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Abstract

Background: Direct-fed microbials (DFM), such as Bacillus subtilis and Bacillus licheniformis, may improve gut
functionality of the host by favouring non-pathogenic bacteria and reducing the formation of putrefactive
compounds. The aim of this study was to assess the nutrient digestibility, faecal characteristics and intestinal-
fermentation products in dogs fed diets with Bacillus subtilis and Bacillus licheniformis. Sixteen dogs were randomly
divided into two groups. Every eight dogs were fed with the control diet or the diet with the addition of 62.5 g of
DFM (B. subtilis and B. licheniformis)/ton. Diets were provided throughout a 20-day adaptation period, followed by 5
days of total faecal collection. Nutrient digestibility and the metabolisable energy of the diets, plus the dogs’ faecal

characteristics and intestinal fermentation products were assessed.

Results: There were no differences in nutrient digestibility (P > 0.05). However, DFM supplementation improved
faecal score and resulted in less fetid faeces (P < 0.001). DFM inclusion reduced (P < 0.05) the biogenic amines
concentration: putrescine, spermidine and cadaverine, besides the concentration of phenols and quinoline.

Conclusions: The use of B. subtillis and B. licheniformis as DFM reduce the concentration of nitrogen fermentation
products in faeces and faecal odour, but the digestibility of nutrients is not altered in dogs.
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Background

Many complete dog foods have a high protein content in
their formulations, which can result in high concentra-
tions of undigested nitrogen compounds in the large in-
testine, leading to the formation of putrefactive
compounds. These compounds include ammonia, bio-
genic amines, branched-chain fatty acids, sulphidric gas,
phenols and indoles [1]. Some of these catabolites can
negatively affect intestinal functionality, contributing to
inflammatory processes, such as colitis and colon
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carcinogenesis, as well as the worsening of dogs’ faecal
odour [1, 2]. Furthermore, the increase in the non-
digestible-protein flow that reaches the colon provides
fermentation substrates to organisms with pathogenic
potential, such as Clostridium, Salmonella and
Escherichia species [3, 4], and can contribute to dysbio-
sis, an imbalance of the intestinal microbiota.

Thus, the search for nutritional strategies, such as the
use of direct-fed microbials (DFM) to improve dogs’ in-
testinal functionality and faecal quality is extremely rele-
vant. DFM has been defined by the US Food and Drug
Administration as the feed product containing the
source of naturally-existing live microbes, like some bac-
teria of the Bacillus genus. When supplemented in the
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diet, these microorganisms may favour non-pathogenic
bacteria [5, 6].

Bacteria of the Bacillus genus, such as the facultative
anaerobic species B. subtillis and B. licheniformis, have
the advantage of sporulation. This characteristic makes
them more viable in food and resistant to acidic gastric
pH [6-8]. B. subtilis and B. licheniformis are commonly
found as spores in the soil. The spores are dehydrated
and when exposed to appropriate nutrients and moisture
will germinate in the small intestine, resuming their cell
vegetative growth [9]. After being excreted, these organ-
isms can sporulate again in faeces [7, 10].

Studies have shown that B. subtilis and B. licheniformis
can improve faecal odour and reduce gas formation in
the intestine of dogs [11], prevent necrotic enteritis in
broilers [12], and reduce diarrhoea in piglets [13]. Since
they are viable after excretion, these organisms degrade
organic matter in the faeces, reduce ammonia produc-
tion [4] and potentially reduce faecal odour. Given the
above, the aim of the present study was to evaluate diet
digestibility, faecal characteristics and intestinal fermen-
tation products in dogs supplemented with DFM Bacil-
lus subtilis and Bacillus licheniformis.

Results

All dogs remained healthy throughout the experiment.
No episodes of vomiting or diarrhoea were observed. No
differences in DM intake (Control =201.2 +4.33 g/day
and DFM = 204.1 + 5.34 g/day) and body weight (Control
=10.2 + 1.04 kg and DFM = 10.5 + 1.08 kg) were observed
between treatments (P > 0.05).

The inclusion of DFM with Bacillus subtilis and Bacillus
licheniformis in extruded dog diets did not alter (P > 0.05)
the nutrient apparent total tract digestibility (ATTD) coef-
ficients and diet metabolisable energy (ME) (Table 1), fae-
cal DM, ammonia, faecal pH, and sialic acid (Table 2), as
well as the SCFA and BCFA concentrations in the faeces
(Table 3). The faecal score, however, was increased and
the inclusion of DFM resulted in less fetid faeces both in

Table 1 Diet ATTD and ME means with or without DFM (n = 8)

[tem Control DFM SEM P-value

ATTD (%)
Dry matter 79.1 788 0.31 0.739
Organic matter 84.1 83.8 0.25 0.754
Crude protein 799 788 0.56 0.281
Ether extract 86.5 85.6 042 0.297
Ash 439 44.2 045 0.921
Nitrogen-free extract 929 92.1 0.67 0.892
ME (kcal/kg) 4034.9 40624 1049 0.199
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Table 2 Faecal characteristics means of dogs fed diets with or
without DFM (n = 8)

[tem Control DFM SEM P-value
Fresh faeces pH 6.32 6.50 0.058 0.128
After 6 h pH 6.32 6.31 0.035 0933
Fresh faeces moisture (%) 70.04 69.12 0.563 0434
After 6 h moisture (%) 67.39 67.36 0.707 0.981
Fresh faeces ammonia (g/kg) 052 0.50 0.001 0.834
After 6 h ammonia (g/kg) 0.73 061 0.001 0.897
Faecal production 0.13 0.12 0.005 0.379
Sialic acid (umol/g) 246 247 0.04 0.943

DFM Direct-fed microbials (62.5 mg/kg of diet of a mixture of 3.66 x 10 cfu/kg
Bacillus subtilis and 3.66 x 107 cfu/kg Bacillus licheniformis)

fresh samples and 6 h after defecation (P< 0.05, Table 4
and Fig. 1). According to 82% of the evaluators, fresh fae-
ces of dogs consuming the DFM diet were less fetid than
those from animals consuming the control diet. Similarly,
78% of evaluators considered that 6 h after defecation the
faeces of dogs consuming DFM were less fetid than those
in the control group (P < 0.05, Fig. 1). The concentration
of biogenic amines: putrescine, spermidine and cadaverine,
as well as phenols and quinoline were reduced (P < 0.05)
with the inclusion of DFM (Tables 5 and 6).

Discussion
This study demonstrates that dietary DFM supple-
mentation reduced the concentration of protein fer-
mentation compounds in faeces, resulting in lower
faecal odour of dogs. However, it did not change diet
digestibility.

The absence of DFM effects on diet digestibility com-
ponents was similar to that observed by Biourge [14]
and Pasupathy [15]. The authors found no difference in
the digestibility of dog diets containing 7.5 x 10°cfu of

Table 3 SCFA and BCFA means in faeces of dogs fed diets with
or without DFM (n=8)

[tem Control DFM SEM P-value
SCFA (umol/q)
Acetic 31.21 33.79 1.118 0.263
Propionic 27.66 27.16 1.205 0.845
Butyric 478 3.94 0316 0.193
Total SCFA 64.33 64.89 1.899 0.887
BCFA (umol/g)
Isobutyric 0.79 091 0.035 0.090
Isovaleric 0.78 0.67 0.044 0.198
Valeric 0.29 0.31 0011 0415
Total BCFA 1.94 1.87 0.065 0.640

ATTD Apparent total tract digestibility, ME Metabolisable energy
DFM Direct-fed microbials (62.5 mg/kg of diet of a mixture of 3.66 x 107 cfu/kg
Bacillus subtilis and 3.66 x 107 cfu/kg Bacillus licheniformis)

SCFA short chain fatty acids, BCFA branched chain fatty acids
DFM Direct-fed microbials (62.5 mg/kg of diet of a mixture of 3.66 x 10 cfu/kg
Bacillus subtilis and 3.66 x 107 cfu/kg Bacillus licheniformis)
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Table 4 Faecal score, odour medians and interquartiles of dogs
fed diets with or without DFM

[tem Control DFM P-value
Faecal score 4 (3/4) 4 (4/4) <0.001
Odour fresh faeces 2 (2.0/2.0) 1(1.0/1.0) <0.001
Odour after 6 h 2 (2.0/2.0) 1(1.0/1.0) <0.001

Faecal score (n=8) 1 (liquid stools) to 5 (dry stools); faecal odour (n =50) 1
(less fetid than control) 2 (same as control) and 3 (more fetid than control)
DFM (Direct-fed microbials) (62.5 mg/kg of diet of a mixture of 3.66 x 107 cfu/
kg Bacillus subtilis and 3.66 x 107 cfu/kg Bacillus licheniformis)

Bacillus CIP 5832 and 2x10”cfu of Lactobacillus
acidophilus.

Besides nutrient digestibility, faecal characteristics
should also be taken into consideration in dog-food
evaluations. Faecal characteristics can be a reflex of
intestinal functionality and have become more rele-
vant for pet owners that look for dog foods that re-
duce faecal odour and improve faecal consistency.
When compared to the control diet, the effect of
DFM was reflected by an improvement in faecal
consistency. These results were also reported by Félix
et al. [6], using a 0.01% supplement of Bacillus subti-
lis (C-3102) and Paap et al. [11], using 0.5g/100 g Ba-
cillus subtilis (C-3102) in diets for dogs. Similarly,
when supplement in diet Bacillus subtilis and Bacillus
licheniformis, Alexopoulos et al. [13] reported a diar-
rhoea reduction in piglets.

The maintenance of intestinal eubiosis plus SCFA pro-
duction in the colon can explain the increase in faecal
consistency [16] with the use of probiotics and DFM in
the diet. SCFA production by intestinal microorganisms
and their absorption by the colonocytes stimulate water
and electrolyte absorption, as well as increase the ab-
sorption rate of sodium, responsible for most of the
water absorbed in the intestinal lumen [17]. Despite this,
faecal SCFA concentration was not altered in the present
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study with the use of DFM. This may be due to the rapid
absorption rate of SCFA by the intestinal mucosa [1, 18].

Likewise, no changes were observed in dogs’ faecal pH,
in agreement with what has been reported by Swanson
et al. [1], Félix et al. [6], and Stercova et al. [19]. On the
other hand, Feliciano et al. [5] observed a reduction in
faecal pH of dogs fed a diet containing Lactobacillus
spp. The absence of faecal pH alterations of dogs fed
with Bacillus spp. can be due to the limited ability of the
Bacillus genus species to produce lactic acid when com-
pared to Lactobacillus [6].

Amino acid fermentation catabolites are considered
to be the main odoriferous components of faeces and
can have negative influences on intestinal functional-
ity due to their toxicity and their favouring the sur-
vival of bacteria with pathogenic potential [20-22].
Several putrefactive compounds can be produced
from the fermentation of undigested amino acids by
deamination, deamination-decarboxylation or carb-
oxylation [23], with ammonia, biogenic amines, BCFA,
indoles, phenols, and volatile compounds containing
sulphur being the major groups [22, 23].

In the present study, DFM supplementation decreased
the concentration of potentially toxic putrefactive com-
pounds for the intestinal mucosa when in high concen-
trations. The reduced compounds were: putrescine,
spermidine, cadaverine, phenols, and quinoline, which
resulted in faeces with less odour, both when fresh and
6 h after defecation.

Besides these results, the faecal ammonia concentra-
tion was not reduced in dogs fed the diet containing
DFM. Likewise, other studies did not report a same pat-
tern among the increase or decrease of all protein catab-
olites [1, 3, 24]. This may be explained by the different
nitrogen substrates that generate these catabolites and
their different utilization rates by the gut microbiota.
Ammonia is produced by deamination, while biogenic

N
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ml 4% ml
2 2
m3 m3
L82%
Fresh faeces Faeces after 6 hours
Fig. 1 Points frequency of faecal odour scores attributed by evaluators (n=50). 1 =less fetid odour; 2 =same odour and 3 = more fetid odour, as
compared to faeces of dogs fed the control diet
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Table 5 Biogenic amines (mg/kg) means in faeces of dogs fed
diets with or without DFM (n = 8)

[tem Control DFM SEM P-value
Tiramine 48.36 46.22 10.770 0443
Putrescine 71.24 4751 9.321 0.025
Cadaverine 129.87 88.63 18.935 0.050
Histamine 2293 23.89 5.280 0448
Serotonin 3.20 2.39 0.381 0.057
Agmatine 0.00 0.00 0.000 1.000
Spermidine 26.77 19.94 2451 0.015
Phenylethynamine 0.55 092 0.253 0.147
Tryptamine 0.51 022 0.344 0272
Total amines 30342 209.90 38301 0.031

DFM Direct-fed microbials (62.5 mg/kg of diet of a mixture of 3.66 x 107 cfu/kg
Bacillus subtilis and 3.66 x 107 cfu/kg Bacillus licheniformis)

amines, phenols, and indoles are produced by the de-
carboxylation of amino acids. The amine putrescine,
spermidine and cadaverine are produced from the de-
carboxylation of ornithine, methionine and lysine, re-
spectively [25]. Phenols and indoles are produced from
the fermentation of tyrosine and tryptophan, respectively
[26]. Since these mechanisms are mediated by enzymes
produced mainly by intestinal bacteria with pathogenic
potential, it is possible that DFM influenced the intes-
tinal microbiota, favouring the non-pathogenic bacterial
population.

The fact that the odour was still low 6h after
defecation (simulating what usually happens in the home
environment) indicates that B. subtillis and B. lichenifor-
mis have a continuous action in faeces after excretion.
According to Vainshtein et al. [4], spore-forming Bacil-
lus species produce substances that are antagonists to
the development of organisms with pathogenic potential
(generally proteolytic) and produce enzymes that de-
grade OM present in the excreta, reducing ammonia
production. These effects can occur both in the gut and
the faeces. Still according to these authors, Bacillus-
genus bacteria have shown major results in sanitizing
poultry and swine waste.

Table 6 Mean percentage of peak areas of more abundant
volatile organic compounds present in the dogs’ faeces (n=8)

ltem Control DFM SEM P-value
Fresh faeces Phenols 37.18 18.96 313 <0.001
Quinoline 14.57 3.06 3.14 <0.001
Indoles 63.32 67.08 298 0.548
After 6 h Phenols 3348 34.58 2.86 0.855
Quinoline 768 7.33 1.85 0927
Indoles 5883 58.04 3.98 0.929

DFM (Direct-fed microbials) (62.5 mg/kg of diet of a mixture of 3.66 x 107 cfu/
kg Bacillus subtilis and 3.66 x 107 cfu/kg Bacillus licheniformis)
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Another mechanism that may have contributed to the
intestinal microbiota balance could be the immunomod-
ulatory action of B. subtillis and B. licheniformis in the
gut [27], reducing the establishment of organisms with
pathogenic potential, protecting the villi and the absorp-
tion surface against irritating toxins [28], such as bio-
genic amines, phenols and indoles. In a study with
broilers, Knap et al. [12] observed that the use of Bacil-
lus licheniformis in the diet helped prevent necrotic
enteritis.

Considering the discussion above, dietary supplemen-
tation with DFM B. subtilis and B. licheniformis has po-
tential beneficial effects in gut functionality in dogs. To
our knowledge, this was the first study to describe the
reduction on biogenic ammines, phenols, and quinoline
in faeces of dogs fed DFM. Besides, the reduction of the
faecal odour and improvement in the faecal score are
very important commercial characteristics, considering
the close relation between dogs and their owners. Differ-
ent from conventional probiotics, these DFM may be
more effective in reaching the colon, considering their
ability to form spores and resist to environment and gas-
tric pH levels [7, 8]. These characteristics make DFM
very interesting for practical applications in commercial
dog diets.

Despite these potential benefits, one limitation of
the present study was that we did not evaluate the
faecal microbiota of dogs. Besides, although many
studies report the toxic effects of higher concentra-
tions of nitrogen fermentative products to colonocytes
[20-22], we still have a lack of information of which
is the limit between the functional and toxic concen-
trations of these compounds in the gut mucosa of
dogs. This is important considering that dogs have
greater protein requirements than humans and it was
previously reported that the modulation of some poly-
amines is important to reduce inflammatory processes
and cell infiltrations in dogs with inflammatory bowel
disease and colonic polyps [29]. Thus, further studies
evaluating the effects of DFM supplementation in fae-
cal microbiota and nitrogen fermentative products in
dogs are required to better understand their effects
on intestinal functionality and the modulation of
dogs’ intestinal microbiota.

Conclusions

The inclusion of 3.66 x 10” cfu/kg of Bacillus subtilis
feed and 3.66 x 10 cfu/kg of Bacillus licheniformis feed
in extruded dog diets improves faecal consistency and
odour. It also reduces faecal concentration of com-
pounds produced in protein catabolism such as putres-
cine, spermidine, cadaverine, phenols, and quinoline,
demonstrating possible beneficial effects on dog’s intes-
tinal functionality.
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Methods

Animals and housing

Sixteen adult intact beagle dogs were used (eight males
and eight females), with an average body weight of
10.3 + 1.07 kg and 4 years of age. All animals underwent
previous clinical and physical examinations, were vacci-
nated, dewormed, and individually housed in covered
brickwork kennels (5m long x 2m wide), containing a
bed and free access to fresh water. The environment
temperature ranged from 16°C to 28°C with a 12-h
light—dark cycle (light 6 am-6pm). All animals were
brought to the Research laboratory on canine nutrition
of the Federal University of Parana (Curitiba, PR, Brazil)
from Maiorca Kennel (Colombo, PR, Brazil) when they
were 3—4 months old.

During most of the diet adaptation period (until the
16th day) dogs had free supervised access to an outdoor
area for 2 h a day. Between days 17-25 the dogs were in-
dividually housed at the kennels to allow for faecal col-
lection. All dogs received extra attention and kennel
enrichment during this period. The dogs will be donated
when they complete 6 years of age. The use of animals
for this study was approved by the Ethics Committee on
Animal Use from the Agrarian Sciences Sector, Federal
University of Parand, Curitiba, PR, Brazil (012/2019).

Experimental diets

The same commercial diet for adult dogs was divided
into two parts and used in the experimental treatments.
One part (eight dogs, four males and four females) was
used in the control treatment, with no DFM supplemen-
tation, and the other part (eight dogs, four males and
four females) was used as the test treatment containing
62.5 mg/kg of a diet with a mixture of Bacillus subtilis
(3.66 x 107 cfu/kg of the diet) and Bacillus licheniformis
(3.66 x 107 cfu/kg of the diet) as DFM (PureGro®, DSM,
Heerlen Netherlands). The diet had the following com-
position: poultry viscera meal, meat meal, corn, soybean
meal, poultry fat, swine liver hydrolysate, sodium chlor-
ide, citric acid, antioxidants (BHT, BHA), propionic acid,
vitamin A, vitamin D3, vitamin E, vitamin B1, vitamin
B6, vitamin B12, vitamin K3, nicotinic acid, folic acid,
biotin, calcium pantothenate, zinc sulfate, calcium iod-
ate, sodium selenite, copper sulfate, iron sulfate, manga-
nese sulfate and zinc oxide. The chemical composition
of the experimental diets is shown in (Table 7).

DFM was diluted in poultry viscera oil and used on
top of the test diet. The same amount of oil, without
DFM, was used on the control treatment, ensuring that
the diets were isonutritive.

Experimental procedures
The digestibility assay followed the total faeces collection
method as recommended by the Association of
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Table 7 Analysed chemical composition of the experimental
diets (dry matter basis, %)

[tem Control DFM
Dry matter 91.77 91.51
Crude protein 21.75 21.12
Ether extract in acid hydrolysis 9.22 9.04
Ash 7.02 7.00
Crude fibre 223 242
Calcium 1.18 1.23
Phosphorus 0.89 091

DFM Direct-fed microbials (62.5 mg/kg of a diet with a mixture of 3.66 x 10’
cfu/kg Bacillus subtilis and 3.66 x 107 cfu/kg of Bacillus licheniformis)

American Feed Control Official [30]. The diets were
provided during a 20-day adaptation period, followed by
5 days of total faeces collection, resulting in a mixture of
faeces from each animal.

The food was provided twice a day (8:30 a.m. and 4:00
p.m.), in amounts sufficient to meet the animal’s metab-
olisable energy (ME) requirement according to the Na-
tional Research Council [31], where: ME (kcal/day) = 130
x Body weight®”> Water was provided ad libitum. The
faeces were collected and weighed at least two times per
day and stored in individual previously-identified plastic
containers, covered and stored in a freezer (- 14°C) to
be analysed later.

At the end of the collection period, the faeces of
each replicate were thawed at room temperature and
homogenized separately, forming a composite sample
from each animal. Faeces were dried in a forced ven-
tilation oven (320-SE, Fanem, Sdo Paulo, Brazil) at
55°C for 48 h or until reaching constant weight. Diets
and faeces were ground to 1.0 mm in a hammer mill
(Arthur H. Thomas Co., Philadelphia, PA, USA),
using 1.0-mm wire mesh sieves for the bromatological
testing (in duplicate and with repetitions when the
variation was higher than 5%).

The amounts of dry matter at 105 °C (DM105), crude
protein (CP, method 954.01), crude fibre (CF, method
994.13), ether extract in acid hydrolysis (EEAH, method
954.02), and ash (942.05) were determined in both diets
and faeces according to the Association of the Official
Analytical Chemists [32]. The amount of gross energy
(GE) was established using a calorimetric pump (Parr
Instrument Co., model 1261, Moline, IL, USA), and or-
ganic matter (OM) was calculated by the difference be-
tween 100 — Ash. Nitrogen-free extract was calculated
as 100 — CP — Ash — CF — EEAH.

Faecal characteristics were assessed at the end of the
study by analysing the total amount of dry faecal matter
(DM), faeces production (g faeces/g DM intake/5 days),
consistency score and odour, pH, ammonia concentra-
tion, short-chain fatty acids (SCFA), branched-chain
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fatty acids (BCFA), phenols, indoles, sialic acid, and bio-
genic amines.

Considering that the faecal-consistency scoring system
is a subjective evaluation, the sample was always evaluated
by the same researcher using a 5-point rating scale: 1 =
faeces are soft and have no defined shape; 2 = faeces are
soft and poorly formed; 3 = faeces are soft, formed and
moist; 4 = faeces are well formed and consistent; 5 = faeces
are well formed, hard and dry, according to Carciofi [33].

Faecal odour was evaluated and scored on the 25th day
of the experimental period. Faeces from three animals per
treatment were randomly collected, homogenized and the
same amounts (5.0 g) were placed in plastic containers of
the same size and covered with plastic film with holes
(same number and size). The containers were classified as:
A (control diet) and B (DFM diet), so the participants
would not have information about the treatment. The sen-
sorial analysis was performed by 50 evaluators with fresh
faeces (up to 30 min after defecation) and 6 hours after
defecation, with different people at each point in time. In
the evaluation, sample B with DFM was compared to A
(control diet) using the following scoring system: 1 = bet-
ter odour than control (less fetid); 2 = same as control; 3 =
worse than control (more fetid).

Faecal pH and ammonia concentrations were analysed
in faeces collected up to 15 min after defecation. Faecal
pH was measured in a digital pH meter (331, Politeste
Instrumentos de Teste Ltda, Sdo Paulo, SP, Brazil) using
3.0 g of fresh faeces diluted in 30 mL of distilled water.
The ammonia concentration was determined according
to the method described by Brito et al. [34].

Fresh faeces collected up to 15 min after defecation
were used to determine SCFA and BCFA. A properly la-
belled plastic container with a lid was used to weigh 10 g
of faeces mixed with 30 mL of 16% formic acid. This
mixture was homogenized and stored at 4°C for 3 to 5
days. Before the analysis, these solutions were centri-
fuged at 5000 rpm (2 K15 centrifuge, Sigma, Osterodeam
Hans, Germany) for 15 min. At the end, the supernatant
was separated and centrifuged. Each sample underwent
three centrifugations and, at the end of the last one, part
of the supernatant was transferred to a properly identi-
fied eppendorff for subsequent freezing. Later on, the
samples were thawed and centrifuged again at 14000
rpm for 15 min (Rotanta 460 Robotic, Hettich, Tuttlin-
gen, Germany). Faecal SCFA and BCFA were deter-
mined by gas chromatography (Shimadzu®, model GC-
2014, Kyoto, Japan) using a 30-m long and 0.32-mm
wide glass column (Agilent Tecnologias, HP INNO cera-
19,091 N, Santa Clara, USA). Nitrogen was used as the
carrier gas at a 3.18 mL/min flow rate. Working temper-
atures were 200 °C at injection, 240 °C in the column (at
a 20°C/min rate), and 250°C in the flame ionization
detector.

Page 6 of 8

Phenols and indoles were analysed by chromatography
using a GCMS2010 Plus gas chromatographer
(Shimadzu®) coupled to a TQ8040 mass spectrometer
with an AC 5000 autosampler and a split-splitless
injector. Chromatographic separations were obtained in
the  SH-Rx-5MS  (30mx025mmx025um -
Shimadzu®) column with a 1.0-mL min~! flow rate, and
helium as the drag gas at a 5.0 rate. The transfer line
and ionization source temperatures were maintained at
40 °C and 220 °C, respectively, with the 1-L injection vol-
ume in the split mode (1:10 rate). The GC oven
temperature was maintained at 220°C (5 min) with a
40°C/min" ! increase to 280°C (5 min). Total analysis
time was 31 min and the mass spectrometer operated in
the full scan modes (m/z =40 to 400) and selective ion
monitoring (SIM), with electron ionization at 70eV.
GCMSsolution® was the software used in the data
analysis.

For the sialic acid determination, faeces were lyophi-
lized (Alpha 1-4 LO plus, Christ, Osterodeam Hans,
Germany) and analysed according to the method de-
scribed by Jourdian et al. [35]. Biogenic amines were
analysed according to the method described by Urrego
et al. [36] in fresh faeces, collected up to 15 min after
defecation.

The DM, consistency score, faecal odour, pH, ammo-
nia, phenols and indoles were also analysed in the same
samples 6 h after defecation. For the analysis performed
6 h after defecation, faeces were maintained at room
temperature (average of 24.5°C, 84% relative air humid-
ity and in the shade for 6 h.)

Calculations and statistical analyses

Based on the laboratory results, the apparent total tract
digestibility (ATTD) coefficients and the diet's ME were
calculated according to the Association of American
Feed Control Official [30]:

ATTD% = [(g of nutrient intake — g of nutrient
excretion)/g of nutrient intake] x 100.

ME (kcal/g) = {kcal/g GE intake — kcal/g GE faecal ex-
cretion — [(g CP intake — g CP.

faecal excretion) x 1.25 kcal/g]} / g of feed intake.

The experiment had a completely randomized de-
sign with two treatments, each one with eight repli-
cates, except for faecal odour that had 50 replicates.
Each dog was considered an experimental unit. The
Shapiro-Wilk test was used to determine normality of
the data and the homoscedasticity of variances was
analysed by Bartlett’s test. When these assumptions
were met, the t-Student’s test was used at a 5% sig-
nificance level. The non-parametric data were ana-
lysed by the Mann-Whitney-Wilcoxon test (P < 0.05).
The frequency of faecal odour scores was analysed by
the chi-square test (P < 0.05).
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