interferon-a (IFN-a) or newer

direct-acting antiviral agents, several aspects of HCV infection

dynamics are still unknown. For example, does the virus propagate

preferentially by cell-to-cell transmission or via diffusion of viral

particles? Do innate immune responses interfere with the spatial

spread of the infection? And what fraction of hepatocytes are infected

during the acute and chronic stages of infection?

To answer these questions, a better understanding of the in vivo
infection process is needed. As appropriate animal models for

HCV infection are lacking, inferring in vivo infection dynamics

from clinical data has relied on mathematical models that describe

the interaction of hepatocytes with viral particles [3–8]. Mathe-

matical modeling of viral load dynamics in combination with data

on treatment with IFN-a and direct-acting antivirals has helped to

reveal and quantify aspects of the infection process, such as the

half-life of viral particles and the loss rate of infected hepatocytes

under treatment [3,6,9,10]. In addition, models have quantified

the necessary treatment efficacy to clear the virus [5,11].

Existing models have been fit to HCV RNA levels measured in

the serum of patients. Measurements of viral levels in the liver and

in particular of HCV RNA levels within cells of the liver have

generally been lacking. Advances in techniques, such as two-

photon microscopy [12,13] and laser capture microdissection [14],

now allow one to visualize and analyze HCV infection in the liver

at the cellular level. Using single cell laser capture microdissection
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(scLCM), it is possible to determine the HCV RNA content in

single hepatocytes from liver biopsies of HCV infected patients as

well as the spatial relationships among infected cells [15].

Analyzing regular grids of 10|10 hepatocytes we found that

infected hepatocytes tend to occur in clusters [15], in agreement

with other studies reporting a focal distribution of HCV RNA in

infected liver tissue [12,14,16,17]. However, patients differ in their

individual viral load, as well as in the frequency of hepatocytes

infected.

To extend our previous observation of a spatial heterogeneous

distribution of infected hepatocytes [15], we now develop statistical

methods to characterize properties of clusters of infected

hepatocytes in more detail, e.g. in terms of cluster size and

intracellular HCV RNA levels. Analyzing data from 4 chronically

infected patients [15], we find that clusters of infected cells

comprise between 4 and 50 cells in the plane of the liver biopsies.

These sizes are comparable to the range of cluster sizes observed in

in vitro experiments on Huh-7.5 cells under conditions only

allowing cell-to-cell transmission [18]. In addition, we find that the

level of intracellular viral RNA declines in infected cells at

increasing distance from the cell that presumably founded the

cluster [12,19]. Using intracellular HCV RNA content as a proxy

for the time since infection in a given cell, this suggests that cells

closer to the founder cell of the cluster have been infected for a

longer time than those in the periphery. Both of these observations

suggest that viral infection once seeded spreads locally, supporting

cell-to-cell transmission [12,20] or viral release from an infected

cell with rapid binding to and infection of neighboring cells. We

then used mathematical models to describe intracellular viral

replication and accumulation of viral RNA. Applying these models

to interpret the data, we do not find a relationship between the

observed cluster size and the estimated time that the cluster has

been expanding, suggesting that individual cellular factors might

influence cluster growth. We also estimate that the cells in the

detected clusters have been infected on average for less than a

week. This finding is consistent with previous estimates of the

mean lifetime of HCV infected cells [21,22]. Overall, our study

presents a set of novel methods to infer in vivo viral dynamics of

chronic HCV infection in the human liver based on liver biopsy

samples.

Results

Determining clusters of infected cells
In a previous analysis of two-dimensional 10|10 grids of

hepatocytes analyzed by scLCM, we obtained evidence for

clustering of HCV infected cells in the liver [15]. Determining

the size of individual clusters visually based on the actual grid data

is difficult as we are only analyzing a small fraction of tissue.

Infected cells at the edge of the sampling area might be part of a

larger cluster that extends outside the sampling region. In this

study, we apply enhanced methods of spatial statistics to the data

in order to (1) estimate the size of clusters accounting for edge

effects due to the limited sampling area, and (2) characterize the

structure of clusters of infected cells in more detail.

If hepatocytes in the liver were infected completely at random,

for example due to rapid seeding from the blood, we would expect

homogeneous infection and no clusters. Since we observe clusters

of infection [15], we make the next most parsimonious assumption

that viral spread in vivo is a combination of random spatially

scattered infection of some cells that seed the cluster (possibly from

virus in the blood) followed by predominantly random local spread

from these cells. We assume that seeding of the cluster centers

follows a Poisson process, with the mean number of clusters per

unit area equal to k, and the number of cells in each cluster also

following a Poisson process, with the mean number of cells in each

cluster equal to m. This compound Poisson spatial distribution is

called a Matérn cluster process [23,24]. A Matérn cluster process

assumes that the units of a cluster are distributed within a radial

disc with domain radius R (Figure 1A). Assuming this regular

cluster structure allows us to account for edge effects due to the

small sampling area, i.e., that only parts of a cluster were sampled

on the grid [25].

To determine individual cluster sizes, we fit a Matérn cluster

process to each of the two-dimensional 10|10 grids of

hepatocytes analyzed by scLCM to estimate the domain radius

R. We proceed by first randomly distributing the HCV RNA

content of each cell over the space occupied by the cell in the grid

and then fitting a Matérn cluster process to these spatial point

patterns (Figure 1B and Text S1), rather than fitting to the spatial

distribution of infected hepatocytes. This is done as (i) a Matérn

cluster process assumes continuous space, and (ii) because we are

also interested in the internal structure of the cluster (see below).

We note that the random distribution of HCV molecules within a

cell is an artificial construct to allow us to estimate the radius of the

cluster, when in fact HCV replication likely occurs in localized

structures in the cell (reviewed in [26]). To make sure that the

particular distribution of HCV RNA inside the infected cell does

not affect the results, we repeat the procedure of random

allocation of HCV RNA inside the cell 10,000 times, thus

obtaining that many bootstrap replicates of our data set.

With this transformation, the algorithm detects regions with

similar densities of HCV RNA. It is possible that cells with low

amounts of HCV RNA that are adjacent to cells with higher levels

of HCV RNA would not be counted as part of a cluster due to the

difference in the density of viral RNA. To account for this

potential artifact of the algorithm, we estimated the domain radius

R of a cluster based on the minimum level of HCV RNA in all

cells assumed to belong to the cluster (Figure 1B and Materials &
Methods for details). Since we do not know a priori which cells

belong to the cluster, our estimate is done iteratively. We start with

the cell with the highest HCV RNA content and estimate the

cluster radius R for the obtained point pattern (Figure 1B). In

succession, we assume that the cell with the next highest content

would be the cell with the minimal level of HCV RNA in the

Author Summary

Around 170 million people worldwide are chronically
infected with the hepatitis C virus (HCV). Although partly
successful treatment options are available, several aspects
of HCV infection dynamics within the liver are still poorly
understood. How many hepatocytes are infected during
chronic HCV infection? How does the virus propagate, and
how do innate immune responses interfere with the
spread of the virus? We developed mathematical and
computational methods to study liver biopsy samples of
patients chronically infected with HCV that were analyzed
by single cell laser capture microdissection, to infer the
spatial distribution of infected cells. With these methods,
we find that infected cells on biopsy sections tend to occur
in clusters comprising 4–50 hepatocytes, and, based on
their amount of intracellular viral RNA, that these cells have
been infected for less than a week. The observed HCV RNA
profile within clusters of infected cells suggests that factors
such as local immune responses could have shaped cluster
expansion and intracellular viral replication. Our methods
can be applied to various types of infections in order to
infer infection dynamics from spatial data.

Spatial Infection Dynamics of HCV
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cluster, we reduce higher levels of HCV RNA to this level

(Figure 1B) and again fit a Matérn Cluster process to the new

point pattern. We stop when inclusion of the next cell would result

in an apparent homogeneous distribution of infected cells as

determined by the Quadrant-Count method (see Supporting
Information, Text S1). At this point, we are not detecting

individual clusters, because we included so many cells that there

is only one large homogeneous cluster. Detection of the maximal

cluster size, and thus the average number of clusters per sampled

grid, is independent of the assumed founder cell as we are

identifying regions of cells with similar densities of HCV RNA.

Our algorithm allows all infected cells to be counted with

equivalent weights, and because we estimate the cluster radius in

iterative steps, we characterize the structure of each cluster

analogous to the ring-structure of a tree trunk, where successive

rings have similar spatial density of HCV RNA (Figure 1). Note

that we perform this iterative procedure with all 10,000 bootstrap

replicates.

We applied the above procedure to each grid of each subject

individually. In Figure 2, we show, for subject 3, the estimates of

the cluster radius, R, and the corresponding expected number of

cluster centers per unit area, k, as a function of the minimal HCV

RNA content of cells in the clusters at each iteration of our

algorithm (from right-to-left). The maximal cluster extension,

Rmax, is found when the mean number of cluster centers, k, starts

to decrease from its more or less constant value (Figure 2, reading

right-to-left). A decreasing k indicates fewer and larger clusters, a

more homogeneous distribution, and in the limit indicates that all

Figure 1. Sketch of the characterization of clusters of infected cells. (A) Example of measured data in a 10|10 grid of cells with the HCV
RNA content per cell (left) and sketch of the ring structure of the cluster (right) as it would be defined by the algorithm shown in (B). Darker shading
of cells indicates a higher amount of HCV RNA. The fitting procedure of the Matérn cluster process to estimate the domain radius R accounts for edge
effects due to sampling, i.e., only parts of the cluster might be visible on the grid of liver tissue analyzed by scLCM. The sketch in (A) shows an
example for a cluster that grew spherically. The algorithm also allows for cluster growth that is skewed in one direction. (B) Example of the algorithm
to determine the ‘‘ring structure’’ of a cluster of infected cells for a 5|5 grid of cells. The measurements of HCV RNA per cell are transformed into a
spatial point pattern (see Materials & Methods). The amount of HCV RNA in those cells with the maximal HCV RNA content is subsequently reduced to
the next lower level (red color) (Step I–Step II). For each of the different steps, 104 spatial point patterns are produced, and a Matérn cluster process is
fitted to each pattern to estimate R. Step N shows the last step before the cutoff criterion for the maximal cluster extension. For all subsequent steps
of this example Pearson’s chi-squared statistic for the point patterns indicated spatial heterogeneity for less than 95% of the 104 bootstrap samples.
doi:10.1371/journal.pcbi.1003934.g001
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cells on the grid belong to one single cluster. Since we previously

determined that infected cells are clustered [15], such inference of

a homogeneous distribution is unreasonable. For each iteration we

analyze, in each of our bootstrap replicates, if the resulting spatial

distribution still indicates clustering or not. The iterative process is

stopped when we start finding a homogeneous spatial distribution,

that is when less than 95% of the replicates show evidence of

clustering. On grid 1 of subject 3, the algorithm detects one large

cluster, while on the other two grids, the existence of several

smaller clusters of infected cells is predicted, with the estimated

mean number of clusters, k, on these grids being 2{3 times larger

than on grid 1. The corresponding figures for all other subjects are

shown in the Supporting Information (Figures S1 and S2–S4).

Cluster characteristics
The algorithm provides estimates of the cluster radius and the

number of clusters in each grid, however it does not explicitly show

where each cluster is located. Based on the results for Rmax and k
for subject 3, in the right panel of Figure 2, we infer a possible

spatial distribution of clusters of infected cells on each 10|10 grid

for this subject as shown. Overall, with this method we find that

our 200mm|200mm sections of liver biopsies contain between ,1

and ,45 clusters of infected cells, which have radii between

12.9 mm and 103 mm (Table 1).

To determine the size of a cluster in terms of numbers of cells,

we transform the cluster radius R back into an actual number of

hepatocytes, N(R). The radius R was estimated searching for

Figure 2. Estimates of domain radius and spatial intensity. Estimates of the domain radius R (left panel) and the spatial intensity k (middle
panel) dependent on the minimal HCV RNA content of cells in the clusters for each of the three different grids on the sections of subject 3. Plots
should be read from the right to the left as the algorithm starts at point C, the maximal amount of HCV RNA measured in an infected cell on the
indicated grid. The domain radius of the cluster, R, is given on a continuous scale, as well as an estimate of the radius in number of cells. The red line
is the median over 10,000 bootstrap replicates of fitting a Matérn cluster process to the data as described in Materials & Methods. The red area denotes
the 95%-quantiles of the estimates. The dashed horizontal (left panels) and vertical (middle panels) lines indicate the cutoff of the algorithm, i.e., the
maximal extension of the cluster, Rmax. The right panels show the observed spatial distribution of infected hepatocytes together with the measured
HCV RNA amount. Grey squares indicate infected cells for which the actual HCV RNA amount could not be determined (n.d.). For the analysis, the HCV
RNA amount of these cells was extrapolated according to different methods (see Materials & Methods). Plots are combined with a possible
distribution of the clusters showing for each the maximal cluster radius, Rmax (dashed circles). On grid 2 and 3, the estimated spatial intensity k is
about 2{3 times higher than on grid 1, predicting the existence of several individual clusters on these sections.
doi:10.1371/journal.pcbi.1003934.g002
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areas with similar densities of HCV RNA and assuming a circular

structure of the cluster, but hepatocytes themselves are better

described by a square geometry (Figure 1B). Thus for a given

radius we estimate the number of cells inside a circle of radius R
and inside a square with sides of length 2R (where R was estimated

based on our algorithm above). Note that by definition most

hepatocytes in a cluster are infected, however some uninfected

cells could also be counted in a cluster. This is because clusters are

defined as a circle around the seeding infected cell, and uninfected

cells could be in close proximity to infected cells and by chance

were not (yet) infected (see Figure 1B, last step). The minimum

number of cells belonging to a cluster is determined by

Nmin(R)~pR2=A, where the area of the cluster is given by a

disc with radius R, and A~400mm2 denotes the area of a

hepatocyte. The maximum number of cells in this cluster is

estimated by assuming the area of the cluster is given by a square

with edge length 2R, hence, Nmax(R)~(2R)2=A. For example, the

estimated number of hepatocytes in a cluster with a maximal

cluster extension of Rmax~37:9mm as determined on grid 2 of

subject 3 (Figure 2) ranges between 11 and 15 cells.

We found that clusters comprise between 4–50 infected

hepatocytes, not considering the two extreme cases (grid 1 of

subject 1 and grid 1 of subject 3) that have to be taken with care

(Table 1). For the maximal cluster size of 95 cells estimated for

grid 1 of subject 3 (Table 1), the estimate of Rmax~103mm is close

to the reliability threshold for R (see Materials & Methods), since a

substantial part of the cluster is outside the sampled region. For

grid 1 of subject 1, we do not find evidence for a spatially

heterogeneous distribution of infected cells (see also Figure 5B of

[15]). Therefore, the cluster detection algorithm is affected and

determines a ‘‘cluster’’ for each infected cell (see Figure S1 and

Figure S2). An important point is that we are only analyzing 2D

sections, and most likely clusters are defined in 3D. Thus, the total

number of cells in a cluster will be larger than our minimal

estimates.

Cluster size and HCV RNA profile
After defining the clusters and their sizes, we analyzed the

profile of the intracellular HCV RNA level within the clusters, i.e.,

the viral landscape or viroscape [15]. The relationship between the

maximal radius of a cluster of infected cells and the HCV RNA

content in the cell that presumably founded the cluster is shown in

detail in Figure 3A. For example, the hepatocyte with the highest

amount of HCV RNA on grid 3 of subject 2 contained 8.8 IU/

cell, and the corresponding cluster of infected cells reached a

maximal radius of Rmax~53:1mm (see Table 1). The mean cluster

radius among all patients was 42:3mm (95%-CI [26.7, 57.9]) with

variability between and within patients. There was no significant

relationship between the maximal cluster radius and the HCV

RNA content in the assumed founder cell of the cluster, i.e., the

cell with the highest HCV RNA content (Figure 3A, p~0:62,

linear mixed effects model). This result does not change if grids 1

of subject 1 and 3, which could be outliers (see above), are

neglected.

The iterative algorithm that was used to determine the maximal

cluster radius (Figure 1) also describes the HCV RNA content in a

cell as a function of the distance to the core of the cluster assuming

radial spread. We find that the viroscape of a cluster of infected

cells, i.e., the topography of the amount of intracellular viral RNA,

can be characterized by a biphasic decline in the amount of HCV

RNA content of cells with increasing cluster extension (Figure 3B).

As no relation could be found between the maximal cluster

extension and the HCV RNA content in the assumed founder cell

of the cluster (Figure 3A), we then asked if there was a relationship

T
a

b
le

1
.

C
h

ar
ac

te
ri

st
ic

s
o

f
d

e
te

rm
in

e
d

cl
u

st
e

rs
.

su
b

je
ct

g
ri

d
H

C
V

m
a
x

(i
n

IU
/c

e
ll

)
R

m
a
x

(i
n

m
m

)
C

lu
st

e
r

S
iz

e
(i

n
ce

ll
s)

n
b

r
o

f
cl

u
st

e
rs

to
ta

l
H

C
V

R
N

A
(i

n
IU

/c
e

ll
)

1
1

2
2

.8
1

2
.9

(5
.2

,2
2

.1
)

1
.5

(1
,2

)
*

4
5

3
4

.2
(2

2
.8

,4
5

.6
)

2
5

.5
3

6
.7

(2
0

.3
,4

0
7

.1
)

1
2

.5
(1

1
,1

4
)

2
–

3
3

9
.5

(3
3

.3
,4

6
.3

)

3
7

.7
6

7
.3

(2
3

.6
,6

4
2

.3
)

4
1

(3
6

,4
6

)
1

1
2

9
.7

(1
1

5
.5

,1
4

4
.1

)

2
1

5
0

.3
3

9
.5

(2
5

.1
,1

0
5

.7
)

1
4

(1
2

,1
6

)
1

–
2

1
3

9
.5

(1
1

0
.3

,1
9

7
.2

)

2
5

.0
2

3
.9

(1
6

.7
,1

0
1

.9
)

5
(4

,6
)

3
2

5
.1

(2
0

.0
,3

0
.1

)

3
8

.8
5

3
.1

(1
9

.6
,7

4
7

.2
)

2
6

(2
2

,2
9

)
1

7
1

.9
(4

7
.1

,9
9

.0
)

3
1

2
5

.9
1

0
3

.0
(1

2
.0

,5
1

4
.0

)
9

5
(8

3
,1

0
7

)
1

4
7

6
.4

(4
3

1
.3

,5
2

3
.2

)

2
1

9
.7

3
7

.9
(2

0
.9

,3
8

9
.5

)
1

3
(1

1
,1

5
)

2
–

3
8

5
.6

(6
2

.5
,1

1
3

.9
)

3
2

0
.7

4
1

.5
(2

6
.0

,2
6

6
.8

)
1

6
(1

4
,1

8
)

3
1

2
9

.0
(9

9
.1

,1
6

0
.5

)

4
1

1
9

.8
2

1
.8

(1
5

.2
,3

7
.2

)
4

.5
(4

,5
)

5
–

6
8

9
.0

(7
9

.0
,9

8
.8

)

2
2

0
.0

2
7

.7
(1

8
.0

,7
5

8
.5

)
7

(6
,8

)
1

–
2

1
3

9
.8

(1
1

9
.8

,1
5

9
.8

)

Fo
r

e
ac

h
o

f
th

e
d

if
fe

re
n

t
su

b
je

ct
s

an
d

g
ri

d
s,

w
e

g
iv

e
th

e
ch

ar
ac

te
ri

st
ic

s
o

f
th

e
d

e
te

rm
in

e
d

cl
u

st
e

rs
in

te
rm

s
o

f
m

ax
im

al
H

C
V

R
N

A
co

n
te

n
t

in
a

ce
ll

b
e

lo
n

g
in

g
to

th
is

cl
u

st
e

r,
i.e

.,
th

e
fo

u
n

d
e

r
ce

ll,
H

C
V

m
a

x
an

d
th

e
m

ax
im

al
cl

u
st

e
r

e
xt

e
n

si
o

n
,R

m
a
x

(m
e

d
ia

n
o

f
1

0
,0

0
0

b
o

o
ts

tr
ap

re
p

lic
at

e
s

(F
ig

.
2

))
.I

n
ad

d
it

io
n

,t
h

e
e

st
im

at
e

d
n

u
m

b
e

r
o

f
cl

u
st

e
rs

p
e

r
g

ri
d

an
d

,b
as

e
d

o
n

R
m

a
x

,t
h

e
av

e
ra

g
e

cl
u

st
e

r
si

ze
an

d
th

e
av

e
ra

g
e

to
ta

lH
C

V
R

N
A

co
n

te
n

t
in

cl
u

st
e

rs
o

n
th

is
g

ri
d

ar
e

g
iv

e
n

.N
u

m
b

e
rs

in
b

ra
ck

e
ts

re
p

re
se

n
t

th
e

2
.5

%
an

d
9

7
.5

%
p

e
rc

e
n

ti
le

s
b

as
e

d
o

n
1

0
,0

0
0

b
o

o
ts

tr
ap

re
p

lic
at

e
s

(s
e

e
M

a
te

ri
a

ls
&

M
et

h
o

d
s

fo
r

a
d

e
ta

ile
d

d
e

sc
ri

p
ti

o
n

o
f

th
e

ca
lc

u
la

ti
o

n
o

f
th

e
se

va
lu

e
s)

.F
o

r
e

ac
h

g
ri

d
,t

h
e

cl
u

st
e

rs
in

cl
u

d
in

g
th

e
ce

ll
w

it
h

th
e

h
ig

h
e

st
am

o
u

n
t

o
f

in
tr

ac
e

llu
la

r
H

C
V

R
N

A
w

e
re

co
n

si
d

e
re

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
9

3
4

.t
0

0
1

Spatial Infection Dynamics of HCV

PLOS Computational Biology | www.ploscompbiol.org 5 November 2014 | Volume 10 | Issue 11 | e1003934



between the total amount of HCV RNA in a cluster and the actual

size of a cluster (i.e., number of cells in the cluster). To this end, we

have to convert continuous characteristics like the radii of the

cluster, R, back into discrete number of cells. For consistency with

the method above, we constructed 10,000 random bootstrap

replicates of the observed clusters. To maintain the properties in

the data, these replicates were defined consistent with individual

cluster characteristics, namely their maximal cluster extension in

mm (Table 1) and the observed biphasic decline in HCV RNA

with increasing cluster extension (Figure 3B) (see Materials &
Methods). The results of these analyses do not indicate a significant

correlation between cluster size (in number of cells) and the total

amount of HCV RNA in a cluster (Figure 3C, Linear-mixed

effects model, p~0:41, neglecting grids 1 of subject 1 and 3).

Previously detected correlations between cluster size and viral load

(see Fig. 6 of [15]) are largely affected by grid 1 of subject 3.

HCV RNA profile and infection dynamics
Several aspects of viral replication and transmission dynamics

should influence the observed HCV RNA profile within a cluster

of infected cells. These include the rate at which neighboring cells

get infected, the average time it takes for a cell to start viral

replication, the rate at which the virus replicates, the rate at which

intracellular HCV RNA is degraded, and the lifespan of infected

cells (Figure 4A).

We assume that the amount of HCV RNA inside an infected

hepatocyte can be used as a surrogate for the time a cell has been

infected, the so called age of infection, a. That is, hepatocytes with

higher amounts of HCV RNA most likely have been infected for

longer. After infection, a number of events have to occur, taking

time a0, before viral RNA replication starts. Following our

previous work [27], we assume that after a0, each viral RNA can

be copied in ,6h, which would be the doubling time of the

amount of viral RNA inside a cell, if there was no export of virions

or degradation of viral RNA. However, we have estimated that on

average 75% of new viral RNA is exported in virions [27],

although this fraction could vary over time. In our data, we find

hepatocytes with up to ,50 IU/cell, corresponding to ,100 HCV

RNA copies/cell (1 IU&1.96 genome copies [15]). This value is

consistent with other ex vivo studies [14,17,19]. With these

parameters, we simulate the stochastic replication dynamics of

HCV within a cell [27] following the accumulation of HCV RNA

within the cell. Varying a0 between 6{24h, we estimate that cells

reach a level of H~100 HCV RNA copies/cell on average a~5:1
days p.i. (95%-CI [3.5 days, 7.7 days]).

Based on the observed HCV RNA content, we estimate that

cells in the liver samples are infected for less than a week

(Figure 4B and Table 2, see also Text S2). The cells assumed to

build the core of the individual clusters, i.e., earliest infected and

containing the largest amount of intracellular viral RNA, are

estimated to be infected for on average ,4 days (Table 2).

Calculating the elapsed time between infection of the cells with the

largest amount and the lowest amount of intracellular viral RNA

within a cluster, Dage, i.e., the time the cluster has been expanding,

we estimate that the observed clusters of infected cells were formed

on average in 2 days (Table 2 and Figure 4C). We do not find a

relationship between the maximal cluster size and the estimated

age of infection of the hepatocyte that presumably founded the

cluster, nor between the maximal cluster extension and the time a

cluster has been expanding, Dage (Figure 4B,C, p{valuesw0:8,

linear mixed-effects model). This could indicate variability in viral

propagation compared between and within patients, possibly due

to individual and locally available host factors as well as individual

viral characteristics, such as the ability to spread cell-to-cell and

the speed of spread.

The ratio between the rate at which neighboring cells get

infected and the rate at which HCV RNA accumulates within an

infected cell influences the steepness of the viroscape with

increasing cluster size. For example, if the virus has a high local

transmission probability combined with a short time between cell

infection and new virion production, the so-called eclipse phase,

we would expect a more uniform distribution of HCV RNA

content in individual cells, i.e. a flatter viroscape. In contrast, a

long eclipse phase combined with a low transmission probability

will lead to increased accumulation of HCV RNA within the cells

that got infected early on, showing larger differences in the HCV

RNA content between the cells within a cluster. We simulated

cluster expansion by local spread within a two-dimensional lattice

of hepatocytes to investigate how the transmission probability per

intracellular viral RNA per minute and the duration of the eclipse

phase would influence the viral profiles in a cluster (Text S3).

Calculating the average fractional decrease between the viral RNA

within the founder cell and the HCV RNA amount in the

surrounding cells in a cluster of size 9, we observe that the largest

declines are obtained for long eclipse phases, t, and low cell-to-cell

transmission probabilities per positive strand intracellular HCV

RNA per minute, bCC (Figure 4D). The viral profiles in our data

show a biphasic decay (Figure 3B), with an average first-phase

fractional decrease of intracellular HCV RNA among all patients

(Figure 4D) of h~0:56 (range [0.30,0.91]) relative to the maximal

amount of HCV RNA in the founder cell of the cluster. This

means that the HCV RNA level in direct neighbors of the core of

the cluster is on average ,40%, 1{h, of the HCV RNA level

within the core, i.e., that the intracellular HCV RNA level

decreases by ,60%. We can recover these observations in our

simulations if the probability for virus transmission per intracel-

lular viral RNA per minute, bCC , lies approximately between

0:1=t and 1=t, where 1=t defines the rate at which infected cells

become infectious, i.e., start producing virus (Figure 4D).

Inferring infection in the whole liver
For each patient, two to three 10|10 grids of hepatocytes were

analyzed by scLCM. Thus, only a small number of hepatocytes

(200{300 cells) was sampled and analyzed in comparison to the

estimated total number of *8|1010{2|1011 hepatocytes in a

human liver [28–31]. To determine if the infection patterns in the

sampled sections of liver tissue are consistent with the infection

dynamics in the entire liver, we compared the measured serum

viral load for each patient to the expected serum viral load from

the observed liver sections using an age-structured model of HCV

infection (Materials and Methods and [9]): With an export rate, r,

of intracellular viral RNA as virions and a clearance rate of

extracellular virus, c, the viral load per ml of serum produced by I

infected hepatocytes can be estimated by ~VV ~rIH=(cc), where H
denotes the average amount of intracellular HCV RNA per

infected hepatocyte and c is a scaling constant, relating the total

amount of virus in the body, rIH=c, to virus per ml. We used our

data to determine H and I~fI N, with fI denoting the observed

fraction of infected hepatocytes and N the total number of

hepatocytes in a human liver. With the previously estimated values

of r~8:18 day{1 and c~22:3 day{1 [10], and with c~15L,

the average total extracellular fluid volume for an individual, we

estimate ~VV based on the sampled liver biopsies (Table 3).

For each subject, estimates for ~VV are in a range consistent with,

but slightly lower than, the measured serum viral load (Table 3).

On average our estimates are 0.3 log (or 5%) lower than the

Spatial Infection Dynamics of HCV
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measured viral load. A possible explanation for this lower estimate

is a higher concentration of HCV RNA in plasma than in other

body fluids [32], as we assumed a homogeneous distribution

throughout the extracellular fluid when calculating ~VV . The other

possibility is that the value of r could vary among patients,

whereas we are using an average estimate for all of them. We note

that although c could also vary, recent estimates show that c,22

day21 with little inter-patient variability [10]. In summary, based

on this analysis it seems reasonable to assume that the patterns of

infection (fraction of infected cells, density and level of intracellular

HCV RNA) in the liver sections are an appropriate and consistent

representation of the infection in the whole liver.

Discussion

In previous work, we showed that infected hepatocytes tend to

occur in clusters [15]. However, our previous cluster detection

methods [15] were not able to specify cluster characteristics, such

as the cluster size and the dynamics of cluster formation. Here we

developed statistical methods to determine the properties of such

clusters of infected cells identified by scLCM. With our approach,

which is based on assuming infected cells are distributed according

to a Matérn cluster process, we are able to systematically

determine the size and the internal structure of clusters. In

comparison to other clustering methods [33,34], our stepwise

procedure allows us to address the dynamics of the cluster building

process based on the varying but interdependent levels of

intracellular viral RNA.

Applying our method to liver biopsy samples from four different

chronically infected HCV patients analyzed by scLCM, we find

that clusters of infected hepatocytes in a biopsy section comprise

between 4 and 50 cells (Table 1). While we show results based on a

Matérn cluster process that assumes radial cluster shapes, we also

fitted a Thomas process, which allows for normally distributed

‘‘offspring’’ around cluster centers, to the data [23]. This did not

change our results in terms of cluster size or cluster frequency (not
shown). One caveat is that we are studying 2D sections, while in
vivo the clusters of infection would be 3D. It is not easy to expand

our results to that situation, because each 2D section could

represent a different cross-section of the corresponding 3D cluster.

Sequencing the intracellular HCV RNA in future studies could

indicate whether viruses from nearby clusters are distinct, and

therefore originate from separate clusters, or whether they

represent cross-sections of irregular 3D clusters.

It is interesting to compare our results to 2D infection in vitro.

In an experiment using HCV infected Huh-7.5 cell lines, Lacek et

al. [18] found cluster sizes ranging between 1–40 cells around 2

days after the initial infection, similar to the sizes and timing we

report. However, when blocking local transmission by appropriate

monoclonal antibodies, they found a significant reduction in

Figure 3. Relationship between cluster extension and HCV RNA content. (A) The maximal extension of the clusters, Rmax, characterized on
the different grids in relation to the maximal cellular HCV RNA content in the cells belonging to this cluster. For each grid, only the clusters including
the cell with the highest amount of intracellular HCV RNA were considered. Different patients are indicated by different symbols and colors. The
radius R is given on a continuous scale, as well as converted into number of cells assuming radial spread. (B) The level of the HCV RNA content in
hepatocytes with increasing cluster extension as characterized by Fig. 2. Dots correspond to the radii estimated during the iterative process of cluster
determination. The individual results for all patients and all different sections per patient (grid 1 red, grid 2 blue, grid 3 green) are shown. Lines
indicate the best fit of a model assuming a biphasic linear decrease of the intracellular HCV RNA content with increasing cluster extension (see
Table 4). (C) The total HCV RNA content in an inferred cluster, i.e., the sum of the HCV RNA content in all hepatocytes belonging to a cluster versus
the square root of the cluster size measured in number of cells. Each point is the result of 10,000 simulated clusters based on the characteristics for
each of the different clusters per patient per grid as described in Materials & Methods. Symbols indicate the mean of total HCV RNA content and
cluster size, arrows determine the 2.5% and 97.5% percentiles of the 10,000 bootstrap replicates. Corresponding values are given in Table 1.
doi:10.1371/journal.pcbi.1003934.g003
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cluster sizes [18]. At the highest antibody concentration used, the

maximum cluster size was reduced to 5 cells (see Fig. 3A in [18]).

The agreement of the cluster sizes found in vitro with the cluster

sizes found in our study, as well as the findings of others that HCV

infected cells tend to occur in clusters [12,14,15,17] support the

hypothesis that local spread of HCV is an important contributor to

the patterns we observed.

The hypothesis of local spread is also corroborated by our

second result, indicating that the HCV RNA amount within

infected hepatocytes of a cluster declines with increasing cluster

extension (Fig. 3B). Using the HCV RNA amount inside an

infected hepatocyte as a surrogate for the time since infection, this

observation supports the notion that HCV spreads locally to

neighboring cells and then begins replicating within those cells.

However, we cannot distinguish the hypothesis that the local

spread is mediated by diffusing viral particles that rapidly bind to

and infect neighboring cells from the hypothesis of cell-to-cell

transmission. Most likely both mechanisms operate but to varying

degrees. We note, however, that random seeding of the clusters

from the blood, as we assumed, and the observed selective pressure

of HCV specific antibodies [35,36] suggests that transmission by

freely diffusing viral particles remains an important mode of

Figure 4. Cluster structure and age of infection. (A) Factors influencing the observed viral landscape in a cluster including (i) viral transmission,
(ii) the viral eclipse phase, and (iii) intracellular viral replication. (B, C) Relationship between the maximal cluster extension and the age of the
assumed founder cell of the cluster (B) and the time until this cluster extension was possibly reached, Dage (C), i.e., the difference between the age of
the assumed founder cell and cells that were more recently added to the cluster. Estimates were obtained using the model on intracellular HCV
replication discussed in the text. The mean and the 2.5% and 97.5% percentiles of 10,000 bootstrap replicates for each individual cluster are shown.
(D) Comparison of the average fractional decrease in intracellular HCV RNA, h, between the founder cell and the surrounding cells of a cluster
comprising 9 cells. Expansion of individual foci was simulated in a 2D-grid with different assumptions for the average duration of the eclipse phase t,
and the probability for viral transmission, bcc. We simulated 1000 individual foci and selected all foci showing clusters comprising 9 cells with radial
spread. The average fractional decrease is calculated relative to the amount of viral RNA within the founder cell of the cluster. The mean and 95%-
percentiles are shown. For a detailed description of the simulation environment see Supporting Information (Text S3).
doi:10.1371/journal.pcbi.1003934.g004
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transmission throughout chronic infection. Another possible

explanation for the clustered distribution of infected hepatocytes

could be that some cells in initially homogeneously infected

regions are cleared by innate and adaptive immune responses.

While we cannot formally reject these other hypotheses, we think

that the sum of our data more likely supports additional local

spread.

Using mathematical models to describe the accumulation of

intracellular viral RNA with time, we estimate that the hepatocytes

we have analyzed have been infected for less than 7 days (Table 2

and Text S2). Although previous estimates for the turnover of

infected hepatocytes based on the kinetics of plasma HCV viral

load decrease under treatment have been highly variable among

different patients [3,22,37], a large cohort study of 2100

chronically HCV infected patients under treatment with pegin-

terferon a-2a with or without ribavirin estimated the average

lifetime of infected hepatocytes to be around 5–7 days [21].

Several studies examined the proliferation of hepatocytes during

chronic HCV infection [38–41]. Staining for the cell proliferation

marker Ki-67 shows that between 1%–2% [38–40], and up to

10% (for early stages of liver inflammation as here [41]) of

hepatocytes were Ki-67+ during chronic HCV infection. If we

assume that an hepatocyte takes ,24 h to undergo cell division in
vivo, then these Ki-67 measurements imply 1%–10% of hepato-

cytes are dividing per day. We found 20%–40% of cells infected,

with a turnover rate of ,0.14/day (corresponding to a 7 day

average lifetime), thus we predict an overall turnover rate in these

chronically infected individuals of between 3% and 6% per day, in

agreement with the estimates based on Ki-67.

Our mathematical models calculating the age of infection

assumed that each hepatocyte has the same maximum number of

intracellular replication complexes and the same maximum level

of intracellular viral RNA, Hmax~100 copies/cell. However,

individual hepatocytes might vary substantially in their replication

dynamics, possibly due to local innate and adaptive immune

responses, as well as cell specific factors [42]. In addition, the

maximal amount of intrahepatic HCV RNA levels could be

variable. We found infected hepatocytes with up to 50 IU/cell

(,100 HCV RNA copies/cell) (Table 1); other in situ studies

found similar numbers. For example, Chang et al. found a

maximum of 74 HCV RNA molecules per hepatocyte [19] and

Stiffler et al. observed from less than one copy to a maximum of 10

copies per cell [14], averaged over all cells. If one assumes that

about 10% of cells are infected [12,17,19], then their estimate is

similar to our estimates for the number of HCV genomes per

infected cell. In vitro observations indicate much higher numbers,

with cells accumulating thousands of copies of viral RNA within

72 hours [43–50]. However, the systems used in vitro typically

involve high multiplicity of infection or transfection and the cells

used, i.e., hepatoma cells, are highly permissive to infection, often

with a very diminished or even absent endogenous interferon

response, impairing the comparison to the situation in hepatocytes

in vivo. If Hmax was substantial higher in vivo than what we

observed, we would expect the infected cells in our biopsies to have

been infected even more recently. Such a short lifespan seems

unlikely. While it is appropriate to use the amount of intracellular

HCV RNA in infected hepatocytes as a surrogate for the time

since infection, without knowing all the relevant factors that might

influence viral replication and accumulation (e.g. type I IFN-

responses, etc.), the accuracy of estimates for the time since

infection of a cell based on intracellular HCV RNA content are

difficult to judge. However, less than 7 days of infection for the

cells in our samples seems a consistent average estimate using

different mathematical methods.

We found that the total size of a cluster did not correlate with

the amount of HCV RNA in the cell that presumably founded the

cluster (Figure 3A). Such correlation would be expected if cell

infection continued unimpeded, because higher HCV RNA levels

in the founder cell would correspond to a cell infected for longer

and, hence, to a potentially longer period of cluster expansion.

The biphasic decline of the viroscape of a cluster with increasing

cluster extension, particularly for large clusters (Figure 3B),

indicates that small sub-clusters characterized by cells with high

levels of intracellular viral RNA are surrounded by larger areas of

cells containing substantially lower viral load. Assuming a biphasic

linear or biphasic exponential decline provided a better description

of the underlying data than their monophasic analogons. A

decline, although not the specific biphasic profiles that we find

evidence for, has been reported before using other techniques

[12,17,19]. Such a biphasic profile could indicate that local factors

Table 2. HCV RNA and age of infection.

subject grid Age founder cell, Afounder (in days) Age difference, Dage (in days)

1 1 4.4 (2.9, 6.9) 2.3 (0.4, 5.0)

2 2.8 (1.6, 4.7) 1.3 (0.1, 4.9)

3 3.2 (1.9, 5.3) 1.6 (0.2, 3.2)

2 1 5.3 (3.7, 7.8) 3.1 (0.9, 5.8)

2 2.7 (1.5, 4.6) 1.0 (0.0, 2.9)

3 3.4 (2.0, 5.6) 1.7 (0.1, 4.0)

3 1 4.5 (3.0, 7.0) 2.2 (0.3, 4.9)

2 4.3 (2.8, 6.7) 2.5 (0.6, 5.1)

3 4.3 (2.8, 6.9) 2.3 (0.4, 5.0)

4 1 4.3 (2.8, 6.7) 2.3 (0.4, 4.9)

2 4.3 (2.8, 6.3) 2.5 (0.5, 5.1)

For each of the different subjects and grids, we estimated the age of infection of cells based on their HCV RNA content using the stochastic model of HCV viral
replication as described in [27] with Hmax~100 copies per cell and varying a0[½6 h,24 h�. The mean, and the 2.5% and 97.5% percentiles based on 10,000 bootstrap
replicates are shown. The age of the assumed founder cell, Afounder , and the difference in age between the founding cell and those that were more recently added to
the cluster in the periphery, Dage , are shown. For each grid, the cluster including the cell with the highest amount of intracellular HCV RNA was considered.

doi:10.1371/journal.pcbi.1003934.t002
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influence the progression of infection and the expansion of a

cluster, such as local immune responses. One scenario could be

that during establishment of the cluster, i.e. when the founding cell

is infected, the viral landscape is mainly determined by the ratio

between the rate of accumulation of viral RNA within a cell,

including effects of the initial delay before viral RNA production

starts, and the rate at which neighboring cells are infected. As

infection progresses, infected cells and their neighbors start the

production of antiviral factors, such as type I IFN, that protect

uninfected cells from getting infected and interfere with the viral

replication within infected cells. The ‘‘wave’’ of antiviral factors

might overtake the propagation of infection, inhibiting viral

production within infected cells at the border of a cluster and

limiting cluster expansion. This would lead to a flatter viral

landscape at the edges of a cluster. In this scenario, the first phase

of decay in the amount of HCV RNA per cell with increasing

cluster extension could be used to determine the ratio between

viral transmission and viral replication, and the onset of the second

phase might allow us to determine the effectiveness of the

endogeneous antiviral response in the liver in these treatment

naı̈ve patients. Whether local infection stimulates a local immune

response is still controversial [14,15,17]. We did not find any

correlation between infection status of a cell and the expression of

interferon in those cells or neighboring cells in our previous work

assessing one interferon stimulating gene (ISG) [15], in agreement

with other results [14]. However, a recent report did find

significant co-localization of ISG expression and HCV infection

[17]. More details about the influence of endogeneous type I IFN

responses on the spatial propagation of HCV infection within the

liver, as well as about the dynamics of cluster propagation and IFN

expression, are needed to determine the extent to which these

response might limit viral transmission and replication [42,51,52].

Such factors could also explain why a correlation between cluster

size and HCV RNA content could not be observed.

At the edges of the clusters, the minimal amount of HCV RNA

within cells is between 1–2 IU/cell (Figure 3B), which is close to the

limit of detection. However, the possibility that the second phase of

decay might be due to an artifact of the experimental method, i.e.,

measuring of extracellular viral RNA that sticks to the surface of the

cell, is rather unlikely. Assuming that a hepatocyte has a cubic shape

with a side of 20 mm, and that liver sinusoids have around the same

diameter, the fluid volume above the apical surface of a cell can be

approximated by a cylinder of radius 10mm and length 20mm, i.e.,

2p|10{9 cm3&6|10{9 cm3. With a typical plasma viral load of

V*106 IU ml{1, the chance that a virion would be in the fluid

volume around a cell is less than 1.2%, suggesting that it is unlikely

that the low HCV RNA levels at the edge of a cluster are due to

extracellular virus. More precise estimates could be made if

information on the rates of virus binding, dissociation and entry

were available, but it seems likely that the shape of the viroscape is a

characteristic of the dynamics of local cellular infection, rather than

an artifact of the experimental method.

A recent study reported a significant correlation between the

proportion of infected hepatocytes and serum viral load [17]. Here

we presented a mechanistic dynamic model that explains this

result. Indeed, the picture of local infection described above, even

with the caveats discussed (low sample size, 2D sections), seems to

be an appropriate and consistent representation of infection in the

whole liver. In fact, we used this dynamic model of viral infection

to show that the predicted serum viral load in the patients we

analyzed is very similar to their measured plasma viral load, if we

assume that the patterns of infection (proportion of infected cells,

clustering, level of intracellular HCV RNA) observed in the biopsy

samples are replicated throughout the liver.
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While this result indicates the consistency of using models on

ordinary differential equations (ODE) to analyze viral dynamics on

a systems level, the observed spatial heterogeneity of HCV

infection within the liver suggests the importance of considering

space when analyzing infection dynamics within solid tissue on a

cellular level. Current HCV viral dynamics models are based on

infection by cell-free virus, neglecting cell-to-cell transmission or

local effects of IFN responses [8,53]. It will be interesting to

incorporate these features in future models, and to examine how

well these models agree with viral declines observed in patients on

treatment.

We based our analysis on a small number of cells, studied in

unprecedented detail, assuming that they are a reasonable

representation of the infection process. Due to the estimated

level of heterogeneity, more data are needed to predict the

frequency of infected hepatocytes in a chronically infected

patient, as well as to analyze the influence of type I IFN

responses on the observed spatial patterns. Still, our method

represents a novel approach to infer infection dynamics from

static spatial data.

Materials and Methods

Patient data
In four chronically HCV infected patients (Subject 1–4) up to

three sections of liver tissue were analyzed by single cell laser

capture microdissection (scLCM). On each section, a grid of

10|10 hepatocytes was analyzed for their HCV RNA content

(see Fig. S1 for the individual results) as previously described

[15]. The sensitivity level of the method to detect HCV RNA

was set at 1 IU/cell. HCV RNA content was normalized to 7SL

expression, a small ribosome-associated RNA which is abundant

in the cytoplasm [15]. Using rigorous controls we ensured the

precision of our method in determining single cell measure-

ments (see Supporting Information Text S3). Cells in which the

HCV RNA content could be detected but could not be

normalized due to missing 7SL expression measurements were

treated as infected throughout most of the analysis. None of the

subjects had received treatment, and none were co-infected with

HIV or HBV. All patients had genotype 1 infection and limited

liver disease (Metavir 0–1). Full details of the experimental

methods can be found in Kandathil et al. [15]. The

experimental data are provided in the Supporting Information
(Dataset S1).

Characterization of clusters of infected hepatocytes
Spatial distribution of infected cells. We modeled the

spatial distribution of infected hepatocytes in the liver as a Matérn
cluster process, a specific type of spatial point process. A Matérn

cluster process assumes that cluster centers are distributed

according to a spatial Poisson process determined by the spatial

intensity k, i.e., the expected number of cluster centers per unit

area. In addition, it assumes regular cluster shapes with all

elements of a cluster distributed in a disc with radius R around the

cluster center. The number of elements within these discs is

assumed to follow a Poisson process with parameter m describing

the expected number of elements per cluster (see also Text S1 for a

more detailed description of the Matérn cluster process). Fitting a

Matérn cluster process to the spatial point patterns allows us to

estimate the average radius of a cluster, R, as well as the average

number of cluster centers per unit area, k (see Text S1 for a more

detailed description of this procedure).

As the Matérn cluster process assumes continuous space, and as

we are also interested in the internal structure of a cluster, we
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determined clusters of infected cells based on the clustering of

HCV RNA molecules. The following multistep-process describes

the procedure of characterizing clusters of infected cells as shown

in Figure 1B:
I. Converting discrete to continuous. In a first step, we

transformed the discrete data (HCV RNA in IU/cell) into

continuous data (i.e. HCV RNA IU per mm2): We assume that

each hepatocyte has a rectangular shape of 20mm|20mm, and

that the 10|10 cell-grid represents a 4|104 mm2 section of liver

tissue. The amount of HCV RNA measured for each cell is then

randomly distributed inside the allocated square for this cell in

the lattice (Figure 1B). For example, if we measured 34.1 HCV

RNA IU/cell, 34 HCV RNA units were positioned inside the cell

at random locations, and an additional HCV RNA unit was

added to the cell’s content with probability 0.1. For infected

hepatocytes for which the normalized HCV RNA content could

not be determined, we approximated their HCV RNA content by

the average over the surrounding cells. To assess the sensitivity of

our results to this assumption, we performed an additional

analysis setting the HCV RNA content in these cells to the

detection limit of 1 IU/cell. This approach did not change our

results in terms of the maximal cluster extension nor the internal

cluster structure. A Matérn cluster process was fitted to the

obtained point pattern using the package spatstat in R, yielding

an estimate of the domain radius R, and the mean number of

cluster centers, k. To guarantee that the particular distribution of

HCV RNA inside each cell does not affect our results, we

performed 104 bootstrap replicates of the distribution of HCV

RNA inside each cell, creating 104 different spatial point patterns

to estimate R and k.
II. Determining the size of a cluster. The Matérn cluster process

works on a continuous spatial scale (in mm2) and tries to

determine regions with equal densities of HCV RNA. However,

infected cells vary substantially in their amount of intracellular

HCV RNA. Therefore, cells that arguably belong to a cluster

but have a very low amount of HCV RNA compared to other

cells might not be included into the calculation of the cluster

radius R, leading to an underestimation of the actual cluster size

(see Figure 1B- Step I). As we want to determine the maximal

size of a cluster of infected cells, hence, the maximal extension

of an area of connected hepatocytes, we adjust the calculation

method in order to avoid the exclusion of cells with lower

densities of HCV RNA. To this end, we iteratively reduced the

amount of HCV RNA inside the ‘‘core’’ cells of the cluster to

the next measured lower level as follows: Let hi, i~1, . . . ,100
denote the amount of HCV RNA in each of the 100 measured

hepatocytes in the sampled grid, with h1§h2§ . . . §h100. In the

first step, we created a point pattern, P, with the original data,

P(h1,h2, . . . ,h100), providing the domain radius R(h1) and the

spatial intensity k(h1) of the core of the cluster, i.e., around the

cells with the highest amount of HCV RNA. In the next step,

R(h2) and k(h2) are estimated for the point pattern given by

P(h2,h2, . . . ,h100), where the amount of HCV RNA in the cell

with the highest amount of HCV RNA is reduced from h1 to h2.

This will give us the maximal extension of a cluster containing

cells with an HCV RNA content of at least h2. The procedure is

repeated until in the final step a Matérn cluster process would be

fitted to the point pattern given by P(h100,h100, . . . ,h100). The

successive reduction of HCV RNA in the cells with the highest

amount to the next lower level ensures that cells have equal

densities of HCV RNA, allowing the algorithm to detect larger

structures (Figure 1B). For each step, 104 bootstrap replicates

were performed where the HCV RNA for each hepatocyte is

randomly distributed inside the space occupied by the cell, as

described above. By this approach we define the extension of a

cluster as a function of the minimum HCV RNA content in all

cells assumed to belong to the cluster. Superimposing the

different ‘‘rings’’ dependent on the minimal HCV RNA content,

we obtain a ‘‘ring structure’’ of the total cluster of infected cells,

and, hence, the distribution of cells with different amounts of

HCV RNA inside the cluster.

III. Determining maximal cluster extension. With the algorithm

described in the previous paragraph we are able to determine

the radius, R, for discs of similar amounts of intracellular RNA,

i.e., each cell in this disc, i.e. (sub-)cluster, has at least this

amount of intracellular viral RNA. Two factors will influence

the reliability of the estimate of radius R during the procedure:

(1) the section of liver tissue might only show a subset of an

existing cluster of infected cells, e.g., if the cluster is in a corner

of the grid, and (2) not all infected cells in the analyzed grid of

10|10 hepatocytes might belong to the same cluster of infected

cells. The fitting procedure (Text S1) allows the estimation of

the domain radius R by controlling for so called edge effects,

i.e., it accounts for the fact that the grid sampled by scLCM

might only cover a part of the actual cluster [54,55]. Taking

edge effects into consideration allows for the estimation of

cluster radii that are larger than the sampled grid of 10|10
cells. However, the more R exceeds the limits of the sampled

grid, the less reliable are these estimates. Using Ripley’s

isotropic edge correction [55,56], estimates of R are reliable

up to radii which are less than half of the diagonal of the

examined region [24,55,56], i.e., Rƒ140mm in our scenario.

As the domain radius R and the spatial density of cluster

centers, k, are estimated simultaneously, the fitting procedure

also accounts for the fact that more than one cluster of a similar

structure may be observed on the section of liver tissue.

However, when iteratively adjusting the HCV RNA amount

in infected hepatocytes as described in the previous paragraph,

the obtained point pattern might not show signs of clustering

anymore, indicating that the maximal cluster extension has been

exceeded.

In order to determine the maximal extension of a cluster of

infected cells, we analyzed if the spatial point pattern of HCV

RNA created for each of our bootstrap replicates deviates

significantly from spatial homogeneity at each step of the

iterative process (see Figure 1B). To this end, we applied the

Quadrant-Count-Method [57] to our point patterns (see Text

S1), which is used to detect signs of spatial heterogeneity in

spatial data. For this method, the examined area is divided into

regular quadrants, and the number of observations, i.e., HCV

RNA units, in each quadrant is counted. In our scenario, we

use single cells as individual quadrants. In case of spatial

homogeneity, the amount of HCV RNA per cell should be

similar in each cell. Pearson’s chi-squared statistic was used to

determine a statistically significant deviation from spatial

homogeneity (Text S1). The maximal extension of the total

cluster, Rmax, is then determined as the maximal estimated

radius for which the frequency of point patterns in the 10,000

bootstrap samples deviating from spatial randomness is not

smaller than 95%.

HCV RNA content in a cell as a function of cluster
extension

Based on our results on the characterization of clusters of

infected cells (Fig. 3B), we found that the amount of HCV RNA in

each infected hepatocyte, H, decreases with increasing cluster

extension, r. We used different models to describe this decline in

HCV RNA viral load, assuming either monotonous or biphasic

Spatial Infection Dynamics of HCV
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decay. Assuming biphasic linear decay, this decline in HCV RNA

viral load can be described by the following function

H(r)~

f if rƒr0

f{l1(r{r0) if r0ƒrƒr1

f{l1(r1{r0){l2(r{r1) if rwr1

8><
>: ð1Þ

Here, the parameter f determines the maximal HCV RNA

content measured in a single cell belonging to this cluster, and r0

is the minimal radius of a cluster, where each cell has an HCV

RNA content of f (Fig. 1A). The parameters l1 and l2 define

the rates at which the HCV RNA amount within a cell is

decreasing with increasing cluster size for phase 1 and 2,

respectively, while r1 determines the cluster extension at which

the rate of decrease changes. Equation (1) is fitted individually to

the data of each of the different grids shown in Figure 3B, and

the parameter values for l1, l2 and r1 are estimated. The

estimated functions for H(r) are then used to sample the HCV

RNA content in cells of simulated clusters in order to determine

the relationship between the total size and the total intracellular

viral load of infected cells. In addition to the assumption of a

biphasic linear decay, we also fitted a model assuming an

exponential decay, as well as a biphasic exponential decay of

intracellular HCV RNA content with increasing cluster size to

the data (not shown). All these assumptions do not change our

results with regard to the relationship between cluster size and

total viral burden in the cluster. Models assuming a biphasic

decay show better fits across all patients and samples judged by

the mean residual sum of squares (MRSQ), i.e., the residual sum

of squares divided by the difference between the number of data

points and the number of free parameters, as well as the Akaike

information criterion, than their monophasic analogons (mono-

linear, mono-exponential).

Determining cluster sizes based on the estimated cluster
radius, R

Fitting a Matérn Cluster process to the spatial point patterns of

HCV molecules as described above, we are able to determine the

radius, R, for discs of similar amounts of intracellular RNA, i.e.,

each cell in this disc has at least this amount of intracellular viral

RNA. To get a better impression on actual cluster sizes, we

convert this radius based on HCV molecules back to cell

numbers. As the Matern Cluster process assumes spherical cluster

shapes and HCV RNA molecules are distributed randomly

within each cell (size = 20|20 mm2), the obtained radius might

cut only a part of a cell, or include parts of uninfected cells (see

Fig. 1B). Therefore, we calculated a minimal and maximal cluster

size in number of cells, assuming either a radial or quadratic

cluster extension: The minimal number of cells belonging to a

disc with radius R is determined by Nmin
R ~pR2=A, where

A~400mm2 denotes the area of a hepatocyte. The possible

maximal number of cells in a disc is estimated by assuming the

area of the cluster is given by a square with edge length 2R,

hence, Nmax
R ~(2R)2=A.

Our stepwise algorithm determines the cluster extension, R, as

a function of the minimal amount of intracellular HCV RNA, H,

in a cell belonging to a certain (sub-)cluster. By piling the different

discs on top of each other (Fig. 1B), the total clusters are assumed

to be structured like the rings in a tree trunk with each ‘‘cell-ring’’

around the founder cell having similar intracellular HCV RNA

content. When reconstructing individual clusters in terms of

cluster size and intracellular viral RNA, we have to determine the

number of cells and the range of the HCV RNA content in cells

belonging to a ring at a fixed distance to the founder cell of the

cluster. Therefore, for each bootstrap replicate, we sampled the

number of cells, NRi
, belonging to a disc with radius Ri,

i~0,1, . . . ,n, with R0~10mm, R1~30mm, R2~50mm, . . .,

based on a uniform distribution on ½Nmin
Ri

,Nmax
Ri
�. The actual

number of cells in each ring i is then defined by
~NNi~N(Ri){N(Ri{1), with ~NN0~1, i.e., the assumed founder

cell. In addition, each of the infected hepatocytes of ring i was

filled with an amount of HCV RNA Hij , j~1, . . . , ~NNi uniformly

sampled from ½H(Ri{1),H(Ri)�, the range of the amount of HCV

RNA estimated in the corresponding ring. The total number of

cells belonging to the cluster, N, as well as the total HCV RNA

content in the cluster, HT , was then calculated based on the sum

over all ‘‘rings’’ of the cluster, hence, N~
X

i
~NNi, and

HT~
X

i

X ~NNi

j~1
Hij . For each cluster, 10,000 bootstrap repli-

cates were performed.

Age of infection
We use a stochastic model of HCV replication dynamics

developed recently [27] to estimate the age of infection of a cell

based on its amount of intracellular HCV RNA. In brief, after

an initial time a0 post infection, replication complexes are

formed over an average time of 6 h based on in vitro
experimental data where negative strand RNA, assumed to

represent replication complexes, is first detected 6 h post

infection [50]. Each replication complex generates a new

replication complex with a probability of p~0:25 per genera-

tion time of 6 h [27]. Positive strand viral RNA is produced by

replication complexes with on average 75% of the newly

generated viral RNA estimated to be exported in virions [27].

The remaining viral RNA accumulates within the cell,

increasing the intracellular amount of positive strand HCV

RNA. In our data, we observe a maximal intracellular HCV

RNA amount of Hmax~100 HCV RNA copies/cell, corre-

sponding to the observed level of up to 50 IU/cell (1 IU & 1.96

genome copies [15]), which is consistent with other studies [14].

For each cell, we run 10,000 instances of the stochastic model of

viral replication and formation of replication complexes, varying

a0 between 6 h and 24 h [50] to estimate the age of infection

based on the amount of intracellular HCV RNA. In addition to

the stochastic model, we also analyze the data using an

analytical model as developed in [5] (see Text S2).

Comparing intracellular viral RNA and viral load in plasma
We used an age-structured mathematical model [9] to compare

the intracellular HCV RNA content per hepatocyte (in up to 300

hepatocytes analyzed per patient) to the total serum viral load.

This model explicitly describes the HCV viral load, V , as a

function of the intracellular HCV RNA content of single

hepatocytes, H . The model equation for V is [9,10]:

dV

dt
~r

ð?
0

H(a)I(a)da{cV , ð2Þ

where the intracellular amount of viral RNA in an hepatocyte, H,

is dependent on the time since infection, a, called the age of

infection of a cell. Intracellular HCV RNA is packaged into virions

and exported from an infected cell at rate r. The extracellular viral

load, V , increases due to the HCV RNA export at rate rH(a),
from each infected hepatocyte of age a, I(a), and decreases due to
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viral clearance at rate c per virion. For each patient, the viral load

measured in HCV RNA copies per ml (or international units (IU)

to normalize among HCV RNA assays) of serum was determined

at the time of biopsy (see Table 3). As each patient was in the

chronic stage of HCV infection, we assumed that viral load had

reached steady-state, V�. According to Eq. (2), the measured viral

load, V�, would be related to the total number of infected

hepatocytes in the liver, I�, by

V�~
rI�H

cc
ð3Þ

where H denotes the average HCV RNA content in an infected

hepatocyte. The parameter c is a scaling factor to account for the

fact that V� is measured per ml of serum, while rI�H=c defines

the total number of HCV viral particles in the human body. This

scaling factor is set to c~15L, the average total extracellular fluid

volume for a 70kg individual [58]. To compare the measured

serum viral load, V�, to the individual liver sections, we estimate

the viral load produced by fI N infected cells, where fI denotes the

estimated frequency of infected hepatocytes for each subject, and

N the total number of hepatocytes in a human liver, hence,

V̂V~rfI NH=cc. If V̂V&V�, the inferred dynamics from the

sampled liver sections are consistent with the average infection

dynamics in the whole liver.

To calculate V̂V , we first determined the frequency of infected

hepatocytes in the individual liver samples, fI , as well as the

observed mean HCV RNA content in infected hepatocytes, H,

combining all sections of one subject (see Table 3). The total

number of hepatocytes in a human liver is in the range of

N~8|1010{2|1011 cells [28–31], and we used the upper

limit of N~2|1011. The viral clearance rate c and the viral

export rate for HCV, r, have been estimated recently as

c~22:3 day{1 and r~8:18 day{1[10].

Statistical analysis
The statistical dependency between different attributes of

clusters of infected cells (e.g. size of cluster and total amount of

HCV RNA) was analysed using Spearman’s correlation coefficient

and linear mixed effects models, with subject as the random effect.

Linear mixed effects models take into account that several sections

of liver tissue originate from the same patient. All analyses were

performed using the R language of statistical computing [59].

Core functions are provided in the Supporting Information

(Protocol S1).

Supporting Information

Figure S1 Measured HCV RNA content per patient. For

each patient, the HCV RNA content per hepatocyte measured

by single cell laser capture microdisection (scLCM) is given in

IU/cell. The sensitivity level of the method was 1 IU/cell. Grey

boxes indicate infected hepatocytes for which the normalized

HCV RNA content could not be determined. Their intracellular

HCV RNA amount is approximated according to different

methods (see Materials & Methods). A possible distribution of

clusters according to the determined cluster sizes is sketched as

well. Please note that the estimated cluster radius for grid 1 of

subject 1 has to be taken with care. Here, the cluster detection

algorithm seems to be affected by the distribution of infected

cells as it determines clusters of radial shape (compare also to

Figure S2 where the estimate of k is increasing after the cut-off

criterion in contrast to expectation, and compared to all other

grids).

(TIF)

Figure S2 Estimates of the domain radius R, subject 1.
Estimates of the domain radius R (A) and the spatial intensity k
(B) dependent on the minimal HCV RNA content for cells

assumed to form a cluster for each of the three different grids

on the sections of subject 1. Plots should be read from the right

to the left as the algorithm starts at point C, the maximal

amount of HCV RNA measured in an infected cell on the

indicated slide. In (A), the domain radius of the cluster, R, is

given on a continuous scale, as well as in number of cells. The

red line gives the median over 10,000 bootstrap replicates of

fitting a Matérn cluster process to the data as described in

Materials & Methods. The red area denotes the 95%-quantiles

of the estimates. The dashed horizontal (A) and vertical (B)

lines indicate the cutoff of the algorithm, i.e., the maximal

extension of the total cluster.

(TIF)

Figure S3 Estimates of the domain radius R, subject 2.
For details see explanation under Figure S2.

(TIF)

Figure S4 Estimates of the domain radius R, subject 4.
For details see explanation under Figure S2.

(TIF)

Text S1 Details on the clustering analysis. Detailed

explanations on the Matérn cluster process, the estimation of the

domain radius, R, and the Quadrant-Count method.

(PDF)

Text S2 Alternative model to determine age of infec-
tion. Estimated age of infection of cells based on the amount of

intracellular HCV RNA using an alternative model. The model

and the obtained estimates are explained in detail.

(PDF)

Text S3 Details on simulation and experimental meth-
ods. Details on the simulation method to simulate cluster

expansion and extended discussion of the experimental method.

(PDF)

Dataset S1 ExperimentalData.xls. Excel sheet with the

experimental data of the liver biopsy samples of the 4 subjects

analyzed by scLCM [15].

(XLS)

Protocol S1 MaternClustering.R. R-code with the core

functions used for analyzing the data with a Matérn Cluster

process as shown in Figure 1B.

(R)
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