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Abstract: Interleukin-32 (IL-32) is well known as a proinflammatory cytokine that is expressed in
various immune cells and cancers. However, the clinical relevance of IL-32 expression in cutaneous
melanoma has not been comprehensively studied. Here, we identified the prognostic value of IL32
expression using various systematic multiomic analyses. The IL32 expressions were significantly
higher in cutaneous melanoma than in normal tissue, and Kaplan–Meier survival analysis showed
a correlation between IL32 expression and good prognosis in cutaneous melanoma patients. In
addition, we analyzed the correlation between IL32 expression and the infiltration of natural killer
(NK) cells to identify a relevant mechanism between IL32 expression and prognosis in cutaneous
melanoma (p = 0.00031). In the relationship between IL32 expression and the infiltration of NK cells,
a negative correlation was found in resting NK cells (rho = −0.38, p = 3.95 × 10−17) whereas a strong
positive correlation was observed only in active NK cells (rho = 0.374, p = 1.23 × 10−16). Moreover,
IL32 expression was markedly positively correlated with the cytolytic molecules, such as granzyme
and perforin. These data suggest that IL32 expression may increase patient survival through the
infiltration and activation of NK cells, representative anticancer effector cells, in cutaneous melanoma.
Collectively, this study provides the prognostic value of IL32 expression and its potential role as an
effective predictive biomarker for NK cell infiltration in cutaneous melanoma.

Keywords: interleukin-32 (IL-32); cutaneous melanoma; multiomic analysis; immune cell infiltration;
natural killer (NK) cells

1. Introduction

Despite its relatively low incidence rate, melanoma is the most critical type of cancer
due to its high levels of malignancy and invasive activity [1,2]. Cutaneous melanoma, a
type of melanoma, is characterized by high metastasis and poor prognosis; therefore, it
accounts for 75% of skin-related deaths [3]. In recent decades, the incidence of cutaneous
melanoma has continued to increase worldwide, with approximately 96,000 new cases
in 2019 [4]. Various methods have been used to treat melanoma, but achieving signifi-
cant therapeutic effects is difficult due to its high resistance to classical therapies, such as
chemotherapy and radiotherapy [5–7]. Recently, various immunotherapies, such as vac-
cines and immuno-checkpoint inhibitors, have attempted to improve the side effects and
to overcome resistance. To date, monoclonal antibodies targeting the checkpoint molecules
cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein
1 (PD-1), and the ligand PD-L1 are well known as the most effective immunotherapies [8,9].
These tumor immunotherapies have been established as key treatments for the clinical
treatment of cancer [10]. The composition and immune contexture of the tumor microen-
vironment (TME) are closely related to the successful response of immunotherapy, and
an increase in specific cells in the TME is associated with increased survival of patients
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with various types of cancer [11–13]. Thus, the interaction of melanoma cells with immune
cells within the TME significantly influences tumor proliferation, differentiation, and pro-
gression [14,15]. Melanoma is a major immunogenic tumor, and the number of related
studies using immunotherapy to control immune responses is increasing. In particular,
melanoma cells are known to regulate their close association with the TME to promote
tumor progression, invasion, and metastasis [16,17]. Composed of a complex network of
immune cells, various growth factors, and cytokines, the TME is closely associated with
melanoma, which affects the treatment effect [18].

The presence, localization, and phenotype of tumor-infiltrating lymphocytes (TILs)
within the TME have been predicted to determine immunotherapy and the key regulators
of disease progression [19–21]. TILs contain not only effector cells but also immunosup-
pressive cells such as regulatory T lymphocytes, tumor associated macrophage (TAM),
and myeloid-derived suppressor cells (MDSC) as contributors to anticancer effects [22,23].
Therefore, an infiltration of effector cells including natural killer (NK) cells and CD8+ T cells
in the tumor is highly correlated with a good prognosis in cancer patients [24,25]. The pres-
ence and activation of NK cells in the TME is associated with tumor suppression [26–29].
NK cells, a major effector cell of the innate immune system, are the first line of defense in
the anticancer immune system [30]. When NK cells are activated, cytolytic molecules are
released to induce apoptosis of tumor cells, and cytokines such as interferon-gamma (IFN-
γ) and tumor necrosis factor alpha (TNF-α) are produced to regulate adaptive immune T
cell-mediated immune responses [26–29]. NK cell receptors induced by proinflammatory
cytokines are associated with NK cell activity in patients with melanoma and are known
to improve cell toxicity in tumors [31]. To predict the prognosis of cutaneous melanoma,
understanding the role of TILs in the tumor environment is necessary.

Interleukin-32 (IL-32) was first demonstrated as a natural killer cell transcript (NK4),
which was detected in activated NK cells and T cells [32]. IL-32 contains eight small exons
and is located on human chromosome16p13.3 [33]. IL-32, a proinflammatory cytokine
differentially expressed in IL-18-responsive cells, induces the expressions of TNF-α, IL-1β,
and C–X–C chemokine family members and activates the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and p38 mitogen-activated protein kinase (MAPK)
pathways [34–36]. IL-32 is more highly expressed in immune cells than in nonimmune
cells and is closely related to anticancer effects in various types of cancer [37,38]. IL-32 has
been known to affect tumor death by regulating immune cells including NK cells. NK cells
release TNF-related apoptosis-inducing ligand (TRAIL), TNF, Fas ligand (FASL), and death
receptor 3 (DR3) ligand to induce cancer cell death. Moreover, IL-32 expression increased
the number of NK cells and CD8+ T cells in blood and recruited NK cells and CD8+ T cells
in tumor tissues. Recently, a novel role of IL-32 for immunotherapy has been suggested
by identifying the mechanism by which IL-32 primes CD8+ T cells and recruits activating
intratumoral DCs and macrophages [39]. In contrast, several reports show the procancer
effects of IL-32. The overexpression of IL-32 increases the tumor size and lymph node
metastasis in breast cancer, and IL-32 expression is also associated with tumor metastasis
and cancer cell migration in gastric and lung cancers [40–42].

As such, while studies with conflicting results have reported contradictory effects
of IL-32 in various tumors, a comprehensive analysis of the clinical relevance of IL32
expression has yet to be performed [37,38,43]. Based on various databases, we investigated
the correlation between IL32 expression levels and cancer patient outcomes. In addition, the
correlation between IL32 expression and NK cells, which are effector cells, was analyzed
to confirm the impact on cutaneous melanoma survival rate. The results of this study
identified the important role of IL32 in cutaneous melanoma and provided its interaction
and function with TILs.
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2. Materials and Methods
2.1. IL32 mRNA Expression in Various Tumors

Gene Expression Profiling Interactive Analysis (GEPIA2; http://gepia.cancer-pku.cn/,
accessed on 21 March 2021) was used to compare the IL32 mRNA expression between
various tumors and their normal tissues. GEPIA2 provides customizable functionalities
based on data from The Cancer Genome Atlas (TCGA) and the Genotype Tissue Expression
project (GTEx) [44]. GEPIA2 also offers IL32 mRNA levels in cutaneous melanoma (SKCM;
skin cutaneous melanoma) and normal tissues. The transcription of IL32 expression levels
between SKCM and normal tissues was shown with box plots.

2.2. Analysis of the Correlation between IL32 Expression and Prognostic Value

To estimate the correlation between IL32 mRNA expression and patient survival
in SKCM, various web tools were used. The prognostic value of IL32 expression was
analyzed in TCGA datasets using the OncoLnc (http://www.oncolnc.org/, accessed on 28
March 2021) database and GEPIA2. We compared the survival of two groups of patients
with low and high IL32 mRNA expression levels and provided hazard ratios (HR) with
95% confidence intervals and Kaplan–Meier (KM) survival curves, and the log-rank p-
values were analyzed using GEPIA2. We used the TIMER databases to evaluate the
clinical relevance of IL32 expression. TIMER v.1.0 provides KM plots to visualize the
survival differences and p-values of the log-rank test to compare the survival curves (log-
rank p < 0.05). HR indicates the hazard ratio, and its lower and upper 95% confidential
intervals (CIs) were shown in each plot [45]. TIMER v.2.0 also offers Cox regression results
including Z-score and statistical significance p-value. A KM plot was performed using a
Cox proportional hazard model with clinical factors including race, gender, and tumor
stage. Z-scores were compared to assess whether the outcome of the gene expression
modulated by clinical factors was significant (increased risk: p < 0.05, Z > 0; decreased
risk: p < 0.05, Z < 0; and not significant: p > 0.05) [46]. The Cox regression results of the
clinical factors including gender, tumor stage, race, and tumor purity are presented in
Supplementary Table S1.

2.3. Analysis of IL32 Gene Mutations in Skin Cutaneous Melanoma (SKCM)

A comprehensive open-source platform, cBioportal (http://www.cbioportal.org/,
accessed on 2 April 2021) provides various cancer genomic datasets. To investigate the
IL32 gene mutation in SKCM, we used the cBioportal database version 3.2.14, which
provides various cancer genomic datasets [47,48]. The mutation diagram of the IL32 gene
was generated using default parameter settings. The statistical analysis was performed
using an unpaired t-test of GraphPad 7 software. The genomic alterations of IL32 include
copy number amplification (CNA), deletion, and nonsense and missense mutations with
unknown significance. In addition, we analyzed the promoter methylation of IL32 using
the UALCAN for the TCGA-SKCM dataset. The statistical method of UALCAN was used
to analyze changes in the expression levels between normal and other tumor grades, and p
< 0.05 was considered statistically significantly different.

2.4. Correlation between IL32 Expression and Infiltration of Various Immune Cells

Tumor immune system interactions (TISIDB, http://cis.hku.hk./TISIDB/index.php,
accessed on 25 May 2021) is a database used to analysis the relative abundance of tumor
immune systems and TILs. Here, it was used to determine the interactions between
IL32 and TILs in SKCM. TIMER is an online web tool used to systematically analyze
the correlation of immune infiltrates with various factors such as gene expression and
prognostic values. TIMER v.1.0 was used to analyze the comprehensive correlation between
IL32 mRNA and tumor-infiltrating immune cell signatures. The correlation between IL32
expression levels and the abundances of immune infiltrates including tumor purity, B
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells, was
visualized using scatter plots. In addition, we analyzed the correlation between IL32
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expression and the gene markers of infiltrating NKs using the GEPIA2. We used TIMER
v.2.0 (http://timer.cistrome.org/, accessed on 5 April 2021) to confirm the significance of
IL32 expression with activated NK cells [49]. In addition, we compared the activated NK
cell infiltration levels and resting NK cell infiltration levels using CIBERSORT in TIMER
v.2.0 to determine the interactions between IL32 and TILs in SKCM.

2.5. Correlation between Coexpressed Genes and IL32

We used the TCGA-SKCM dataset in cBioportal to analyze the coexpression genes
of IL32 expression. Then, we identified the 25 strongest correlated genes with the highest
Spearman correlation value and the lowest p-value. We used the UCSC Xena browser
(https://xena.ucsc.edu/, accessed on 13 May 2021) to analyze the correlation between
IL32 and the gene with the highest positive correlation using a heatmap and scatter plot
with TCGA-SKCM. The R2 database was used to visualize the correlation of IL32 with the
highest positive correlation using the Tumor melanoma metastasis Bhardwaj-44 dataset via
scatter plot. We also analyzed the correlation between IL32 and its altered genes to identify
gene ontology terms using Enricher (http://amp.pharm.mssm.edu/Enrichr/, accessed on
25 April 2021).

3. Results
3.1. The Expression Analysis of IL32 in Various Types of Cancers

To analyze IL32 mRNA expression in tumors and normal tissues, we identified IL32
mRNA levels using various databases. GEPIA2 showed that the IL32 mRNA expression
levels were significantly elevated in most types of tumors, including cutaneous melanoma
(SKCM; skin cutaneous melanoma), as indicated in red (Figure 1A). However, the level
of IL32 mRNA expression was higher in normal tissues than in tumor tissues of kidney
chromophobe (KICH) and thyroid carcinoma (THCA), as indicated in green. Detailed
findings of particular tumor types are compiled in Supplementary Table S2. We further
compared the mRNA levels of IL32 between SKCM (461 samples) and normal (558 samples)
tissues based on data from TCGA and GTEx. Figure 1B shows that the IL32 expression
was significantly higher in SKCM tissues than in normal tissues (p < 0.05). Collectively,
the data from all databases showed that IL32 mRNA expression in SKCM was markedly
higher than that in normal tissues.
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3.2. Correlation between IL32 Expression and Patient Survival in Various Types of Cancers

To investigate the correlation between IL32 mRNA expression and patient survival rate
in various types of cancers, the overall survival probabilities were compared using the Cox
regression model and the OncoLnc online tool. The Cox regression results for IL32 mRNA
in various cancer types are shown in Supplementary Table S3. A Cox regression analysis
for IL32 expression was performed for four types of cancers: SKCM, sarcoma (SARC),
pancreatic adenocarcinoma (PAAD), and liver hepatocellular carcinoma (LIHC) (p < 0.01).
As shown in Figure 2A, we found that a higher IL32 expression level was correlated with a
better overall survival of SKCM (log-rank p = 0.00031) and PAAD (log-rank p = 0.02). No
significant correlation was found between patient survival in SARC (log-rank p = 0.052)
and LIHC (log-rank p = 0.74). The correlations between IL32 expression and disease free
survival (DFS) of various types of cancers by GEPIA2 are shown in Supplementary Figure
S4. Interestingly, the IL32 mRNA expression in LIHC was significantly elevated, as in SKCM
(Figure 1A); therefore, LIHC was used as a control in subsequent analyses. To evaluate
the clinical relevance of IL32 expression, we further identified the cumulative survival of
patients with SKCM and LIHC using TIMER web tools. The KM plots were performed
on a Cox proportional hazard model to determine the significance of IL32 expression on
outcome, and the Cox regression results including log-rank p-value and Z-score were
provided. As shown in Figure 2B, a higher IL32 expression was associated with a better
prognosis in SKCM (log-rank p = 0, HR = 0.866) in the TIMER v.1.0 database. Moreover, the
TIMER v.2.0 database also shows that an IL32 mRNA expression was associated with good
prognosis for SKCM patients (Z-score = –4.175). The Cox regression results adjusted by
clinical factors such as race, age, gender, and tumor stages are shown in Supplementary
Table S1. In contrast, no significant correlation was found between IL32 expression and
patient survival in LIHC (log-rank p = 0.784, HR = 0.93, Z-score = −1.352). These findings
suggest that IL32 mRNA expression influences the prognosis of patients with SKCM.
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3.3. Genome Change of IL32 Expression in Melanoma

We explored the status of IL32 gene alteration in SKCM using cBioportal. A total of
363 patient samples were included from the TCGA database, and mutation types including
11 missense, 3 splice, and 1 nonsense mutation(s) were observed in the IL32 coding region
(Figure 3A). The X10 splice mutation was confirmed three times more often than the other
mutations. Fifteen mutations in the IL32 gene are shown in Supplementary Table S5.
Figure 3B shows that the alteration frequency of the IL32 gene was 3.3% in the TCGA
PanCan Atlas dataset. Additionally, we analyzed the correlation between BRAF mutation
status and IL32 expression to identify other mutations in SKCM. BRAF mutations have
been observed in several types of cancer, such as melanoma and colorectal cancer, and
are associated with cancer cell growth and proliferation [50]. As shown in Supplementary
Figure S6, no significant difference was found between mutated BRAF and wild-type
BRAF with IL32 expression in melanoma (p = 0.064, p < 0.05). To further examine whether
the IL32 CNA status was associated with mRNA expression, we analyzed IL32 mRNA
expression for each CNA status. The IL32 expression was markedly lower in the shallow
deletion samples than in the diploid and gain samples (Figure 3C). However, we found
no significant differences in the IL32 expression between the diploid and gain samples.
These data suggest that a shallow deletion of the CNA status could contribute to the
high expression of IL32 in SKCM. To further analyze the methylation status of the IL32
gene in SKCM, we investigated the TCGA-SKCM dataset using the UALCAN database.
As shown in Figure 3D, promoter methylation was significantly increased in metastatic
melanoma (p = 5.95 × 10−5) compared with that in primary tissues (p = 4.23 × 10−1).
Promoter methylation is an epigenetic regulator, and increased methylation is indicative
of tumors [51]. Taken together, these results suggest that a positive correlation is found
between DNA methylation and the mRNA expression of IL32.

3.4. Correlation of IL32 Expression with Immune Infiltrates

The fact that IL32 expression is involved in various cancer malignancies, including
breast cancer (BRCA) and colon adenocarcinoma (COAD), is well known. However, our
data showed that a high IL32 expression is associated with high survival rates. To determine
the mechanism associated with clinical relevance, we investigated the correlation between
IL32 expression levels and immune cell infiltration in SKCM. Supplementary Figure S7
shows that an analysis of the data using TIMER v.1.0 shows that a positive correlation
is found between IL32 expression and immune cell infiltration in SKCM. In contrast, the
IL32 expression levels were not significantly correlated with tumor purity and immune
infiltrates in LIHC. These results demonstrate that IL32 in SKCM may be expressed by
infiltrated immune cells. We further identified significant correlations of IL32 with 28 types
of TILs among various cancers using the web portal TISIDB (Figure 4A). In Figure 4A,
the IL32 expression has a positive correlation with various immune cells in many types
of cancer. In the correlation between IL32 and NK cell infiltration, only five types of
cancer including SKCM show significant positive correlations (Supplementary Figure S8).
IL32 expression was markedly correlated with the abundance of NK cells (rho = 0.706,
p < 2.2 × 10−16), natural killer T (NKT) cells (rho = 0.813, p < 2.2 × 10−16), activated CD8+ T
cells (rho = 0.869, p < 2.2 × 10−16), and effector memory CD8+ T cells in SKCM (rho = 0.833,
p < 2.2 × 10−16) (Figure 4B). Overall, these data suggest that the expression of higher IL32
is significantly involved in activated NK cell and CD8+ T cell infiltration and suggest that
this leads to the antitumor activity of the effector cell.
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ciation between IL32 expression and the infiltration of NK cell subsets, the correlation be-
tween IL32 expression and gene marker expression in each immune cell was examined in 
SKCM. As shown in Figure 5, IL32 expression was positively correlated with KIR2DL3 
(cor = 0.621, p = 1.79 × 10−51), KIR3DL2 (cor = 0.699, p = 2.63 × 10−70), KIR2DL4 (cor = 0.737, p 
= 7.41 × 10−82), NCR1 (cor = 0.599, p = 3.39 × 10−47), and NCR3 (cor = 0.827, p = 2.09 × 10−119) 
gene expressions in SKCM, whereas IL32 expression was not significantly correlated with 
the expression of gene markers in LIHC (KIR2DL3, cor = −0.014, p = 7.81 × 10−1; KIR3DL2, 
cor = 0.046, p = 3.82 × 10−1; KIR2DL4, cor = 0.073, p = 1.59 × 10−1; NCR1, cor = −0.002, p = 9.73 
× 10−1; and NCR3, cor = 0.218, p = 2.32 × 10−5). Moreover, Figure 5 and Table 1 show that the 
expression of IL32 and the expression of NK cell markers are not correlated in LIHC but 
are highly correlated in SKCM, which is also shown in data from the TIMER database. 
Taken together, these data suggest that IL32 expression is markedly correlated with infil-
trated NK cells in SKCM. 

Figure 4. Correlations between IL32 expression with lymphocytes. (A) Correlation between the expressions of IL32 and
lymphocytes in various cancer types. (B) The expression of IL32 was significantly correlated with the immune cells in
SKCM: activated CD8+ T cell, effector CD8+ T cell, natural killer (NK) cell, and NKT T cell (rho > 0.4, p < 0.001).
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3.5. Correlation between IL32 Expression and Various Subsets of Immune Cells in Melanoma

To further investigate the correlation between IL32 expression and various subsets
of immune cell infiltrations in SKCM, we analyzed the correlations between IL32 and
immune cell markers, including subsets of each immune cell in SKCM (Supplemen-
tary Table S9 and Figure 5). Supplementary Table S9 shows the immune cell mark-
ers including subsets of T cells (general T cells, CD8+ T cells, CD4+ T cells, regula-
tory T cells, and T cell exhaustion), B cells, monocytes, NK cells, TAM, M1 and M2
macrophages, and neutrophils in SKCM. These data reveal that IL32 expression is corre-
lated significantly with most of the immune marker genes of NK cells in SKCM and
that IL32 expression was significantly correlated with NK cells in SKCM but not in
LIHC. Therefore, to examine the association between IL32 expression and the infiltra-
tion of NK cell subsets, the correlation between IL32 expression and gene marker ex-
pression in each immune cell was examined in SKCM. As shown in Figure 5, IL32 ex-
pression was positively correlated with KIR2DL3 (cor = 0.621, p = 1.79 × 10−51), KIR3DL2
(cor = 0.699, p = 2.63 × 10−70), KIR2DL4 (cor = 0.737, p = 7.41 × 10−82), NCR1 (cor = 0.599,
p = 3.39 × 10−47), and NCR3 (cor = 0.827, p = 2.09 × 10−119) gene expressions in SKCM,
whereas IL32 expression was not significantly correlated with the expression of gene mark-
ers in LIHC (KIR2DL3, cor = −0.014, p = 7.81 × 10−1; KIR3DL2, cor = 0.046, p = 3.82 × 10−1;
KIR2DL4, cor = 0.073, p = 1.59 × 10−1; NCR1, cor = −0.002, p = 9.73 × 10−1; and NCR3,
cor = 0.218, p = 2.32 × 10−5). Moreover, Figure 5 and Table 1 show that the expression
of IL32 and the expression of NK cell markers are not correlated in LIHC but are highly
correlated in SKCM, which is also shown in data from the TIMER database. Taken together,
these data suggest that IL32 expression is markedly correlated with infiltrated NK cells in
SKCM.
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Table 1. Correlation between IL32 and NK cell markers in GEPIA2.

Gene Markers
SKCM LIHC

R p R p

NK cell

KIR2DL1 0.33 *** −0.0046 0.93

KIR2DL3 0.35 *** −0.055 0.29

KIR2DL4 0.6 0 0.056 0.28

KIR3DL1 0.37 0 0.018 0.72

KIR3DL2 0.58 0 −0.024 0.64

KIR3DL3 0.14 * 0.029 0.57

KIR2DS4 0.21 *** −0.052 0.32

KLRK1 (NKG2D) 0.69 0 0.065 0.21

NCR1 (NKp46) 0.33 *** −0.039 0.46

NCR2 (NKp44) 0.11 0.019 −0.025 0.63

NCR3 (NKp30) 0.47 0 0.09 0.085

* p < 0.01 and *** p < 0.0001.

3.6. Correlation between IL32 Expression and Activation of NK Cells

To confirm the difference between activating and resting NK cell infiltration by IL32
expression, we analyzed the expression of activated NK cells from CIBERSORT using
TIMER v.2.0. As shown in Figure 6A, a high IL32 expression was positively correlated
with the infiltration of activated NK cells (rho = 0.374, p = 1.23 × 10−16) in SKCM, but no
correlation was found between IL32 expression in LIHC (activated NK cells; rho = 0.096,
p = 7.48 × 10−2). Interestingly, the infiltration of resting NK cells showed a significant
negative correlation with IL32 expression in SKCM (rho = −0.38, p = 3.95 × 10−17) and
LIHC (rho = −0.177, p = 9.52 × 10−4) (Figure 6B). We further analyzed NK cell infiltration
according to SKCM status to prove the correlation between IL32 expression and survival.
These results suggest that IL32 expression in SKCM tissue induces the infiltration of
specially activated NK cells. Overall, in this study, IL32 expression controlled activated NK
cell infiltration in SKCM and improved the prognosis of melanoma patients.

3.7. Correlation between IL32 Expression and Cytolytic Cell of NK Cells

NK cells are well-known representative cytolytic effector cells that release cytotoxic
molecules, such as granzyme and perforin [52]. Therefore, we analyzed the correlation
between IL32 expression and gene markers of the cytolytic molecules granzyme A (GZMA),
granzyme B (GZMB), and perforin (PRF1) using TIMER v.1.0. As shown in Figure 7, IL32 ex-
pression was significantly positively correlated with GZMA (cor = 0.891, p = 6.04 × 10−163),
GZMB (cor = 0.869, p = 0 × 100), and RPF1 (cor = 0.871, p = 1.01 × 10−146) gene expres-
sions in SKCM (n = 103), but no correlation was found between IL32 expression and gene
markers of cytolytic molecules in LIHC (n = 371) (GZMA, cor = 0.271, p = 1.16 × 10−7;
GZMB, cor = 0.029, p = 5.8 × 10−1; and RPF1, cor = 0.095, p = 6.77 × 10−2). Collectively,
these results suggest that infiltrating NK cells improve SKCM patient survival by impeding
tumor progression via the release of granzyme and perforin.
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Figure 7. Correlation between IL32 expression and cytolytic effector cells in SKCM and LIHC. Scatter plots were generated
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expression was not significantly correlated with either gene in LIHC. The correlation constants and p-values are listed in
Supplementary Table S11. (p < 0.05).

3.8. Coexpressed Genes and IL32 in Melanoma

To investigate the coexpressed genes with IL32 in SKCM, we identified genes that
exhibit correlated expressions with IL32 in SKCM using the TCGA dataset of cBioPortal.
Figure 8A shows that 25 genes are the most positively coexpressed with IL32 in SKCM. In
the TCGA-SKCM dataset, the gene expression of the interleukin 2 receptor group (IL2RG)
showed the strongest positive correlation with IL32. The coexpressed patterns of IL32
and IL2RG were analyzed via a heatmap and a dot plot using the UCSC Xena web tool
(Figure 8B,C). The coexpression patterns of IL32 and IL2RG in primary and metastatic
melanomas were visually expressed through a heatmap (Figure 8B). In Figure 8C, the strong
positive correlation between IL32 and IL2RG expression was confirmed using Pearson’s
(R = 0.9275, p = 1.209 × 10−203) and Spearman’s (R = 0.9343, p = 2.76 × 10−213) correlation
analyses in primary and metastatic SKCM. Additionally, the correlations with IL32 and
IL2RG were confirmed using the R2 platform (Tumor melanoma metastatic Bhardwaj-44,
R = 0.770, p = 1.03 × 10−9) (Figure 8D). Taken together, these data suggest that IL32 and
coaltered IL2RG with biological processes related to IL-32 may be involved in melanoma
progression.

In addition, to identify biological processes and functions, we further analyzed the
correlation between IL32 and coaltered genes in SKCM using the gene ontology (GO)
analysis (Figure 9). In the GO biological process analysis, IL32 and IL32 coaltered genes
were mainly associated with regulated immne response (Figure 9A). In the GO molecular
function analysis, IL32 coaltered genes were most significantly enriched in phospholipase
cativator activity, and lipase activator and phospholipase binding (Figure 9B). Figure 9C
showed the most abundant results in the GO cell components associated with the alpha–
beta T cell receptor complex (Figure 9C). Overall, a gene enrichment analysis of IL32 and
IL32 coaltered genes suggests that IL32 may be associated with the regulation of lymphocyte
activation.
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Figure 8. Coexpression genes of the IL32 gene in SKCM. (A) Twenty-five genes most positively coexpressed with IL32 in
SKCM using the TCGA dataset of cBioPortal. (B) IL32 and IL2RG mRNA expressions in a heatmap using the UCSC Xena
Browser. (C) Dot plot of IL32 and IL2RG mRNA expressions in the TCGA-SKCM dataset. (D) Correlation between IL32 and
IL2RG expressions in the Tumor Melanoma Metastatic Bhardwaj-44 dataset using the R2 web server 3. (p < 0.05).
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IL32 gene and its top 25 coexpressed genes were analyzed by the Enricher web tool (https://amp.
pharm.mssm.edu/Enrichr/, accessed on 25 April 2021). (A) GO biological process (2021), (B) GO
molecular function (2021), and (C) GO cellular component (2021).

4. Discussion

IL-32 is a proinflammatory cytokine involved in various isoforms and is known to
have both anticancer and procancer properties [53]. To date, nine isoforms have been
identified, and the four most studied isoforms, IL-32α, IL-32β, IL-32γ, and IL-32δ, were
first described in NK cells [38,54]. All of these isoforms in IL-32 have different sizes and
secondary structures, which can lead to differences in protein function and efficacy due
to changes in the tertiary protein structure [55]. Indeed, various isoforms of IL-32 show
differences in efficacy to elicit a specific effect and to induce different reactions in malignant
tumors [56,57]. Exogenous treatment with IL-32α inhibited proliferation and increased
apoptosis in HTB-72 human melanoma cell lines in relation to the upregulation of p21,
p53, and TRAIL receptor 1 (TRAILR1) [58]. However, the high expression of IL-32β was
increased in cancer tissues and serum in patients with hepatocellular carcinoma, and
the inhibition of IL-32α expression using siRNA resulted in decreased expression of the

https://amp.pharm.mssm.edu/Enrichr/
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antiapoptotic protein bcl-2, inhibiting cell growth and apoptosis [59]. In addition, Oh
et al. showed that IL-32β and IL-32γ inhibit melanoma and colon cancer tumor growth
via inhibition of the activated NF-κB and STAT3 in a transgenic mouse model, while the
expression of these isoforms is associated with increased infiltration and migration of
breast cancer cells [43,60,61]. Although many studies have revealed the mechanism of the
role of IL-32 isoforms in various types of cancers, the role of IL-32 is controversial and still
unclear.

Recently, IL32 expression and cancer-related immune cells have been reported to be
highly correlated in various types of cancers [62,63]. IL32 is produced by representative
antitumor immune cells such as T cells, NK cells, monocytes, and macrophages [34,38]. In
colorectal and prostate cancer cells, IL-32β has been shown to enhance NK cytotoxicity
against cancer cells in vitro via the activation of caspase-3 [64]. In particular, IL-32β expres-
sion in metastatic mice increases the level of IL-10, an immunosuppressive cytokine, and
induces infiltration of cytotoxic T cells and NK cells in tumors, resulting in the suppression
of tumor growth [61]. These results suggest that IL-32 may stimulate antitumor immune
responses in tumor microenvironments by inducing cytolytic activity and the infiltration
of NK cells and T cells. Although various biological activities of IL-32 in tumor progres-
sion have been reported, a comprehensive analysis is required in clinical studies along
with in vitro and in vivo studies because IL-32 has dual effects in tumor biology, such as
procancer effects and anticancer effects. Therefore, a systematic analysis of the correlation
between IL32 expression and patient survival is essential to comprehensively understand
the role of IL-32 in melanoma patients.

Here, we found that IL32 mRNA expression was higher in cutaneous melanoma
(SKCM; skin cutaneous melanoma) tissue than in normal tissue and that a higher expression
of IL32 was significantly correlated with patient survival (Figures 1 and 2), suggesting that a
higher IL32 expression leads to better clinical outcomes in SKCM patients. Our analysis also
showed that IL32 expression levels were positively correlated with the levels of infiltration
of various immune cells, especially NK cells (Figure 4). The fact that high infiltration levels
of immune cells result in better prognosis in various types of cancers is well known [65].
As shown in Figure 5, a strong negative correlation was found between IL32 expression
and tumor purity, indicating that IL32 mRNA expression in SKCM tissues is likely to
have been derived from infiltrated immune cells. Therefore, the reason why the patient’s
survival rate increases with the increase in IL32 mRNA expression in SKCM tissues can
be presumed to be due to the infiltration of activated NK cells expressing IL32. In fact,
IL32 was mainly detected in activated NK cells and dendritic cells (DCs), which induce
tumor cell apoptosis by producing cytolytic molecules such as perforin and granzyme from
activated NK cells in tumor environments [66,67]. Nevertheless, the fact that the activities
and functions of effector cells in the TME are suppressed is known [68,69]. Tumor cells
secrete immunosuppressive cytokines such as IL-10, or immune cells, such as regulated T
cells and M2 macrophages in the TME, inhibit the activity of antitumor effector cells due
to their immune inhibition function [52,70]. Therefore, in immunotherapy, maintaining
the activity of immune cells and increasing the infiltration of effector cells in tumors are
strongly related to better outcomes in patients. In this regard, this study attempted to
determine whether the increase in patient survival rate following IL32 mRNA expression
was due to the infiltration of activated effector cells. Figure 5 and Supplementary Table S10
show a strong positive correlation between IL32 expression and the expression of specific
markers for NK cells. Interestingly, the expression of IL32 and resting NK cell infiltration
were negatively correlated while activated NK cell infiltration was positively correlated
(Figure 6). These results indicate that activated NK cells were infiltrated within the tumor
of SKCM and that tumor suppression was induced through the activation of NK cell
cytotoxicity. In fact, this study identified a positive correlation between IL32 expression and
cytolytic molecule genes such as GZMA, GZMB, and PRF1 (Figure 7). This suggests that
IL32 could increase patient survival by enhancing the infiltration and cytolytic activities of
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NK cells in effector cells such as granzyme and perforin. Therefore, our study found that
IL32 expression levels are correlated with NK cell infiltration in SKCM.

In addition, we investigated the co-expressed genes with biological processes related
to IL32 in SKCM. Of the 25 genes that were positively correlated, IL-2 receptor γ (IL2RG)
showed the strongest positive correlation with IL32 expression as shown in Figure 8. IL2RG
is well known as a common subunit for the signaling of various interleukins, including
IL-2, -4, -7, -9, and -15. It is essential for affinity binding and signaling of cytokines and
plays an important role in the development and survival of immune cell subgroups, such as
NK cells and T cells [71]. In addition, Figure 9 shows that IL32 is involved in the regulation
of lymphocyte activation by GO analysis. Therefore, these data suggest that IL32 and IL32-
coaltered genes are involved in antitumor immune regulation by immune cells, including
NK cells, and that IL32 expression may be a novel biomarker for predicting immune cell
activation in SKCM.

5. Conclusions

In conclusion, this study shows that the increased IL32 mRNA expression is signifi-
cantly related to the infiltration of NK cells in cutaneous melanoma tissues, resulting in a
good prognosis in cutaneous melanoma patients. The main finding of this study is that the
correlation between IL32 mRNA expression and activated NK cell infiltration is significant
but that the correlation between IL32 mRNA expression and a resting NK cell is not. In
addition, the correlation between IL32 and various genes of cytolytic molecules, such as
GZMA, GZMB, and PRF1, is positive, suggesting that IL32 mRNA expression may increase
patient survival through the infiltration and activation of anticancer effector cells in cuta-
neous melanoma. This systematic analysis provides evidence suggesting the potential role
of IL32 as an effective biomarker for patient survival in the tumor microenvironment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10204691/s1, Supplementary Table S1. The Cox regression results of IL32 expression in
SKCM and LIHC; Table S2. Tumor abbreviations; Figure S3. Cox regression results for IL32 with
TCGA data in various types of cancers; Table S4. Correlation between IL32 expression and DFS
of various types of cancers; Table S5. Fifteen mutations in the IL32 gene; Figure S6. Correlation
IL32 expression and BRAF mutation status in SKCM; Figure S7. Correlation of IL32 expression with
immune cell infiltration level in SKCM and LIHC; Figure S8. Correlations between IL32 expression
and NK cells of various types of cancers; Table S9. Correlation analysis between IL32 and gene
markers of immune cells; Table S10. Correlation constants and p-values in Figure 5; Table S11.
Correlation constants and p-values in Figure 7.
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