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Summary

Viruses are obligate parasites known to interact with a wide variety of host proteins

at different stages of infection. Current antiviral treatments target viral proteins and

may be compromised due to the emergence of drug resistant viral strains. Targeting

viral-host interactions is now gaining recognition as an alternative approach against

viral infections. Recent research has revealed that heterogeneous ribonucleoprotein

A1, an RNA-binding protein, plays an essential functional and regulatory role in the

life cycle of many viruses. In this review, we summarize the interactions between het-

erogeneous ribonucleoprotein A1 (hnRNPA1) and multiple viral proteins during the

life cycle of RNA and DNA viruses. hnRNPA1 protein levels are modulated differ-

ently, in different viruses, which further dictates its stability, function, and intracellu-

lar localization. Multiple reports have emphasized that in Sindbis virus, enteroviruses,

porcine endemic diarrhea virus, and rhinovirus infection, hnRNPA1 enhances viral

replication and survival. However, in others like hepatitis C virus and human T-cell

lymphotropic virus, it exerts a protective response. The involvement of hnRNPA1 in

viral infections highlights its importance as a central regulator of host and viral gene

expression. Understanding the nature of these interactions will increase our under-

standing of specific viral infections and pathogenesis and eventually aid in the devel-

opment of novel and robust antiviral intervention strategies.
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1 | INTRODUCTION

Viruses, despite their limited number of genes, utilize many host

factors for efficient replication in the host.1 Depending on the

nature of their genetic material, viral proteins interact with a pleth-

ora of host proteins that facilitate their infection inside the infected

host.2-6 Host cellular systems comprise highly complicated and

sophisticated networks that consist of interactions between

numerous cellular components; viruses hijack these cellular path-

ways, leading to the reconstruction of modulated networks to

meet their requirements for efficient replication and immune

suppression.7-11
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Recent technical advances in methodology, including genome-

wide RNA interference (RNAi) screens, yeast two-hybrid (Y2H)

screens, and transcriptional gene expression profiling, have identified

hundreds of host proteins involved in viral infections, of which about

one in five are RNA-binding proteins (RBPs).11-15 The multifaceted

role of the host RNA machinery means that RBPs are at the center of

host-virus cross-talk. However, a comprehensive understanding of the

sizeable network of host proteins interacting with the viral machinery

still remains to be elucidated.

The transcripts of protein-coding genes in the nucleus of eukary-

otic cells are known as heterogeneous nuclear RNAs (hnRNAs). After

being transcribed, cellular pre-mRNAs associate with nuclear proteins

to form heterogeneous nuclear ribonucleoprotein (hnRNP) complexes,

which function to affect the structure, posttranscriptional processing,

or nucleocytoplasmic transport of these mRNAs.16,17 They also regu-

late splicing, nuclear export of mRNAs, telomere biogenesis, DNA

repair, transcription, translation, and cell signalling.17-19 The hnRNP

family comprises of more than 20 evolutionarily conserved proteins,

named alphabetically from hnRNPA1-hnRNPU in humans.17 All the

members of the family share a common modular structure consisting

of one or more RNA-binding domains (RBDs) which dictate their inter-

action with RNA.17

hnRNPA1 is the most abundant RBP in the hnRNP(A/B) subfam-

ily. It affects the expression of many critical genes in the host, at

the transcriptional, posttranscriptional, translational, and post-

translational level which are responsible for controlling crucial meta-

bolic pathways in the host.19-22 The N-terminal domain of the protein

encodes two RBDs which are pivotal for RNA specificity and binding

(Figure 1). Additionally, a flexible glycine-rich arginine-glycine-glycine

(RGG) region known as the RGG box imparts protein and RNA binding

features to the protein. Downstream of the RGG box, there is a

38 amino acid (aa) sequence termed the M9 nuclear localisation

sequence (NLS) in the glycine (Glyc) rich region, which facilitates

bidirectional nucleo-cytoplasmic shuttling of the protein by means of

its interaction with the members of importin α/β sub-family17,23-25

(Figure 1). Transportin-1 interacts with the Glyc-rich region (195-268

aa) of hnRNPA1 by the virtue of its F-peptide (301-318 aa).25

Post-translation modifications (PTMs) in a protein are known to

affect their activity and binding affinity. Likewise, several post-

translational modifications like phosphorylation, methylation,

ubiquitination, and sumoylation dictate the activity and compartmen-

talization of hnRNPA1 in a cell.17 For instance, methylation of arginine

residues in the RGG motif may regulate the RNA-binding activity of

the protein.21,26-28 Similarly, kinases such as protein kinase C (PKC),

mitogen-activated protein kinases (MAPKs), and ribosomal S6 kinases

(S6Ks) phosphorylate serine residues present at both the N and C ter-

minal of the protein, regulating its function.17,21,29-31 PTMs like phos-

phorylation in the C-terminal region of the protein result in

cytoplasmic accumulation of hnRNPA1.22,25,30 Contrastingly, the addi-

tion of O-GlcNAcylation (GlcNAc) moiety to the serine or threonine

aa via β-O-linkage is a commonly occurring, reversible modification

which impairs the binding of hnRNPA1 to karyopherin β (Transportin-

1).25,32 This leads to enhanced nuclear localization of the protein,

eventually affecting its activity.25

2 | MULTIPLE ROLES OF HNRNPA1 IN
VIRUSES

Based on the polarity of the genome, viruses are categorized as posi-

tive sense or negative sense. Depending on their genetic makeup,

they need to utilize many RBPs to successfully complete their infec-

tion cycle in the host.33-35 As the replication of the viral genome takes

place in the host cytoplasm or nucleus, they must have a mechanism

in place to discriminate between the cellular and viral RNAs present in

an infected cell. Moreover, due to their limited coding capacity, they

F IGURE 1 Structural and functional features of heterogeneous ribonucleoprotein (hnRNPA1). hnRNPA1 has two different isoforms
(A1-A, 372 AMino acids; A1-B, 320 AMino acids). N-terminal domain imparts the RNA recognition and specificity to the protein by RNA
recognition motifs (RRM 1, RRM 2) while C terminal domain comprises of arginine-glycine-glycine (RGG) region and M9; nuclear localisation
sequence (NLS) that dictates the sub-cellular localisation of the protein
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lack preexisting RNA machinery to ensure successful replication in the

host. Owing to all these factors, viruses have strategically evolved to

exploit host RNA-binding proteome and evade host RNA degradation

mechanisms. hnRNPA1 is an RBP involved at multiple stages post-

infection that, depending on the virus in question, has contradictory

roles; in some, it promotes viral replication, while in others, it abro-

gates it. Diverse roles exhibited by the protein are summarized below

(Tables 1–4).

2.1 | Antiviral role of hnRNPA1

By the virtue of advanced techniques like RNAi screen, microarray,

forward chemical genetics, proteomic, Y2H screens, and RNA immu-

noprecipitations (RIPs), the association of hnRNPA1 with multiple pro-

moters, untranslated (UTR) regions, and participation at various stages

of viral gene expression has been elucidated (Figure 2).2,10,15,55-58

Upon infection of cells by viruses, the genome acts as a template for

viral gene transcription and posttranscriptional regulation, thereby

facilitating the expression of viral genes.

In human T-cell lymphotropic virus type I (HTLV-1) cell culture

model, hnRNPA1 inhibits the binding of the Rex protein to its

response element (RxRE or XRE) in 30 long terminal repeat (LTR) of all

viral RNAs. Silencing RNA (siRNA)–mediated knockdown of hnRNPA1

affected the splicing of gag/pol transcripts and increased the binding

of Rex to its response element, thereby positively affecting the rate of

viral replication.36 Furthermore, ectopic expression of hnRNPA1

antagonized the posttranscriptional activity of Rex by competitive

binding, thereby eliciting an antiviral response against HTLV-1

infection.59

Hepatitis C virus (HCV) has a 13.6-kb genome which encodes a

single positive sense RNA molecule 9.6 kb in size encoding a polycis-

tronic open reading frame (ORF) flanked by UTR regions at the 50 and

30 ends.60-63 These regions are pivotal for viral replication. The con-

served region at the 30 end of the ORF is termed the cis-acting replica-

tion element (CRE), which is indispensable for viral replication and

translation. The conserved structure is responsible for RNA-RNA

interactions with various viral and host factors, one of which is

hnRNPA1.26,29,64-68 Additionally, viral RNA-dependent RNA polymer-

ase (NS5B) also interacts with hnRNPA1.58,65 Up-regulation of

hnRNPA1 in Huh-7 cells, down-regulated HCV RNA synthesis, and

48 hours post-infection coinciding with a surge in HCV RNA synthesis

were observed after hnRNPA1 silencing.60 The authors speculate that

since hnRNPA1 binds to both the CRE and viral polymerase, it might

compete with the latter, for efficient viral replication thereby exerting

an antiviral effect.60 Viruses in which hnRNPA1 plays an antiviral role

are summarized below (Table 1).

2.2 | Pro-viral role of hnRNPA1

Pro-viral effect was seen in Sindbis virus infection model, wherein

hnRNPA1 was redistributed to the cytoplasmic site of viral replication

and bound to the 50 UTR region (50UTR) of viral RNA, promoting the

synthesis of negative-strand RNA (G and SG RNA). Furthermore, a

decline in hnRNPA1 expression affected viral RNA synthesis, cap-

dependent and cap-independent translation of viral genes.37,69

A similar trend was reported in porcine epidemic diarrhea virus

(PEDV) infection, wherein hnRNPA1 co-immunoprecipitated with

PEDV nucleocapsid protein (N) during the course of infection.38 Fur-

thermore, hnRNPA1 also bound to terminal leader sequence and

intergenic (IG) sequence important for efficient virus replication.35,62

Levengood et al reported that in enterovirus 71 (EV-71) infection,

hnRNPA1 is redistributed to the cytoplasm and interacts with the

50UTR in the stem loop II (SL-II) region of the internal ribosome entry

site (IRES) v- RNA (viral RNA), thereby acting as an internal trans acti-

vating factor (ITAF), accentuating IRES-mediated translation of viral

genes.39 Combined knockdown of hnRNPA1 and hnRNPA2B1 greatly

impaired viral RNA translation, impeding viral replication.70,71 Bio-

physical studies also showed that the SL-II domain undergoes a con-

formational change to assemble a viable hnRNPA1-RNA complex.

Mutations or deletions in this region completely impair viral

replication.39

Cammas et al reported physical binding of hnRNPA1 to the

50UTR region of human rhinovirus (HRV) IRES.40 Courteau et al

supported this and also showed that cytoplasmic localization of

hnRNPA1 controlled and enhanced IRES-mediated translation of viral

proteins, thereby acting as an ITAF.41 Furthermore, down-regulating

hnRNPA1 or expressing a cytoplasmic restricted mutant of the protein

(hnRNPA1 ΔM9) partially restored the block on viral translation.41

They also identified the role of hexokinase 2 (HK-2) in controlling the

nucleo-cytoplasmic distribution of hnRNPA1.41

TABLE 1 Summary of reports showing hnRNPA1 as an antiviral host protein

Serial
Number Virus

Genome
Type

Cytoplasmic
Retention Functional Implication

1 Human T-cell lymphotropic virus

(HTLV-1)28,36
RNA virus

(+)

- 1. Regulates posttranscriptional and posttranslational

processing of HTLV-1 viral genes.

2. Inhibits export of REX-1 associated mRNAs.

2 Hepatitis C virus (HCV)24,29,33,35 RNA virus

(+)

- 1. hnRNPA1 binds to the 50 and 30 nontranslated
region (NTR) region of the HCV RNA and viral

polymerase, NS5b, thereby regulating viral

replication, negatively.
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Chiu et al reported that in avian reovirus (ARV) infection, non-

structural protein p17 is shuttled to and fro from the nucleus in an

hnRNPA1-dependent manner.42 hnRNPA1 is constantly shuttled to

and fro the nucleus by an active import/export mechanism which

relies on its interaction with the F-peptide (301-318 aa) of

Transportin-1, a member of the importin family.23-25,72,73 ARV p17

protein interacts with hnRNPA1 and is indirectly shuttled across the

nuclear pore complex, alongside the hnRNPA1-transportin-1 cargo.42

C-terminal, glycine-rich region (195-268 aa) of hnRNPA1 is deemed

crucial for its interaction with ARV p17 (19-40 aa).42 This is supported

by site-directed mutagenesis, wherein mutant hnRNPA1195-268 with

intact M9 NLS (195-268 aa) retained its binding ability to p17,

TABLE 2 Summary of reports showing hnRNPA1 as a pro-viral host protein

Serial

Number Virus

Genome

Type

Cytoplasmic

Retention Functional Implication

1 Sindbis virus18,37 RNA virus (+) - 1. Binds to 50UTR, promotes IRES assisted and

non-IRES-assisted protein translation.

2. Helps in viral RNA replication (+) and (−) strand.

2 Epidemic Porcine Diarrhea

virus (PEDV)38
RNA virus (+) - 1. Positively regulates viral replication.

3 Enterovirus 71 (EV-71)39 RNA virus (+) - 1. Binds to 50UTR, promotes IRES-assisted translation of viral

genes.

2. Helps in viral replication.

4 Human rhinovirus

(HRV)40,41
RNA virus (+) Yes 1. Enhances viral replication by promoting IRES-mediated

translation.

5 Avian reovirus (ARV)42 ds RNA virus - 1. Binds to ARV p17 protein and mediates its

nucleo-cytoplasmic import/export

2. hnRNPA1 depletion in p17-transfected Vero cells, leads to

nuclear retention of p17.

3. Positively regulates viral replication.

TABLE 3 Summary of reports with contradicting roles for hnRNPA1

Serial
Number Virus

Genome
Type

Cytoplasmic
Retention Functional Implication

1 Human immunodeficiency virus

I (HIV-1)43-46
RNA virus (+) Yes 1. hnRNPA1 binds to HIV-1 RNA and regulates

nucleo-cytoplasmic export and splicing of viral RNA.

2. Maintains cytoplasmic stability of viral mRNA.

2 SARS corona virus (SARS

CoV)47,48
RNA virus (+) - 1. Involved in the viral RNA synthesis.

2. Interacts with the viral nucleocapsid protein of

SARS CoV.

3 Murine Hepatitis virus (MHV)49,50 RNA virus (+) - 1. hnRNPA1 enhances the rate of viral replication and

IRES-mediated translation of viral proteins.

4 Junin virus (JUNV)51 RNA virus (−) Yes 1. Promotes viral RNA transcription and replication in early

stages of infection.

TABLE 4 Summary of reports in which the role of hnRNPA1 is not elucidated

Serial
Number Virus

Genome
Type

Cytoplasmic
Retention Functional Implication

1 Epstein-Barr virus (EBV)52 RNA virus

(+)

- 1. hnRNPA1 binds to the late membrane protein 2

(LMP2) mRNA assumed to control splicing of this

gene in EBV infection.

2 Human papilloma virus −16
(HPV-16)44,53

DNA virus - 1. hnRNPA1 is up-regulated in HPV-16 infected cells.

2. It binds to late response element (LRE) mRNA and

regulates the expression of virus late response genes.

3 Vesicular stomatitis virus (VSV)54 RNA virus

(−)
- 1. VSV infection promotes hnRNPA1 relocalization in a

Rae 1-dependent manner for apoptotic signalling.

2. hnRNPA1 silencing in VSV infection exhibits delayed

onset of apoptosis.
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whereas mutant hnRNPA11-184 (1-184 aa) lost its capacity to interact

with p17, thereby leading to the nuclear accumulation of ARV p17

protein.42 Multiple reports suggest that ARV p17 protein induces

autophagy that is mandatory to support efficient replication in the

host.74-76 The authors suggest that ARV p17-hnRNPA1 interaction is

needed for import and export of the p-17 cargo via the nuclear

pore complex (NPC). Additionally, siRNA-mediated knockdown of

hnRNPA1 in p17 transfected Vero cells exhibited nuclear retention of

p17, 17 to 30 hours posttransfection.42 Furthermore, siRNA-mediated

depletion of hnRNPA1 in Vero cells dropped ARV titer, establishing

that hnRNPA1 plays a pro-viral role in ARV infection.42

Various viruses in which hnRNPA1 supports viral replication in

the host are listed in Table 2.

2.3 | Controversial role of hnRNPA1

In the case of human immunodeficiency virus 1 (HIV-1) infection, con-

tradictory results were reported by two different research groups,

Monette et al reported a surge in the amount of endogenously

expressed hnRNPA1 post-HIV-1 infection, as enhanced hnRNPA1

levels were seen to be favorable for the virus.43 Additionally, HIV v-RNA

was immunoprecipitated with hnRNPA1 protein.43,77 A decrease in

hnRNPA1 levels down-regulated viral pr55Gag expression, affecting viral

replication negatively.43,53 Subsequently, a virus-imposed block on

hnRNPA1 import to the nucleus was observed. This phenomenon was

linked with decrease in the nuclear pore glycoprotein p62 and

transportin-1 levels, post-infection, pivotal for nucleo-cytoplasmic shut-

tling of hnRNP proteins.43 Cytoplasmic retention of hnRNPA1 favored

IRES-mediated translation of viral genes and vice-versa.

In contrast, Zahler et al highlighted the importance of hnRNPA1

in regulating the splicing of many viral genes (viz, Tat), wherein,

hnRNPA1 binds to exonic splicing silencer 2 (ESS 2), thereby repre-

ssing the splicing of Tat mRNA.44,45 Overexpression of hnRNPA1 in

an in vitro system abrogated the expression of TaT, adversely affect-

ing viral replication.43,45,46,78-80

hnRNPA1 is known for its action as a cis-acting element favoring

replication and transcription of viral genes. Luo et al reported that the

C terminal region of hnRNPA1 has high affinity and directly binds to

the SARS_N (Nucleopcapsid protein) in severe acute respiratory syn-

drome coronavirus infection (SARS CoV).81 However, a deletion in the

C-terminal region of the protein substantially abrogated viral replica-

tion and transcription, suggesting that hnRNPA1 and SARS_N interac-

tion facilitates the binding of other cis- or trans-activating factors,

enabling viral transcription and replication to ensue.81

Murine hepatitis virus (MHV) belongs to the genus

Betacoronaviruses. hnRNPA1 is up-regulated and localized to the cyto-

plasm, post-MHV infection.81 It regulates discontinuous viral transcrip-

tion by binding to negative strand leader and IG sequence indispensable

for viral transcription and also mediates the formation of MHV viral

ribonucleoprotein complexes.82,83 Furthermore, it also binds to MHV N

protein which has multifarious roles in the viral life-cycle and has the

ability to bind viral RNA.16,84-86 Remarkably, hnRNPA1 also binds to

positive stranded 30UTR, suggesting a possible role in negative strand

RNA synthesis.84 There are conflicting reports about the importance of

hnRNPA1 in MHV infection. According to a study by Shi et al, viral

RNA synthesis was enhanced after ectopic expression of hnRNPA1;

however, a truncation mutant of the protein, lacking the C terminal

region responsible for cytoplasmic localization of the protein, had

inverse effects.83,87 Another report by Shen et al claimed that CB3 cell

lines lacking any detectable expression of the RBP could sustain viral

replication, implying that the effect exerted by hnRNPA1 can be

substituted by other cellular gene products similar in function to

hnRNPA1 in un-infected and virally infected CB3 cells.49,88 Many mem-

bers of the hnRNP family interact in a similar fashion with MHV RNA

viz a viz, hnRNP(A/B), hnRNPA2/B1, and hnRNPA3, further supporting

the effect observed in hnRNPA1-silenced cell line.50

Maeto et al ascribed that hnRNP A/B subfamily (hnRNP A1

and A2) has a different role in acute and persistent Junin virus (JUNV)

infections.51 JUNV is a single-stranded, enveloped RNA virus belong-

ing to the Arenaviridae family.57,89 Acute infection by this virus is char-

acterized by enhanced production of viral progeny, whereas, in

F IGURE 2 Functional role of
heterogeneous ribonucleoprotein
A1 (hnRNPA1) in viral infections.
hnRNPA1 is targeted by viruses
to control various stages in
their life cycle: (A) replication,
(B) transcription,
(C) posttranscriptional
modification like nuclear

export/import, and (D) translation
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persistent infection, there is no infectious viral particle produced.90,91

In acute infection, where there is production of viral nucleoprotein

(N), hnRNPA1 is overexpressed and cytoplasm localized. This might

aid the virus in translation. During persistent infection, hnRNPA1 was

predominantly nuclear, supported by experiments using a mutant lac-

king NLS, as reported by Maeto et al.51,90,91 This difference may be

linked to the role of this protein in the host whereby cytoplasmic

hnRNPA1 negatively regulates the translation of anti-apoptotic pro-

teins like XIAP and APAF1.92,93 Furthermore, down-regulation of

hnRNP(A/B) proteins individually abrogates JUNV replication; how-

ever, the effect was much more pronounced when both hnRNPA1

and hnRNPA2 were silenced simultaneously.51 Moreover, hnRNPA1

was found to co-immunoprecipitate with N protein in acutely infected

cells.51 Upregulating N protein induced cytoplasmic re-localization of

hnRNPA1 in Vero cells,51 further pointing towards the role of

hnRNPA1 in the JUNV lifecycle.

2.4 | Undesignated role for hnRNPA1

In Epstein-Barr virus (EBV) infection, hnRNPA1 has been speculated

to regulate the splicing of latent membrane protein 2 (LMP-2) mRNA

by its interaction with the intronic region in the LMP2 mRNA in asso-

ciation with hnRNPU and beta actin.52 In silico prediction studies

using RBPMap identified the binding of hnRNPA1 to stabilize a non-

coding internal repeat region 1 (IR1) of EBV RNA.52,94 Additional

molecular and biochemical studies aiming towards characterizing the

role of this protein in EBV are needed to better understand the impor-

tance of hnRNPA1 in the EBV lifecycle.

Human papillomavirus 16 (HPV-16) is the most common sexually

transmitted virus. It encodes early and late genes under the control of

different promoters. Viral gene expression is regulated at the tran-

scriptional and posttranscriptional level.95 hnRNPA1 expression is

upregulated in HPV-16 infection.96 hnRNPA1 has also been observed

to directly bind to splicing silencer RNA elements in HPV-16L1 coding

region, thereby inhibiting splicing of HPV-16 late mRNA.97-99 Addi-

tionally, hnRNPA1 promoted splicing of early HPV mRNAs, thereby

promoting enhanced gene expression.95,100 However, further studies

directing towards modulating the levels of hnRNPA1 are needed to

elucidate its role in HPV-16 replication.

In the case of vesicular stomatitis virus (VSV), Lyses et al reported

that although hnRNPA1 silencing did not have any major effect on

viral replication and growth, HeLa cells in which hnRNPA1 was

silenced displayed delayed onset of apoptosis post-virus infection,

suggesting that hnRNPA1 may play a protective role by initiating ant-

iviral immune response post-VSV infection.54

3 | CONCLUSION AND FUTURE
DIRECTIONS

Viruses are known to usurp many host cell proteins for their own ben-

efit.1 Successful infection is characterized by sequestering host

proteins, concurrently, evading the host-induced immune response.1

Owing to their limited genetic capacity, viruses tend to utilize many

host proteins. Likewise, hosts have evolved innate and adaptive cellu-

lar defense mechanisms to counteract the infection caused by these

viruses. The multifaceted nature of hnRNPA1 in the host makes it a

lucrative target for many viruses. This review highlights the impor-

tance of hnRNPA1 and diverse roles played by this protein in the life

cycle of various viruses.

For instance, in Sindbis virus,18,37,69 PEDV,38 EV-71,39 and

HRV40,41 infections, hnRNPA1 shows a pro-viral effect which may be

attributed to the role of this protein as an ITAF, positively regulating

IRES mediated translation of viral RNAs. Likewise, in ARV infection,

virus exploits the nucleo-cytoplasmic machinery in place for traffick-

ing hnRNPA1 via its interaction with transportin-1 to indirectly trans-

locate p1742,76 through the NPC. hnRNPA1 down-regulation, affects

virus titer, negatively, implicating towards a supportive role in ARV

infection.42 Contrastingly, in HTLV-136,59 and HCV-155,58,61,63 life

cycle, hnRNPA1 negatively regulates viral replication by controlling

the posttranscriptional and translational modification of viral mRNAs.

However, in the case of HIV-1,43-46 SARS CoV,47,48 MHV,49,50 and

JUNV51,89-91 infections, the advantage gained by the virus through its

interaction with hnRNPA1 is debatable. This can be linked to the way

the host interactome is shaped post-viral infection. For example,

depending on the stage of infection, that is, acute or chronic, the

localization of hnRNPA1 is modulated and varied effects are exhibited

in JUNV cell culture model.51

RBPs have been established as cis- and trans-acting elements,

hnRNPA1 acts as a cis-acting element in SARS CoV infection model,

controlling viral gene expression.81 It also binds SARS nucleocapsid

protein, facilitating the binding of other cis- or trans-activating factors,

to ensure viral transcription and replication.81 In MHV infection,

hnRNPA1 binds to positive and negative viral RNA.82-84 However, the

role of hnRNPA1 in MHV infection is controversial. Viral replication

was enhanced post-hnRNPA1 transfection, but in hnRNPA1 silenced

cell lines, no retardation in viral replication was observed,49,83,87,88

indicating that the effect incurred may be substituted by other

isoforms or members of hnRNP family.

In EBV and HPV-16 infections, although hnRNPA1 has been

reported to bind to viral RNA,52,94,97-99 further studies directed

towards how these interactions dictate virus survival need further

investigation. Likewise, in VSV infection, hnRNPA1 was not seen to

directly affect viral replication but hnRNPA1 silenced cells displayed

delayed onset of virus induced apoptotic events.54 The varied profile

of hnRNPA1 in multiple viruses may also appertain to the diverse rep-

lication profile exhibited by these viruses. Similar alterations in related

viruses may elicit different consequences for viral replication.

Although all these observations are fascinating, many questions

pertaining to the functional implication of hnRNPA1 in the host, post-

viral infections, still remain unsolved. Unravelling the complexity and

the fate of these hnRNPA1-virus interactions not only enhances our

current understanding of the disease biology and pathogenesis but

also helps identify crucial nodal points which can be exploited further.

Additionally, it will be imperative to utilize the interactions between
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viral proteins and hnRNPA1 as tools to identify biomarkers for diag-

nostic measures and host-based therapeutics.
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