
© 2016 Surgical Neurology International | Published by Wolters Kluwer - Medknow

Editor:
James I. Ausman, MD, PhD 
University of California, Los 
Angeles, CA, USA

OPEN ACCESS
For entire Editorial Board visit :  
http://www.surgicalneurologyint.com

Review Article

Metabolic syndrome and the hepatorenal reflex
Michael D. Wider

Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA

E‑mail: *Michael D. Wider ‑ mdwider@yahoo.com 
*Corresponding author

Received: 07 June 16  Accepted: 19 July 16  Published: 13 September 16

Abstract
Insufficient hepatic O2 in animal and human studies has been shown to elicit 
a hepatorenal reflex in response to increased hepatic adenosine, resulting in 
stimulation of renal as well as muscle sympathetic nerve activity and activating 
the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic 
lipid accumulation reported in metabolic syndrome (MetS) patients may reflect 
insufficient hepatic O2 delivery, potentially accounting for the sympathetic overdrive 
associated with MetS. This theoretical concept is supported by experimental 
results in animals fed a high fructose diet to induce MetS. Hepatic fructose 
metabolism rapidly consumes ATP resulting in increased adenosine production 
and hyperuricemia as well as elevated renin release and sympathetic activity. This 
review makes the case for the hepatorenal reflex causing sympathetic overdrive and 
metabolic syndrome in response to exaggerated splanchnic oxygen consumption 
from excessive eating. This is strongly reinforced by the fact that MetS is cured in 
a matter of days in a significant percentage of patients by diet, bariatric surgery, 
or endoluminal sleeve, all of which would decrease splanchnic oxygen demand 
by limiting nutrient contact with the mucosa and reducing the nutrient load due to 
the loss of appetite or dietary restriction.
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INTRODUCTION

Obesity is increasing rapidly on a global scale and is 
associated with comorbidities that require expensive 
medical care and limit life span,[1,2] including increased 
risk of all cause and cardiovascular disease mortality.[3‑5] 
Body mass index (BMI) has been widely used to indicate 
the level of obesity, though recent studies have found that 
abdominal or visceral adiposity (vs subcutaneous), as 
reflected in the waist‑to‑hip ratio or waist circumference, 
is a stronger criteria for predicting risk of developing 
metabolic syndrome (MetS) and type 2 diabetes mellitus 
(T2DM).[6‑12] The incidence of MetS has been reported 
to be as low as 22% in overweight patients with a BMI 
of 25–30 and 60% in patients with a BMI of 30–35, 
leaving upwards of 40% of these obese patients relatively 
healthy.[4] While obesity is a risk factor for MetS, the fact 

that not all obese patients develop MetS or T2DM[13‑19] 
suggests that adiposity may not be etiologic.

While not all obese people develop MetS, the rising 
incidence of obesity is regarded as an epidemic due to 
the broad spectrum of associated comorbidities in many 
patients including increased mortality, T2DM, glucose 
intolerance, insulin resistance, hypertension, dyslipidemia, 
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nephropathy with proteinuria, cardiovascular 
disease, obstructive sleep apnea, nonalcoholic fatty 
liver disease (NAFLD), and nonalcoholic steatotic 
hepatitis (NASH), polycystic ovary syndrome, and 
increased risk of a number of cancers.

The term MetS, or originally Syndrome X, was proposed 
to foster a coherent clinical approach to management 
and therapeutic intervention. Though the diagnostic 
criteria for MetS has been variably defined in the 
literature, most definitions now include the presence 
of at least three of the following; abdominal obesity, 
insulin resistance, hypertension, elevated fasting plasma 
glucose, high serum triglycerides, and low high‑density 
lipoprotein levels. A requirement of insulin resistance 
and abdominal adiposity as part of the diagnostic criteria 
depends on the group or agency proposing the definition. 
There have been several attempts to develop a unified 
set of diagnostic criteria, and in 2009, the International 
Diabetes Federation, the American Heart Association, 
and the National Heart, Lung and Blood Institute 
developed a list of criteria that is broadly accepted.

METABOLIC SYNDROME ETIOLOGY

A large number of clinical studies have demonstrated 
that a significant percentage of patients with MetS have 
durable remission of the comorbidities within days of 
bariatric surgery, calorie restriction (diet), or implantation 
of an endoluminal plastic sleeve that prevents nutrient 
contact with the proximal gastrointestinal mucosa, 
as discussed below. It is essential then to ask of any 
proposed etiologic factor whether, first, it is capable of 
causing the spectrum of comorbidities, and second that 
it is rapidly eliminated by reducing nutrient contact with 
the proximal gut.

The theories proposed to explain the dramatic impact 
of surgical intervention include neuroendocrine, 
immunologic, and hormonal influences from the 
proximal gut (foregut theory) and distal gut (hindgut 
theory).[73,99,100] The challenge to these theories is in the 
diverse mix of comorbidities and the dramatic effect of 
simply removing part of the stomach and/or duodenum. 
There are no known hormones or even cytokine cascades 
associated with inflammation that would cause the 
specific complex of issues seen in MetS and that would 
be eliminated in a matter of days by something as simple 
as a sleeve gastrectomy.

It is not the intent of this review to argue the value or 
relevance of the extensive body of work and related 
theories for the etiology of MetS but rather to propose 
an etiologic mechanism based on nutrient contact 
with the gastrointestinal mucosa in patients with 
immediate resolution. There are a number of excellent 
reviews detailing the evidence for and against the role 

of gastrointestinal hormones including insulin and 
GLP‑1,[101‑105] as well as the potential role of leptin and 
adipokines.[106‑110]

It is possible, if not probable, that there are multiple 
pathophysiologic mechanisms involved in the individual 
morbidities grouped into the classification of MetS. 
Those patients whose comorbidities are resolved in a 
matter of days, however, may have a unique mechanism 
related to nutrient contact. The diversity of morbidities 
and the immediate resolution in up to half the patients 
indicates a rapidly acting physiologic mechanism with 
the potential for broad impact that points to neurologic 
origin.

SYMPATHETIC OVERDRIVE

Obesity and the related T2DM and MetS have 
been shown to have a high correlation with elevated 
sympathetic nerve activity in the kidney (rSNA) and 
muscles (mSNA)[111‑129] that is relieved by bariatric 
surgery.[47,118] Obese humans were variably observed in 
early studies to have elevated whole body sympathetic 
activity as indicated by urinary and plasma norepinephrine 
levels[130] whereas later reports using the more accurate 
and refined techniques of microneurographic monitoring 
and norepinephrine spillover confirmed the tissue 
specific nature of the sympathetic outflow.[131‑133] The 
term “sympathetic overdrive” was coined to refer to 
the sympathetic overactivity[114,119,120] that is widely 
accepted as playing a central role in the etiology of the 
comorbidities,[134‑138] and though there are a number of 
theories as to the causes of overactivity, including insulin 
action in the brain,[128,139] the etiology remains unclear.

Elevated sympathetic discharge following a meal has been 
reported in normal humans and animals[131,137,140] and may 
lead to sustained overdrive in response to repetitive and/
or excessive eating. Obese, hypertensive patients as well 
as animal models of MetS caused by high fructose and 
high fat diets exhibit elevated rSNA and mSNA as well 
as uric acid and angiotensin II (Ang II) levels compared 
to lean controls.[141‑150] High mSNA leads to muscle 
vasoconstriction, increasing peripheral vascular resistance, 
and decreasing muscle glucose uptake,[133] suggesting 
a role in the development of hypertension and insulin 
resistance. The nature of the sympathetic overdrive has 
been shown to be due to recruitment of previously silent 
fibers rather than an increase in the firing rate.[144]

Although results of studies on the role of sympathetic 
nerve activity in relation to vascular response and insulin 
action are mixed,[133,151‑159] renal denervation,[160‑162] and 
clonidine administration,[163‑166] as well as angiotensin 
converting enzyme (ACE) inhibitors,[167‑171] all of which 
reduce sympathetic outflow from the rostroventral lateral 
medulla (RVLM), have been shown to lower blood 



Surgical Neurology International 2016, 7:83 http://www.surgicalneurologyint.com/content/7/1/83

pressure and improve insulin sensitivity and lipid levels 
in MetS and T2DM. Further, renal denervation and 
ACE inhibitors reduce kidney and circulating Ang II, 
decreasing AT1 receptor activation in the RVLM as well 
as limiting the Ang II enhancement of norepinephrine 
secretion and reuptake in the kidney.[172‑174]

HEPATORENAL REFLEX

The close functional relationship between the liver and 
kidney provides a potential mechanism for development 
of the sympathetic overdrive in response to a hepatorenal 
reflex.[175‑177] Much of the information supporting the 
existence of the hepatorenal reflex has been developed 
from studies of hepatorenal syndrome (HRS) in 
decompensated cirrhosis, initially attributed to a 
baroreflex response to hypotension associated with 
infection.[178‑182] However, studies in both humans and 
animals have documented an immediate decrease in 
renal blood flow, glomerular filtration rate, and urine 
flow as well as increased sodium retention in response 
to increased intrahepatic pressure or reduced liver blood 
flow.[176,183‑189]

The reflex nature of the response to low hepatic blood 
flow is supported by the denervation of the liver and/
or kidney that has been shown to decrease rSNA and 
improve renal blood flow and Na+ excretion.[180,187‑191] 
Further, there is no histologic damage to the kidneys 
in HRS and kidneys from HRS donors resume normal 
function when transplanted.[180,192] Liver transplantation 
in HRS patients though sometimes associated with 
kidney damage from immunosuppressants[193] also results 
in the resumption of kidney function, indicating that 
the elevated rSNA is due to a neurologically mediated 
reflex.[180,190,193‑195]

Regardless of the cause of the elevated mSNA and 
rSNA observed in HRS and cirrhosis, it has been 
shown, as stated above, that acute reduction of blood 
flow or increased hepatic resistance in animals and 
humans causes rapid stimulation of rSNA resulting in 
renal vasoconstriction and reduced kidney function 
with stimulation of the RAS. Intraportal glutamine and 
serine have also been shown to increase rSNA by causing 
hepatocyte swelling that reduces sinusoidal blood flow. 
Cutting the vagal hepatic nerves or spinal transection 
prevented the effect on rSNA in these experiments and 
unilateral renal denervation prevented the effect only in 
the denervated kidney, firmly demonstrating the reflex 
nature of the response.[196]

Hepatic adenosine has been identified as a potential 
factor in stimulating the hepatorenal reflex in that 
infusion into the portal vein in animals results in an 
immediate increase in rSNA and a reduction in renal 
blood flow that is prevented by liver denervation and 

intraportal, but not intravenous, A1 adenosine receptor 
blockers.[188,191,195,197‑199] The compounding effect of RAS 
stimulation caused by renal ischemia in response to rSNA 
is well established, with elevated Ang II resulting in broad 
activation of sympathetic outflow capable of generalized 
overdrive.[148,200,201]

HEPATIC OXYGEN DELIVERY

Portal blood flow to the liver increases over 100% 
following a meal[236‑245] depending on the type of 
nutrient,[239,246‑249] but the portal hemoglobin saturation 
can be very low due to increased oxygen demand from 
gut secretory and contractile activity. Splanchnic oxygen 
consumption has been observed in normal humans 
to increase in the first hour following a mixed meal by 
over 50%[270‑272] and postprandial O2 consumption by 
the gastric mucosa during secretory periods, along with 
the thick gastric muscle requirement for O2 during 
contraction, contribute significantly to lowering portal 
O2 following a meal.[273‑276] Hepatic oxygen delivery is 
further compromised following a meal by increased 
hepatic artery resistance leading to lower arterial flow. 
This “hepatic arterial buffer response”[250‑253] has been 
postulated to account for the relatively constant hepatic 
vein outflow despite the increased portal inflow following 
meals. Adenosine secretion into the space of Moll is 
assumed to be constant and to cause arterial vasodilation. 
The increased portal flow following a meal is thought to 
wash out the adenosine, resulting in increased arterial 
resistance and balancing hepatic perfusion.[253]

While hepatic perfusion is relatively constant over the 
day, the distribution of blood supply, and hence, oxygen 
delivery to the hepatic parenchyma in normal humans 
and animals results in what is termed “metabolic 
zonation” involving a periportal Zone 1 (portal inflow) to 
perivenous Zone 3 (outflow to the hepatic vein). Hepatic 
oxygen levels vary across the lobule with mixed portal and 
arterial blood in the Zone 1 periportal region reported to 
be 60–65 mm Hg in animals while perivenous Zone 3 
O2 is 30–35 mm Hg.[256] The periportal to perivenous 
gradient of O2 and nutrient delivery results in both cell 
structure and metabolic differentiation from inflow to 
outflow areas of the lobule.[254,255] While the reduced 
postprandial O2 delivery is thought to be compensated for 
by increased O2 uptake by hepatocytes[250,257,258] it would 
present a significant challenge to hepatic metabolism, 
especially in Zone 3.

Oxygen delivery to the liver is compromised in obesity by 
hepatocyte swelling from lipid accumulation. Intracellular 
lipid follows the same perivenous distribution as the 
intrahepatic zonal O2 gradient,[267‑269] suggesting that fatty 
acid metabolism is initially compromised by the diminished 
oxygen in zone 3. Because fatty acid transport out of cells 
is an energy dependent process, the low hepatic ATP in 
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MetS would be expected to diminish transport as well as 
lowering beta oxidation, resulting in lipid accumulation. 
NAFLD can eventually lead to NASH that has been 
shown to reduce sinusoidal blood flow up to 50%[259‑263] by 
impeding parenchymal microcirculation.[264‑266]

RELATIVE HEPATIC HYPOXIA IN 
METABOLIC SYNDROME

Low hepatic ATP and inorganic phosphate (Pi) have been 
reported in MetS and T2DM patients but not in BMI 
matched, healthy controls, and is associated with NAFLD, 
hepatic insulin resistance, and hyperuricemia.[202‑206] 
The low hepatic ATP may be caused by the chronically 
decreased portal O2 delivery from exaggerated mesenteric 
oxygen demand associated with excessive eating. The 
limited ATP production could result in increased hepatic 
adenosine, potentially stimulating the hepatorenal reflex 
and increasing the sympathetic outflow that results in 
MetS [Figure 1]. How hepatic adenosine that should be 
washed out following a meal would cause a hepatorenal 
reflex however, is not clear. The “hepatic arterial buffer 
response” described above assumes constant adenosine 
secretion into the space of Moll but doesn’t address 
long term increased hepatic resistance from NAFLD 

that reduces portal flow, eventually limiting washout and 
increasing hepatic adenosine.

Reduced hepatic oxygen in rat and mouse hepatocytes has 
been shown to increase the dephosphorylation of AMP 
to adenosine, even though adenosine is not always an 
intermediate in adenine nucleotide metabolism. AMP is 
catabolized by AMP deaminase to inosine monophosphate 
in the inosine pathway, which would circumvent the 
production of adenosine.[227‑230] AMP deaminase in rat 
brain extracts, however, is inhibited at ischemic ATP 
concentrations resulting in AMP breakdown to adenosine 
almost exclusively through the adenosine pathway.[231] 
Further, extracellular ATP is exclusively metabolized 
to adenosine by ecto‑5’ nucleotidase.[232] Regardless of 
the dominant pathway, adenosine A1 receptors have 
been shown to be responsible for the activation of the 
hepatorenal reflex[188,191,195,197,198] and AMP,[233] inosine[234,235] 
and adenosine all activate A1 receptors.

This proposed theory of decreased hepatic ATP leading 
to increased adenosine formation and ultimately MetS is 
further supported by experimental models where MetS is 
induced by a high fructose diet.[148,164,207‑211] Although the 
results of both animal and human studies are variable,[213] 
high fructose diet is widely used to produce MetS in 
animals that is not observed in fructokinase A and C 
knockout mice.[214] Extrahepatic cells do not express 
fructokinase and extrahepatic hexokinase has a high Km 
for fructose, restricting almost all fructose metabolism 
to the liver. Fructose is transported into hepatocytes 
by Glut2, bypassing the need for insulin and is cleared 
by the liver close to 100% in the first pass. Once in the 
hepatocytes it is rapidly phosphorylated to fructose 
1‑P, consuming Pi from ATP and causing increased 
adenine nucleotide production leading to hyperuricemia 
[Figure 1].[212]

Interestingly, BMI has been reported to be inversely 
correlated with hepatic ATP in normal humans and 
multiple regression analysis has identified waist 
circumference as an independent predictor of hepatic ATP 
flux and Pi concentrations.[204] Further, the hyperuricemia 
observed in both humans and animal models of 
MetS[215‑221] has been shown to be a very sensitive index 
of hepatic ATP depletion[225] and T2DM patients do not 
tolerate large doses of fructose due to impaired ATP 
recovery following an intravenous fructose challenge.[203,226]

BARIATRIC SURGERY IMPACT ON HEPATIC 
O2

If a hepatorenal reflex in response to relative hepatic 
hypoxia is the primary stimulus to sympathetic overdrive 
and subsequent MetS, then the question of why bariatric 
surgery, diet, or endoluminal sleeve should correct the 
hypoxia is central to understanding the role they play 

Figure 1: The postulated etiologic mechanisms is supported by the 
fact that excessive eating and fructose ingestion, both of which 
can result in MetS, have the potential to reduce hepatic ATP 
production,[212] increasing levels of adenine nucleotides that are 
known to stimulate the hepatorenal reflex and theoretically lead 
to MetS
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in remission. The excessive eating that leads to obesity 
produces a constant state of increased splanchnic oxygen 
demand and decreased hepatic artery blood flow that may 
be significantly corrected by limiting nutrient exposure to 
the stomach and intestines.

Surgical restructuring of the gut referred to as “bariatric” or 
“metabolic” surgery includes a number of approaches that 
were originally focused on weight loss and were designed 
to either reduce the nutrient load or limit absorption by 
the small intestine. While these procedures restructure 
the gut in various ways, all of them result in comorbid 
disease remission including T2DM[20‑42] and MetS,[43‑59] 
even if at a variable rate and durability[29,35,38,40,48,60‑71] 
though remission has been reported in a number of 
publications to be durable[34,36,38,72,73] and immediate prior 
to significant weight loss.[74‑79]

The one common facet to all the procedures is that 
they reduce nutrient load and contact with the proximal 
gastrointestinal mucosa by diversion of nutrient flow 
and loss of appetite. Further, the surgical placement of a 
plastic, endoluminal sleeve in the gastroduodenal lumen, 
preventing proximal mucosal contact with nutrient, has 
been shown to result in rapid remission, suggesting that 
mucosal contact is etiologic.[80‑91]

Bariatric procedures include gastroplasty, biliopancreatic 
diversion, duodenal switch, biliopancreatic diversion 
with duodenal switch, Roux‑en‑y gastric bypass (RYGB), 
sleeve gastrectomy, vertical gastric banding and adjustable 
gastric band,[51,92‑95] as well as variants of these techniques 
including laparoscopic approach.[43‑47,96‑98]

Both gastrectomy and diversion of the stomach and/
or proximal intestine from nutrient contact would 
significantly lower splanchnic O2 demand resulting in 
increased portal O2 that may result in increased ATP 
production, as suggested by the fact that hyperuricemia 
is reduced following bariatric surgery.[222‑224] The 
decreased uric acid indicates reduced adenine nucleotide 
metabolism and nucleotide production and theoretically 
limits the hepatorenal reflex [Figure 2].

While the stomach and duodenum are not removed in 
a gastric bypass or RYGB, reduced acid secretion and 
gastrin release that would lead to O2 consumption by 
the excluded stomach in humans has been reported.[277] 
Further, removal of a significant portion of the stomach 
in a sleeve gastrectomy may increase hepatic artery 
flow by reducing gastric steal from the celiac artery. 

Figure 2: Decreasing the contact of nutrient with the proximal gut by 
diet or bariatric surgery (including endoluminal sleeve placement) 
would be expected to reduce enteric oxygen consumption and 
improve O2 delivery to the liver, potentially enhancing hepatic ATP 
production and reducing adenine nucleotide accumulation and the 
hepatorenal reflex

Figure 3: Reduced blood flow in the gastric artery and gastric vein 
following gastrectomy has the potential to improve O2 delivery 
to the liver by decreasing low O2 gastric vein contribution and 
increasing hepatic artery flow by limiting gastric arterial steal 
from the celiac artery, theoretically allowing increased hepatic ATP 
production and reducing adenine nucleotide accumulation and the 
hepatorenal reflex
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The reduced contribution of low O2 gastric vein blood 
to portal flow and the increased hepatic arterial flow 
following gastrectomy would be expected to significantly 
improve hepatic O2 delivery [Figure 3].

The immediate resolution of MetS following surgery or 
endoluminal sleeve would also be significantly impacted 
by the decreased appetite following bariatric surgery, 
which is a common problem requiring lifelong counseling 
and follow‑up to insure adequate nutrition and vitamin 
intake. The reduced eating would further limit splanchnic 
O2 consumption, improving hepatic O2 delivery and 
increasing ATP production.

CONCLUSIONS

This review postulates that excessive and/or repetitive 
eating that produces obesity causes a state of chronic, 
relative hypoxia in the liver due to lowered O2 in portal 
blood, reduced hepatic artery flow, and increased hepatic 
resistance from lipid accumulation and hepatocyte 
swelling. The resulting low hepatic ATP production 
leads to the accumulation of adenine nucleotides 
in the liver that stimulates the hepatorenal reflex 
producing sympathetic overdrive. Elevated sympathetic 
outflow has been shown to cause insulin resistance, 
hypertension, and dyslipidemia, and is implicated in 
other related morbidities such as ventricular hypertrophy, 
Na+ retention, glucose intolerance, nephropathy 
with proteinuria, cardiovascular disease, NAFLD, and 
increased risk of cancer. Bariatric surgery, diet, and 
endoluminal sleeve limit contact of nutrient with the 
gastrointestinal mucosa as well as decreasing appetite, 
resulting in increased splanchnic O2 delivery to the liver 
and preventing the hepatorenal reflex. Why some obese 
patients develop MetS while others do not indicates 
that MetS is not caused by excess adiposity but begs the 
question of what is different between these cohorts, both 
of which eat excessively and hence should have relative 
hepatic hypoxia. Vascular anatomy, metabolic response, 
2,3‑DPG levels or sensitivity to the hepatorenal reflex are 
some of the potential areas for further investigation.
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